Trapezium-like Inequalities Involving k-th Order Differentiable -Convex Functions and Applications
Abstract
:1. Introduction and Preliminaries
2. Main Results
2.1. -Convex Functions
2.2. Auxiliary Result
2.3. Trapezium-like Inequalities
2.4. Applications
- Arithmetic mean: ;
- –logarithmic mean: ,.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breckner, W.W. Stetigkeitsaussagen fureine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Dragomir, S.S.; Pecaric, J.E.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Godunova, E.K.; Levin, V.I. Neravenstva dlja funkcii sirokogo klassa soderzascego vypuklye, monotonnye I nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Tr. MGPI Mosk 1985, 9, 138–142. [Google Scholar]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Inequalities of Hermite—Hadamard type for h–convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite—Hadamard type for φ–convex functions. Konuralp J. Math. 2016, 4, 54–67. [Google Scholar]
- Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. On γ-convex functions. Filomat 2020, 34, 4137–4159. [Google Scholar] [CrossRef]
- Tunc, M.; Gov, E.; Sanal, U. On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 2015, 30, 679–691. [Google Scholar]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New quantum estimates of trapezium-type inequalities for generalized φ-convex functions. Mathematics 2019, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East As. Math. J. 2015, 21, 191–203. [Google Scholar]
- Chow, Y.T.; Deng, Y.; He, Y.; Liu, H.; Wang, X. Surface-localized transmission eigenstates, super-resolution imaging, and pseudo surface plasmon modes. SIAM J. Imaging Sci. 2021, 14, 946–975. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.; Liu, H. On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model. Arch. Ration. Mech. Anal. 2020, 235, 691–721. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhang, D.; Guo, Y. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far—field data, Inverse Problems and Imaging. arXiv 2019, arXiv:1804.05062. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite—Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Fang, X.; Deng, Y. Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement. Inverse Probl. Imaging 2018, 12, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J. Comput. Phy. 2020, 417, 1–26. [Google Scholar] [CrossRef]
- Demir, D.D.; Sanal, G. Perturbed trapezoid inequalities for k-th order differentiable convex functions and their applications. AIMS Math. 2020, 5, 5495–5509. [Google Scholar] [CrossRef]
- Du, T.S.; Liao, J.G.; Li, Y.J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s; m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I. Higher order strongly exponentially biconvex functions and bivariational inequalities. J. Math. Anal. 2021, 12, 23–43. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.
Trapezium-like Inequalities Involving k-th Order Differentiable
Vivas-Cortez M, Awan MU, Talib S, Noor MA, Noor KI.
Trapezium-like Inequalities Involving k-th Order Differentiable
Vivas-Cortez, Miguel, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, and Khalida Inayat Noor.
2022. "Trapezium-like Inequalities Involving k-th Order Differentiable
Vivas-Cortez, M., Awan, M. U., Talib, S., Noor, M. A., & Noor, K. I.
(2022). Trapezium-like Inequalities Involving k-th Order Differentiable