Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping
<p>The location of the study area and the wildfire inventory data from 2012 to 2017 that was created from moderate-resolution imaging Spectroradiometer (MODIS) and field surveys.</p> "> Figure 2
<p>Susceptibility maps derived using each machine learning approach: (<b>a</b>) artificial neural network (ANN), (<b>b</b>) dmine regression (DR), (<b>c</b>) DM neural, (<b>d</b>) least angle regression (LARS), (<b>e</b>) multi-layer perceptron (MLP), (<b>f</b>) random forest (RF), (<b>g</b>) radial basis function (RBF), (<b>h</b>) logistic regression (LR), (<b>i</b>) self-organizing maps (SOM), (<b>j</b>) support vector machine (SVM), and (<b>k</b>) decision tree (DT).</p> "> Figure 2 Cont.
<p>Susceptibility maps derived using each machine learning approach: (<b>a</b>) artificial neural network (ANN), (<b>b</b>) dmine regression (DR), (<b>c</b>) DM neural, (<b>d</b>) least angle regression (LARS), (<b>e</b>) multi-layer perceptron (MLP), (<b>f</b>) random forest (RF), (<b>g</b>) radial basis function (RBF), (<b>h</b>) logistic regression (LR), (<b>i</b>) self-organizing maps (SOM), (<b>j</b>) support vector machine (SVM), and (<b>k</b>) decision tree (DT).</p> "> Figure 2 Cont.
<p>Susceptibility maps derived using each machine learning approach: (<b>a</b>) artificial neural network (ANN), (<b>b</b>) dmine regression (DR), (<b>c</b>) DM neural, (<b>d</b>) least angle regression (LARS), (<b>e</b>) multi-layer perceptron (MLP), (<b>f</b>) random forest (RF), (<b>g</b>) radial basis function (RBF), (<b>h</b>) logistic regression (LR), (<b>i</b>) self-organizing maps (SOM), (<b>j</b>) support vector machine (SVM), and (<b>k</b>) decision tree (DT).</p> "> Figure 2 Cont.
<p>Susceptibility maps derived using each machine learning approach: (<b>a</b>) artificial neural network (ANN), (<b>b</b>) dmine regression (DR), (<b>c</b>) DM neural, (<b>d</b>) least angle regression (LARS), (<b>e</b>) multi-layer perceptron (MLP), (<b>f</b>) random forest (RF), (<b>g</b>) radial basis function (RBF), (<b>h</b>) logistic regression (LR), (<b>i</b>) self-organizing maps (SOM), (<b>j</b>) support vector machine (SVM), and (<b>k</b>) decision tree (DT).</p> "> Figure 3
<p>Values for all the machine learning approaches. The susceptibility maps based on each of the machine learning approaches: artificial neural network (ANN), dmine regression (DR), DM neural, least angle regression (LARS), multi-layer perceptron (MLP), random forest (RF), radial basis function (RBF), logistic regression (LR), self-organizing maps (SOM), support vector machine (SVM), and decision tree (DT).</p> "> Figure 3 Cont.
