The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems
<p>Example in <a href="#sec5dot1-symmetry-12-00463" class="html-sec">Section 5.1</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Example in <a href="#sec5dot1-symmetry-12-00463" class="html-sec">Section 5.1</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Example in <a href="#sec5dot1-symmetry-12-00463" class="html-sec">Section 5.1</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Example in <a href="#sec5dot1-symmetry-12-00463" class="html-sec">Section 5.1</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Example in <a href="#sec5dot2-symmetry-12-00463" class="html-sec">Section 5.2</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.5</mn> <mo>,</mo> <mn>1.7</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Example in <a href="#sec5dot2-symmetry-12-00463" class="html-sec">Section 5.2</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>2.0</mn> <mo>,</mo> <mn>3.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Example in <a href="#sec5dot2-symmetry-12-00463" class="html-sec">Section 5.2</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.0</mn> <mo>,</mo> <mn>2.0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Example in <a href="#sec5dot2-symmetry-12-00463" class="html-sec">Section 5.2</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>2.7</mn> <mo>,</mo> <mn>2.6</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>Example in <a href="#sec5dot3-symmetry-12-00463" class="html-sec">Section 5.3</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Example in <a href="#sec5dot3-symmetry-12-00463" class="html-sec">Section 5.3</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Example in <a href="#sec5dot3-symmetry-12-00463" class="html-sec">Section 5.3</a> when <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Example in <a href="#sec5dot4-symmetry-12-00463" class="html-sec">Section 5.4</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mn>1</mn> <mn>5000</mn> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 12 Cont.
<p>Example in <a href="#sec5dot4-symmetry-12-00463" class="html-sec">Section 5.4</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mn>1</mn> <mn>5000</mn> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 13
<p>Example in <a href="#sec5dot4-symmetry-12-00463" class="html-sec">Section 5.4</a> when <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <msub> <mn>1</mn> <mn>5000</mn> </msub> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>⋯</mo> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
- (i)
- strongly monotone if
- (ii)
- monotone if
- (iii)
- strongly pseudo-monotone if
- (iv)
- pseudo-monotone if
- (v)
- satisfying the Lipschitz-type condition on K if there are two real numbers such that
- (i)
- For all
- (ii)
- if and only if
- with
- For each exists;
- All sequentially weak cluster point of lies in K;
- for all and f is pseudomontone on a set
- f satisfy the Lipschitz-type condition on through positive constants and
- for each and satisfy
- need to be convex and subdifferentiable on K for arbitrary
3. An Inertial Sub-Gradient Extra-Gradient Method and Its Convergence Analysis
Algorithm 1 Inertial sub-gradient extra-gradient method for pseudomontone (EP). |
|
- i.
- Given and
- ii.
- Compute
4. Solution for Variational Inequality Problems
- monotone on K if
- pseudo-monotone on K if
- L-Lipschitz continuous on K if
- .
- G is monotone on K and is nonempty;
- .
- G is pseudo-monotone on K and is nonempty;
- .
- G is L-Lipschitz continuous on K for constant
- .
- for every and satisfying
- i.
- Choose and non-decreasing sequence
- ii.
- Given and compute
- i.
- Choose and
- ii.
- Given and compute
- i.
- Take and non-decreasing sequence
- ii.
- Given and compute
- i.
- Choose and
- ii.
