Local Convergence of Solvers with Eighth Order Having Weak Conditions
Abstract
:1. Introduction
2. Study of Local Convergence
- (A1)
- is a Fréchet-differentiable operator.
- (A2)
- with are non-decreasing continuous functions.
- (A3)
- There exists a zero of such that for every
- (A4)
- (a)
- (b)
- (c)
- If are constants functions, then we haveThe stands for the radius of the following Newton’s solverRheindoldt [22] and Traub [5] also suggested convergence radius instead ofThe convergence radius q suggested by Dennis and Schabel [1] is smaller than the radiusHowever, q can not be calculated by the Lipschitz conditions.
- (d)
- By adopting conditions on the ninth-order derivative of operator Γ, the order of convergence of solver (2) was provided by Shah et al. [20]. But, we assume hypotheses only on first-order derivative of operator Γ. For obtaining the computational order of convergence , we adopted expressions (3) and (4).
- (e)
3. Numerical Experimentation
4. Concluding Assertions
Author Contributions
Funding
Conflicts of Interest
References
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publ. Comp.: Hackensack, NJ, USA, 2013. [Google Scholar]
- Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Increasing the order of convergence of iterative schemes for solving nonlinear system. J. Comput. Appl. Math. 2012, 252, 86–94. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth-order weighted-Newton method for system of nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Hernández, M.A.; Martinez, E. On the semilocal convergence of a three steps Newton-type process under mild convergence conditions. Numer. Algorithms 2015, 70, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Potra, F.A.; Pták, V. Nondiscrete Introduction and Iterative Process, Research Notes in Mathematics; Pitman: Boston, MA, USA, 1984; Volume 103. [Google Scholar]
- Henrici, P. Applied and Computational Complex Analysis; Wiley and Sons: New York, NY, USA, 1974; Volume 1. [Google Scholar]
- Aberth, O. Iteration Methods for Finding all Zeros of a Polynomial Simultaneously. Math. Comput. 1973, 27, 339–344. [Google Scholar] [CrossRef]
- Lázaro, M.; Martín, P.; Agüero, A.; Ferrer, I. The Polynomial Pivots as Initial Values for a New Root-Finding Iterative Method. J. Appl. Math. 2015, 2015, 413816. [Google Scholar] [CrossRef] [Green Version]
- Pan, V.Y. Optimal and nearly optimal algorithms for approximating polynomial zeros. Comput. Math. Appl. 1996, 3, 97–138. [Google Scholar] [CrossRef] [Green Version]
- Pan, V.Y. Solving a polynomial equation: Some history and recent progress. SIAM Rev. 1997, 39, 187–220. [Google Scholar] [CrossRef]
- Pan, V.Y. Univariate polynomials: Nearly optimal algorithms for numerical factorization and root-finding. J. Symb. Comput. 2002, 33, 701–733. [Google Scholar] [CrossRef] [Green Version]
- Pan, V.Y.; Zheng, A.L. New progress in real and complex polynomial root-finding. Comput. Math. Appl. 2011, 61, 1305–1334. [Google Scholar] [CrossRef] [Green Version]
- Kyurkchiev, N.V. Initial Approximations and Root Finding Methods; Willey: New York, NY, USA, 1998. [Google Scholar]
- Henrici, P.; Watkins, B.O. Finding zeros of a polynomial by the Q-D algorithm. Commun. ACM 1965, 8, 570–574. [Google Scholar] [CrossRef]
- Hubbard, J.; Schleicher, D.; Sutherland, S. How to find all roots of complex polynomials by Newton’s method. Invent. Math. 2001, 146, 1–33. [Google Scholar] [CrossRef]
- Petković, M.; Ilić, S.; Tričković, S. A family of simultaneous zero-finding methods. Comput. Math. Appl. 1997, 34, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Petković, M.S.; Petković, L.D.; Herceg, D.D. Point estimation of a family of simultaneous zero-finding methods. Comput. Math. Appl. 1998, 36, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shah, F.A.; Noor, M.A.; Shafiq, M.A. Some generalized recurrence relations and iterative methods for nonlinear equations by using decomposition techniques. Appl. Math. Comput. 2015, 251, 378–386. [Google Scholar]
- Kou, J. A third-order modification of Newton method for systems of nonlinear equations. Appl. Math. Comput. 2007, 191, 117–121. [Google Scholar]
- Rheinboldt, W.C. An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci. Banach Ctr. Publ. 1978, 3, 129–142. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. New iterations of R-order four with reduced computational cost. BIT Numer. Math. 2009, 49, 325–342. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Hernández, M.A. Recurrence realtions for the super-Halley method. Comput. Math. Appl. 1998, 36, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Petkovic, M.S.; Neta, B.; Petkovic, L.; Džunič, J. Multipoint Methods for Solving Nonlinear Equations; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Amat, S.; Busquier, S.; Plaza, S.; Guttiérrez, J.M. Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 2003, 157, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Amat, S.; Busquier, S.; Plaza, S. Dynamics of the King and Jarratt iterations. Aequationes Math. 2005, 69, 212–223. [Google Scholar] [CrossRef]
- Amat, S.; Hernández, M.A.; Romero, N. A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 2008, 206, 164–174. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, Á.A. Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations. SeMA 2015, 71, 39–55. [Google Scholar]
- Argyros, I.K.; George, S. Local convergence of some higher-order Newton-like method with frozen derivative. SeMa 2015, 70, 47–59. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 2006, 183, 199–208. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. A uniparametric halley type iteration with free second derivative. Int. J. Pure Appl. Math. 2003, 6, 99–110. [Google Scholar]
- Montazeri, H.; Soleymani, F.; Shateyi, S.; Motsa, S.S. On a new method for computing the solution of systems of nonlinear equations. J. Appl. Math. 2012, 2012, 751975. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K. Local Convergence of Solvers with Eighth Order Having Weak Conditions. Symmetry 2020, 12, 70. https://doi.org/10.3390/sym12010070
Behl R, Argyros IK. Local Convergence of Solvers with Eighth Order Having Weak Conditions. Symmetry. 2020; 12(1):70. https://doi.org/10.3390/sym12010070
Chicago/Turabian StyleBehl, Ramandeep, and Ioannis K. Argyros. 2020. "Local Convergence of Solvers with Eighth Order Having Weak Conditions" Symmetry 12, no. 1: 70. https://doi.org/10.3390/sym12010070
APA StyleBehl, R., & Argyros, I. K. (2020). Local Convergence of Solvers with Eighth Order Having Weak Conditions. Symmetry, 12(1), 70. https://doi.org/10.3390/sym12010070