<p>Values for all the machine learning approaches. The susceptibility maps based on each of the machine learning approaches: artificial neural network (ANN), dmine regression (DR), DM neural, least angle regression (LARS), multi-layer perceptron (MLP), random forest (RF), radial basis function (RBF), logistic regression (LR), self-organizing maps (SOM), support vector machine (SVM), and decision tree (DT).</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Wildfire Inventory Data
3.2. Conditioning Factors
3.3. Methods
3.3.1. Artificial Neural Network (ANN)
3.3.2. Dmine Regression (DR)
3.3.3. Dmneural
3.3.4. Least Angle Regression (LARS)
3.3.5. Multi-Layer Perceptron (MLP)
3.3.6. Random Forest (RF)
3.3.7. Radial Basis Function (RBF)
3.3.8. Logistic Regression (LR)
3.3.9. Self-Organizing Maps (SOM)
3.3.10. Support Vector Machines (SVM)
3.3.11. Decision Tree (DT)
4. Results
5. Accuracy Assessment
5.1. Receiver Operating Characteristics (ROC)
5.2. Cross-Validation (CV)
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacDicken, K.G. Global Forest Resources Assessment 2015: What, why and how? For. Ecol. Manag. 2015, 352, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Aretano, R.; Semeraro, T. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol. Indic. 2016, 64, 72–84. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. J. Environ. Manag. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial Prediction of Wildfire Susceptibility Using Field Survey GPS Data and Machine Learning Approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Ghomi Motazeh, A.; Farahi Ashtiani, E.; Baniasadi, R.; Masoumpoor Choobar, F. Rating and mapping fire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. For. Ideas 2013, 19, 141–150. [Google Scholar]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5. [Google Scholar] [CrossRef]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Jaafari, A.; Pourghasemi, H.R. Factors Influencing Regional-Scale Wildfire Probability in Iran: An Application of Random Forest and Support Vector Machine. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 607–619. [Google Scholar]
- Berger, F.; Rey, F. Mountain Protection Forests against Natural Hazards and Risks: New French Developments by Integrating Forests in Risk Zoning. Nat. Hazards 2004, 33, 395–404. [Google Scholar] [CrossRef]
- Jahdi, R.; Darvishsefat, A. Wind Effect on Wildfire and Simulation of its Spread (Case Study: Siahkal Forest in Northern Iran). J. Agric. Sci. Technol. 2014, 16, 1109–1121. [Google Scholar]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Hazards Risk 2015, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 2015, 31, 42–70. [Google Scholar] [CrossRef]
- Gudiyangada Nachappa, T.; Tavakkoli Piralilou, S.; Ghorbanzadeh, O.; Shahabi, H.; Blaschke, T. Landslide Susceptibility Mapping for Austria Using Geons and Optimization with the Dempster-Shafer Theory. Appl. Sci. 2019, 9, 5393. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Nazmfar, H.; Saredeh, A.; Eshgi, A.; Feizizadeh, B. Vulnerability evaluation of urban buildings to various earthquake intensities: A case study of the municipal zone 9 of Tehran. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 455–474. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J. Asian Earth Sci. 2012, 61, 221–236. [Google Scholar] [CrossRef]
