Abstract
In this paper we propose two iterative schemes for solving equilibrium problems which are called dual extragradient algorithms. In contrast with the primal extragradient methods in Quoc et al. (Optimization 57(6):749–776, 2008) which require to solve two general strongly convex programs at each iteration, the dual extragradient algorithms proposed in this paper only need to solve, at each iteration, one general strongly convex program, one projection problem and one subgradient calculation. Moreover, we provide the worst case complexity bounds of these algorithms, which have not been done in the primal extragradient methods yet. An application to Nash-Cournot equilibrium models of electricity markets is presented and implemented to examine the performance of the proposed algorithms.
References
Blum E., Oettli W.: From optimization and variational inequality to equilibrium problems. Math. Student 63, 127–149 (1994)
Bruck R.E.: On the weak convergence of an Ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977)
Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds): Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008)
Cohen G.: Auxiliary problem principle and decomposition of optimization problems. J. Optim. Theory Appl. 32, 277–305 (1980)
Cohen G.: Auxiliary principle extended to variational inequalities. J. Optim. Theory Appl. 59, 325–333 (1988)
Contreras J., Klusch M., Krawczyk J.B.: Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19(1), 195–206 (2004)
Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol I. II. Springer, New York (2003)
Flam S.D., Antipin A.S.: Equilibrium programming using proximal-like algorithms. Math. Program. 78, 29–41 (1997)
Giannessi, F., Maugeri, A., Pardalos, P.M. (eds): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2004)
Konnov I.V.: Combined relaxation methods for variational inequalities. Springer-Verlag, Berlin (2001)
Konnov I.V., Kum S.: Descent methods for mixed variational inequalities in Hilbert spaces. Nonlinear Anal. 47, 561–572 (2001)
Konnov I.V.: Generalized convexity and related topics. In: Konnov, I.V., Luc, D.T., Rubinov, (eds.) A.M. (eds) Combined Relaxation Methods for Generalized Monotone Variational Inequalities, pp. 3–331. Springer, Berlin (2007)
Korpelevich G.M.: Extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)
Lalitha C.S.: A note on duality of generalized equilibrium problem. Optim. Lett. 4(1), 57–66 (2010)
Li S.J., Zhao P.: A method of duality for mixed vector equilibrium problem. Optim. Lett. 4(1), 85–96 (2010)
Maiorano, A., Song, Y.H., Trovato, M.: Dynamics of noncollusive oligopolistic electricity markets. In: Proceedings IEEE Power Engineering Society Winter Meeting, pp. 838–844, Singapore Jan (2000)
Martinet B.: Régularisation d’inéquations variationelles par approximations successives. Revue Française d’Automatique et d’Informatique Recherche Opérationnelle 4, 154–159 (1970)
Mastroeni G.: On auxiliary principle for equilibrium problems. Publicatione del Dipartimento di Mathematica dellUniversita di Pisa 3, 1244–1258 (2000)
Mastroeni G.: Gap function for equilibrium problems. J. Global Optim. 27(4), 411–426 (2003)
Moudafi A.: Proximal point algorithm extended to equilibrium problem. J. Nat. Geom. 15, 91–100 (1999)
Muu L.D., Oettli W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)
Muu L.D., Quoc T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory Appl. 142(1), 185–204 (2009)
Nemirovskii A.S.: Effective iterative methods for solving equations with monotone operators. Ekon. Matem. Met. (Matecon) 17, 344–359 (1981)
Nesterov Y.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. Ser. B 109(2–3), 319–344 (2007)
Nguyen V.H.: Lecture Notes on Equilibrium Problems. CIUF-CUD Summer School on Optimization and Applied Mathematics. Nha Trang, Vietnam (2002)
Panicucci B., Pappalardo M., Passacantando M.: On solving generalized Nash equilibrium problems via optimization. Optim. Lett. 3(3), 419–435 (2009)
Pardalos, P.M, Rassias, T.M., Khan, A.A. (eds): Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)
Quoc T.D., Muu L.D.: Implementable quadratic regularization methods for solving pseudomonotone equilibrium problems. East West J. Math. 6(2), 101–123 (2004)
Quoc T.D., Muu L.D., Nguyen V.H.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)
Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Taskar B., Lacoste-Julien S., Jordan M.I.: Structured prediction, dual extragradient and Bregman projections. J. Mach. Learn. Res. 7, 1627–1653 (2006)
Van N.T.T., Strodiot J.J., Nguyen V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Global Optim. 44(2), 175–192 (2009)
Van N.T.T., Strodiot J.J., Nguyen V.H.: A bundle method for solving equilibrium problems. Math. Program. 116, 529–552 (2009)
Wachter A., Biegler L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)
Zhu D.L., Marcotte P.: An extended descent framework for variational inequalities. J. Optim. Theory Appl. 80, 349–366 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Quoc, T.D., Anh, P.N. & Muu, L.D. Dual extragradient algorithms extended to equilibrium problems. J Glob Optim 52, 139–159 (2012). https://doi.org/10.1007/s10898-011-9693-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9693-2