- Given and compute
5. Computational Experiment
5.1. Example 1
5.2. Example 2
5.3. Example 3
5.4. Example 4
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blum, E. From optimization and variational inequalities to equilibrium problems. Math. Stud. 1994, 63, 123–145. [Google Scholar]
- Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Konnov, I. Equilibrium Models and Variational Inequalities; Elsevier: New York, NY, USA, 2007; Volume 210. [Google Scholar]
- Giannessi, F.; Maugeri, A.; Pardalos, P.M. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models; Springer Science & Business Media: New York, NY, USA, 2006; Volume 58. [Google Scholar]
- Fan, K. A Minimax Inequality and Applications, Inequalities III; Shisha, O., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Muu, L.D.; Oettli, W. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. Theory, Methods Appl. 1992, 18, 1159–1166. [Google Scholar] [CrossRef]
- Yuan, G.X.Z. KKM Theory and Applications in Nonlinear Analysis; CRC Press: New York, NY, USA, 1999; Volume 218. [Google Scholar]
- Brézis, H.; Nirenberg, L.; Stampacchia, G. A remark on Ky Fan’s minimax principle. Bollettino dell Unione Matematica Italiana 2008, 1, 257–264. [Google Scholar]
- Ansari, Q.; Wong, N.C.; Yao, J.C. The existence of nonlinear inequalities. Appl. Math. Lett. 1999, 12, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.U.; Kumam, P.; Sompong, D. Existence of tripled fixed points and solution of functional integral equations through a measure of noncompactness. Carpathian J. Math. 2019, 35, 193–208. [Google Scholar]
- Rehman, H.U.; Gopal, G.; Kumam, P. Generalizations of Darbo’s fixed point theorem for new condensing operators with application to a functional integral equation. Demonstr. Math. 2019, 52, 166–182. [Google Scholar] [CrossRef]
- Antipin, A.S. The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence. Comput. Math. Math. Phys. 1995, 35, 539–552. [Google Scholar]
- Combettes, P.L.; Hirstoaga, S.A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6, 117–136. [Google Scholar]
- Flåm, S.D.; Antipin, A.S. Equilibrium programming using proximal-like algorithms. Math. Program. 1996, 78, 29–41. [Google Scholar] [CrossRef]
- Van Hieu, D.; Muu, L.D.; Anh, P.K. Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer. Algorithms 2016, 73, 197–217. [Google Scholar] [CrossRef]
- Van Hieu, D.; Anh, P.K.; Muu, L.D. Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 2017, 66, 75–96. [Google Scholar] [CrossRef]
- Van Hieu, D. Halpern subgradient extragradient method extended to equilibrium problems. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Ser. A Matemáticas 2017, 111, 823–840. [Google Scholar] [CrossRef]
- Hieua, D.V. Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 2016, 21, 478–501. [Google Scholar] [CrossRef]
- Konnov, I. Application of the proximal point method to nonmonotone equilibrium problems. J. Optim. Theory Appl. 2003, 119, 317–333. [Google Scholar] [CrossRef]
- Iusem, A.N.; Sosa, W. Iterative algorithms for equilibrium problems. Optimization 2003, 52, 301–316. [Google Scholar] [CrossRef]
- Quoc, T.D.; Anh, P.N.; Muu, L.D. Dual extragradient algorithms extended to equilibrium problems. J. Glob. Optim. 2012, 52, 139–159. [Google Scholar] [CrossRef]
- ur Rehman, H.; Kumam, P.; Cho, Y.J.; Yordsorn, P. Weak convergence of explicit extragradient algorithms for solving equilibirum problems. J. Inequalities Appl. 2019, 2019, 1–25. [Google Scholar] [CrossRef]
- Quoc Tran, D.; Le Dung, M.; Nguyen, V.H. Extragradient algorithms extended to equilibrium problems. Optimization 2008, 57, 749–776. [Google Scholar] [CrossRef]
- Santos, P.; Scheimberg, S. An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 2011, 30, 91–107. [Google Scholar]
- Takahashi, S.; Takahashi, W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 2007, 331, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.U.; Kumam, P.; Abubakar, A.B.; Cho, Y.J. The extragradient algorithm with inertial effects extended to equilibrium problems. Comput. Appl. Math. 2020, 39, 1–26. [Google Scholar]
- Rehman, H.U.; Kumam, P.; Cho, Y.J.; Suleiman, Y.I.; Kumam, W. Modified Popov’s explicit iterative algorithms for solving pseudomonotone equilibrium problems. Optim. Methods. Softw. 2020, 0, 1–32. [Google Scholar]
- Moudafi, A. Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 1999, 15, 91–100. [Google Scholar]
- Mastroeni, G. On auxiliary principle for equilibrium problems. In Equilibrium Problems and Variational Models; Springer: Berlin, Germany, 2003; pp. 289–298. [Google Scholar]