- Pourghasemi, H.; Pradhan, B.; Gokceoglu, C.; Moezzi, K.D. A comparative assessment of prediction capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat. Nat. Hazards Risk 2013, 4, 93–118. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Mansor, S.; Buchroithner, M.; Jamaluddin, N.; Khujaimah, Z. Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J. Appl. Remote Sens. 2008, 2, 023542. [Google Scholar]
- Felicísimo, Á.M.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Sharma, S.; Dhakal, K.; Wagle, P.; Kilic, A. Retrospective tillage differentiation using the Landsat-5 TM archive with discriminant analysis. Agrosyst. Geosci. Environ. 2020, 3, e20000. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Nampak, H.; Pradhan, B.; Manap, M.A. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- Sharma, S.; Ochsner, T.E.; Twidwell, D.; Carlson, J.; Krueger, E.S.; Engle, D.M.; Fuhlendorf, S.D. Nondestructive estimation of standing crop and fuel moisture content in tallgrass prairie. Rangel. Ecol. Manag. 2018, 71, 356–362. [Google Scholar] [CrossRef]
- Tien Bui, D.; Khosravi, K.; Shahabi, H.; Daggupati, P.; Adamowski, J.F.; M.Melesse, A.; Thai Pham, B.; Pourghasemi, H.R.; Mahmoudi, M.; Bahrami, S.; et al. Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sens. 2019, 11, 1589. [Google Scholar] [CrossRef] [Green Version]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. Forest Meteorol. 2019, 266–267, 198–207. [Google Scholar] [CrossRef]
- Watson, G.L.; Telesca, D.; Reid, C.E.; Pfister, G.G.; Jerrett, M. Machine learning models accurately predict ozone exposure during wildfire events. Environ. Pollut. 2019, 254, 112792. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Bui, D.T. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol. Earth Syst. Sci. 2018, 22, 4771–4792. [Google Scholar] [CrossRef] [Green Version]
- Junpen, A.; Garivait, S.; Bonnet, S. Estimating emissions from forest fires in Thailand using MODIS active fire product and country specific data. Asia-Pac. J. Atmos. Sci. 2013, 49, 389–400. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Aryal, J.; Gholaminia, K. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. J. Spat. Sci. 2018, 63, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Neural Network—A comprehensive foundation. Neural Netw. 2004, 2, 41. [Google Scholar]
- Safi, Y.; Bouroumi, A. Prediction of Forest Fires Using Artificial Neural Networks. Appl. Math. Sci. 2013, 7, 271–286. [Google Scholar] [CrossRef]
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least Angle Regression; Statistics Department, Stanford University: Stanford, CA, USA, 2003. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Al_Janabi, S.; Al_Shourbaji, I.; Salman, M.A. Assessing the suitability of soft computing approaches for forest fires prediction. Appl. Comput. Inform. 2018, 14, 214–224. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 2010, 24, 4907–4938. [Google Scholar] [CrossRef]
- Zare, M.; Pourghasemi, H.R.; Vafakhah, M.; Pradhan, B. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab. J. Geosci. 2013, 6, 2873–2888. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, Quebec, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Xu, R.; Lin, H.; Lü, Y.; Luo, Y.; Ren, Y.; Comber, A. A Modified Change Vector Approach for Quantifying Land Cover Change. Remote Sens. 2018, 10, 1578. [Google Scholar] [CrossRef] [Green Version]
- Valdez, M.C.; Chang, K.-T.; Chen, C.-F.; Chiang, S.-H.; Santos, J.L. Modelling the spatial variability of wildfire susceptibility in Honduras using remote sensing and geographical information systems. Geomat. Nat. Hazards Risk 2017, 8, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Tavakkoli Piralilou, S.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J. Landslide Detection Using Multi-Scale Image Segmentation and Different Machine Learning Models in the Higher Himalayas. Remote Sens. 2019, 11, 2575. [Google Scholar] [CrossRef] [Green Version]
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royal Signals and Radar Establishment Malvern (United Kingdom): Malvern, UK, 1988. [Google Scholar]
- Li, Y.; Chen, W. Landslide Susceptibility Evaluation Using Hybrid Integration of Evidential Belief Function and Machine Learning Techniques. Water 2019, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Rafique, W.; Zheng, D.; Barras, J.; Joglekar, S.; Kosmas, P. Predictive Analysis of Landmine Risk. IEEE Access 2019, 7, 107259–107269. [Google Scholar] [CrossRef]
- Lee, S.; Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 2006, 4, 33–41. [Google Scholar] [CrossRef]
- Oja, M.; Kaski, S.; Kohonen, T. Bibliography of Self Organizing Maps (SOM) Papers: 1998-2001 Addendum. Neural Comput. Surv. 2002, 3, 1–156. [Google Scholar]
- Nauslar, N.J.; Hatchett, B.J.; Brown, T.J.; Kaplan, M.L.; Mejia, J.F. Impact of the North American monsoon on wildfire activity in the southwest United States. Int. J. Climatol. 2019, 39, 1539–1554. [Google Scholar] [CrossRef]
- Reusch, D.B.; Alley, R.B.; Hewitson, B.C. Relative Performance of Self-Organizing Maps and Principal Component Analysis in Pattern Extraction from Synthetic Climatological Data. Polar Geogr. 2005, 29, 188–212. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 2013, 11, 425–439. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Nefeslioglu, H.A.; Sezer, E.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Maclennan, J. Data Mining with SQL Server 2005; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull. Eng. Geol. Environ. 2017, 77, 647–664. [Google Scholar] [CrossRef]
- Maser, B.; Söllinger, D.; Uhl, A. PRNU-based Finger Vein Sensor Identification in the Presence of Presentation Attack Data. In Proceedings of the Joint ARW/OAGM Workshop 2019 (ARW/OAGM’19), Steyr, Austria, 9–10 May 2019. [Google Scholar]
- Ghorbanzadeh, O.; Rostamzadeh, H.; Blaschke, T.; Gholaminia, K.; Aryal, J. A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat. Hazards 2018, 94, 497–517. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.R.; Calkin, D.E.; Thompson, M.P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States. Landsc. Urban Plan. 2013, 119, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the Minudasht forests, Golestan province, Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
Topographical | Hydrological | Meteorological | Anthropological | Vegetation |
---|---|---|---|---|
Slope (%) | Distance to Stream (m) | Annual Temperature (°C) | Land use | Normalized difference vegetation index (NDVI) |
Slope Aspect | Annual Rainfall (mm) | Wind Effect | Distance to Village (m) | |
Altitude (m) | Potential Solar Radiation | Distance to Road (m) | ||
Topographic Wetness Index (TWI) | Recreation Area (m) | |||
Landforms | ||||
Plan Curvature (100/m) |