- Martinet, B. Brève communication. Régularisation d’inéquations variationnelles par approximations successives. Revue Française D’informatique et De recherche Opérationnelle. Série Rouge 1970, 4, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef] [Green Version]
- Cohen, G. Auxiliary problem principle and decomposition of optimization problems. J. Optim. Theory Appl. 1980, 32, 277–305. [Google Scholar] [CrossRef]
- Cohen, G. Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 1988, 59, 325–333. [Google Scholar] [CrossRef]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Moudafi, A. Second-order differential proximal methods for equilibrium problems. J. Inequalities Pure Appl. Math. 2003, 4, 1–7. [Google Scholar]
- Dong, Q.L.; Lu, Y.Y.; Yang, J. The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 2016, 65, 2217–2226. [Google Scholar] [CrossRef]
- Thong, D.V.; Van Hieu, D. Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 2018, 79, 597–610. [Google Scholar] [CrossRef]
- Dong, Q.; Cho, Y.; Zhong, L.; Rassias, T.M. Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 2018, 70, 687–704. [Google Scholar] [CrossRef]
- Yang, J. Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Appl. Anal. 2019. [Google Scholar] [CrossRef]
- Thong, D.V.; Van Hieu, D.; Rassias, T.M. Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems. Optim. Lett. 2020, 14, 115–144. [Google Scholar] [CrossRef]
- Dadashi, V.; Iyiola, O.S.; Shehu, Y. The subgradient extragradient method for pseudomonotone equilibrium problems. Optimization 2019, 1–23. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 2011, 148, 318–335. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; Schaible, S. Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 1996, 90, 31–43. [Google Scholar] [CrossRef]
- Bushell, P.J. UNIFORM CONVEXITY, HYPERBOLIC GEOMETRY, AND NONEXPANSIVE MAPPINGS (Pure and Applied Mathematics: A Series of Monographs & Textbooks, 83) By K. Goebel and S. Reich: pp. 192. SFr.96.-. (Marcel Dekker Inc, U.S.A., 1984). Bull. Lond. Math. Soc. 1985, 17, 293–294. [Google Scholar] [CrossRef]
- Kreyszig, E. Introductory Functional Analysis with Applications, 1st ed.; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Tiel, J.v. Convex Analysis; John Wiley: New York, NY, USA, 1984. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: Berlin, Germany, 2011; Volume 408. [Google Scholar]
- Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 2001, 9, 3–11. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
Tran.EgA | Dadshi.EgA | Int.EgA | ||||
---|---|---|---|---|---|---|
n | Iter. | CPU(s) | Iter. | CPU(s) | Iter. | CPU(s) |
5 | 69 | 0.5508 | 28 | 0.2356 | 13 | 0.1145 |
10 | 124 | 1.2234 | 101 | 0.8967 | 51 | 0.4338 |
20 | 283 | 3.4558 | 223 | 2.5063 | 155 | 1.4874 |
40 | 379 | 5.1930 | 259 | 3.0970 | 177 | 1.7652 |
Tran.EgA | Dadshi.EgA | Int.EgA | ||||
---|---|---|---|---|---|---|
u0 = v0 | Iter. | CPU(s) | Iter. | CPU(s) | Iter. | CPU(s) |
86 | 2.9587 | 62 | 1.9962 | 40 | 1.6405 | |
89 | 3.5329 | 71 | 2.0817 | 46 | 1.4633 | |
99 | 3.4713 | 73 | 2.2057 | 52 | 1.5730 | |
71 | 2.7353 | 55 | 1.9161 | 36 | 1.2266 |
Tran.EgA | Dadshi.EgA | Int.EgA | ||||
---|---|---|---|---|---|---|
u0 = v0 | Iter. | CPU(s) | Iter. | CPU(s) | Iter. | CPU(s) |
5 | 198 | 4.6833 | 136 | 2.0156 | 78 | 1.1475 |
10 | 498 | 13.9149 | 190 | 2.3003 | 94 | 0.8930 |
20 | 1471 | 35.1972 | 119 | 1.5241 | 65 | 0.8603 |
Tran.EgA | Dadshi.EgA | Int.EgA | ||||
---|---|---|---|---|---|---|
u0 = v0 | Iter. | CPU(s) | Iter. | CPU(s) | Iter. | CPU(s) |
69 | 0.5508 | 28 | 0.2356 | 13 | 0.1145 | |
124 | 1.2234 | 101 | 0.8967 | 51 | 0.4338 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, H.u.; Kumam, P.; Kumam, W.; Shutaywi, M.; Jirakitpuwapat, W. The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry 2020, 12, 463. https://doi.org/10.3390/sym12030463
Rehman Hu, Kumam P, Kumam W, Shutaywi M, Jirakitpuwapat W. The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry. 2020; 12(3):463. https://doi.org/10.3390/sym12030463
Chicago/Turabian StyleRehman, Habib ur, Poom Kumam, Wiyada Kumam, Meshal Shutaywi, and Wachirapong Jirakitpuwapat. 2020. "The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems" Symmetry 12, no. 3: 463. https://doi.org/10.3390/sym12030463
APA StyleRehman, H. u., Kumam, P., Kumam, W., Shutaywi, M., & Jirakitpuwapat, W. (2020). The Inertial Sub-Gradient Extra-Gradient Method for a Class of Pseudo-Monotone Equilibrium Problems. Symmetry, 12(3), 463. https://doi.org/10.3390/sym12030463