Factors | Class | # of Pixels in Domain | Area (ha) | % of Domain | Area of Forest Fires (ha) | % of Forest Fires | Source |
---|---|---|---|---|---|---|---|
Slope aspect | (1) Flat | 413 | 32.66 | 0.05 | 0.23 | 0.04 | ASTER DEM |
(2) North | 163,477 | 12,929.5 | 20.017 | 78.87 | 15.74 | ||
(3) Northeast | 157,185 | 12,431.86 | 16.25 | 74.90 | 14.95 | ||
(4) East | 111,057 | 8783.56 | 13.60 | 59.27 | 11.83 | ||
(5) Southeast | 64,513 | 5102.32 | 7.9 | 35.55 | 7.09 | ||
(6) South | 59,425 | 4699.96 | 7.27 | 53.12 | 10.6 | ||
(7) Southwest | 69,288 | 5480.03 | 8.48 | 65.06 | 12.98 | ||
(8) West | 89,748 | 7098 | 10.98 | 83.87 | 16.71 | ||
(9) Northwest | 101,549 | 8031.57 | 12.43 | 50.21 | 10.02 | ||
Slope (%) | ASTER DEM | ||||||
(1) 0–5 | 52,438 | 4147.35 | 6.42 | 49.13 | 9.8 | ||
(2) 5–10 | 131,189 | 10,375.82 | 16.06 | 129.72 | 25.89 | ||
(3) 10–15 | 165,158 | 13,062.45 | 20.22 | 160.07 | 31.95 | ||
(4) 15–20 | 132,343 | 10,467.09 | 16.20 | 68.49 | 13.67 | ||
(5) 20–30 | 172,740 | 13,662.11 | 21.15 | 55.58 | 11.09 | ||
(6) 30< | 162,787 | 12,874.92 | 19.93 | 37.93 | 7.57 | ||
Altitude (m) | ASTER DEM | ||||||
(1) 500> | 267,103 | 20,609.83 | 31.76 | 272.50 | 54.39 | ||
(2) 500–1000 | 221,070 | 17,057.90 | 26.28 | 139.98 | 27.93 | ||
(3) 1000–1500 | 175,496 | 13,541.38 | 20.86 | 33.66 | 6.72 | ||
(4) 1500–2000 | 131,112 | 10,116.68 | 15.59 | 51.22 | 10.23 | ||
(5) 2000–2500 | 44,074 | 3400.77 | 5.59 | 3.57 | 0.71 | ||
(6) 2500< | 2064 | 159.25 | 0.24 | 0 | |||
Annual temperature (°C) | SMOAC | ||||||
(1) 10> | 30,663 | 2425.1 | 3.75 | 0 | 0 | ||
(2) 10–12 | 190,487 | 15,065.7 | 23.29 | 3.61 | 0.72 | ||
(3) 12–14 | 213,835 | 16,912.3 | 26.15 | 92.93 | 18.55 | ||
(4) 14–16 | 234,441 | 18,542.0 | 28.67 | 162.79 | 32.48 | ||
(5) 16< | 148,230 | 11,723.6 | 18.1 | 241.12 | 48.25 | ||
Annual rainfall (mm) | SMOAC | ||||||
(1) 400–450 | 40,288 | 3186.40 | 4.92725 | 0 | 0 | ||
(2) 450–500 | 129,427 | 10,236.4 | 15.8290 | 0 | 0 | ||
(3) 500–550 | 138,521 | 10,955.7 | 16.9412 | 30.56 | 6.10 | ||
(4) 550–600 | 311,886 | 24,667.2 | 38.1439 | 146.55 | 29.25 | ||
(5) 600< | 197,534 | 15,623.0 | 24.1585 | 323.83 | 64.64 | ||
Wind effect | ASTER DEM & SMOAC | ||||||
(1) 0.73–0.93 | 203,575 | 16,100.8 | 24.9279 | 161.16 | 32.25 | ||
(2) 0.93–1.09 | 204,281 | 16,156.7 | 25.0143 | 143.42 | 28.62 | ||
(3) 1.09–1.25 | 204,979 | 16,211.9 | 25.0998 | 123.72 | 24.69 | ||
(4) 1.25–1.35 | 203,820 | 16,120.2 | 24.9579 | 72.25 | 14.42 | ||
Plan curvature (100/m) | ASTER DEM | ||||||
(1) Concave | 153,099 | 12,108.7 | 18.73 | 62.9 | 12.55 | ||
(2) Flat | 499,095 | 39,473.7 | 61.05 | 351.45 | 70.15 | ||
(3) Convex | 165,204 | 13,066 | 20.21 | 86.59 | 17.28 | ||
Topographic wetness index (TWI) | ASTER DEM | ||||||
(1) 5–10 | 89,647 | 7090.23 | 10.97 | 61.82 | 12.34 | ||
(2) 10–15 | 186,858 | 14,778.7 | 22.8 | 117.62 | 23.48 | ||
(3) 15–20 | 113,587 | 8983.66 | 13.9 | 61.22 | 12.22 | ||
(4) 20 < | 259,476 | 20,522.1 | 31.7 | 174.21 | 34.72 | ||
167,087 | 13,215. | 20.45 | 86.07 | 17.18 | |||
Landform | ASTER DEM | ||||||
(1) canyon | 39,975 | 3161.64 | 4.8 | 16.10 | 3.21 | ||
(2) Gentle slopes | 159,331 | 12,601.5 | 19.48 | 63.23 | 12.62 | ||
(3) steep slope | 513,481 | 40,611.5 | 62.79 | 375.23 | 75.02 | ||
(4) ridges | 104,869 | 8294.15 | 12.825 | 45.75 | 9.13 | ||
Land use | LANDSAT satellite image | ||||||
(1) Forest | 748,822 | 59,224.8 | 91.4729 | 491.8 | 98.03 | ||
(2) Non-forest | 56,744 | 4487.91 | 6.93160 | 9.87 | 1.97 | ||
(3) Farm | 10,619 | 839.863 | 1.29717 | 0 | 0 | ||
(4) village | 2442 | 193.139 | 0.29830 | 0 | 0 | ||
NDVI | LANDSAT 8 | ||||||
(1) −0.08–0.1 | 162,431 | 12,846.7 | 19.86 | 38.03 | 7.59 | ||
(2) 0.1–0.36 | 153,261 | 12,121.5 | 18.74 | 72.30 | 14.44 | ||
(3) 0.36–0.41 | 161,025 | 12,735.5 | 19.69 | 103.78 | 20.73 | ||
(4) 0.41–0.43 | 176,758 | 13,979.9 | 21.617 | 160.03 | 31.94 | ||
(5) 0.43< | 164,181 | 12,985.1 | 20.07 | 121.70 | 25.29 | ||
Distance to stream (m) | ASTER DEM | ||||||
(1) 200> | 78,797 | 6232.1 | 9.636 | 22.56 | 4.5 | ||
(2) 200–500 | 106,507 | 8423.7 | 13.02 | 83.04 | 16.57 | ||
(3)500–800 | 106,173 | 8397.2 | 12.985 | 97.99 | 19.57 | ||
(4) 800–1200 | 131,936 | 10,434.9 | 16.135 | 67.93 | 13.56 | ||
(5)1200< | 394,243 | 31,180.93 | 48.216 | 229.43 | 45.79 | ||
Distance to road (m) | SWOAC | ||||||
(1) 0–300 | 141,880 | 11,221.3 | 17.352 | 115.99 | 23.15 | ||
(2) 300–600 | 116,931 | 9248.14 | 14.30 | 107.178 | 21.49 | ||
(3) 600–1200 | 172,493 | 13,642.5 | 21.096 | 99.06 | 19.77 | ||
(4) 1200–1800 | 129,926 | 10,275.9 | 15.890 | 88.82 | 17.73 | ||
(5) 1800< | 256,426 | 20,280.9 | 31.36 | 89.40 | 17.78 | ||
Recreation area (m) | SWOAC | ||||||
(1) 0–300 | 32,430 | 2689.05 | 3.881 | 13.87 | 2.77 | ||
(2) 300–700 | 72,251 | 5985.99 | 9.006 | 0.098 | 0.019 | ||
(3) 700< | 751,341 | 59,830.23 | 87.021 | 468.21 | 97.20 | ||
Potential solar radiation | SWOAC | ||||||
(1) 282.943–983.084 | 64,516 | 5102.61 | 7.89 | 98.04 | 3.9 | ||
(2) 983.084–1.189.376 | 21,641 | 1711.60 | 2.646 | 1.26 | 0.25 | ||
(3) 1.189.376–1.339.406 | 54,780 | 4332.58 | 6.699 | 2.47 | 0.49 | ||
(4) 1.339.406–1.501.939 | 113,723 | 8994.4 | 13.90 | 59.65 | 11.9 | ||
(5) 1.501.939–1.877.015 | 562,996 | 44,527.71 | 68.85 | 339.51 | 67.71 | ||
Distance to village (m) | |||||||
(1) 0–300 | 33,175 | 2623.83 | 4.05 | 0.094 | 0.018 | SWOAC | |
(2) 300–600 | 33,140 | 2621.06 | 4.053 | 13.85 | 2.76 | ||
(3) 600–1200 | 82,832 | 6551.23 | 10.13 | 16.99 | 3.39 | ||
(4) 1200–2400 | 203,181 | 16,069.71 | 24.84 | 73.72 | 14.71 | ||
(5) 2400> | 465,328 | 36,803.0 | 56.90 | 396.28 | 79.1 |
Model | AUCfold1 | AUCfold2 | AUCfold3 | CV |
---|---|---|---|---|
ANN | 0.713 | 0.739 | 0.797 | 0.749 |
DR | 0.827 | 0.77 | 0.753 | 0.783 |
DMneural | 0.672 | 0.644 | 0.687 | 0.667 |
LARS | 0.827 | 0.771 | 0.753 | 0.783 |
MLP | 0.675 | 0.727 | 0.721 | 0.707 |
RF | 0.853 | 0.946 | 0.851 | 0.883 |
RBF | 0.658 | 0.694 | 0.636 | 0.662 |
LR | 0.662 | 0.615 | 0.689 | 0.655 |
SOM | 0.684 | 0.714 | 0.702 | 0.7 |
SVM | 0.783 | 0.828 | 0.751 | 0.787 |
DT | 0.775 | 0.76 | 0.761 | 0.765 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604. https://doi.org/10.3390/sym12040604
Gholamnia K, Gudiyangada Nachappa T, Ghorbanzadeh O, Blaschke T. Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry. 2020; 12(4):604. https://doi.org/10.3390/sym12040604
Chicago/Turabian StyleGholamnia, Khalil, Thimmaiah Gudiyangada Nachappa, Omid Ghorbanzadeh, and Thomas Blaschke. 2020. "Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping" Symmetry 12, no. 4: 604. https://doi.org/10.3390/sym12040604
APA StyleGholamnia, K., Gudiyangada Nachappa, T., Ghorbanzadeh, O., & Blaschke, T. (2020). Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping. Symmetry, 12(4), 604. https://doi.org/10.3390/sym12040604