[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient fourth order weighted-Newton method for systems of nonlinear equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we develop a fourth order method for solving the systems of nonlinear equations. The algorithm is composed of two weighted-Newton steps and requires the information of one function and two first Fréchet derivatives. Therefore, for a system of n equations, per iteration it uses n + 2n 2 evaluations. Computational efficiency is compared with Newton’s method and some other recently published methods. Numerical tests are performed, which confirm the theoretical results. From the comparison with known methods it is observed that present method shows good stability and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Gutiérrez, J.M.: Geometrical constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cordero, A., Martínez, E., Torregrosa, J.R.: Iterative methods of order four and five for systems of nonlinear equations. Appl. Math. Comput. 231, 541–551 (2009)

    Article  MATH  Google Scholar 

  5. Darvishi, M.T., Barati, A.: A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Appl. Math. Comput. 188, 257–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frontini, M., Sormani, E.: Some variant of Newton’s method with third-order convergence. Appl. Math. Comput. 140, 419–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  9. Grau-Sánchez, M., Grau, À., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev–Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 55, 113–130 (1997)

    Article  MATH  Google Scholar 

  11. Homeier, H.H.H.: A modified Newton method for rootfinding with cubic convergence. J. Comput. Appl. Math. 157, 227–230 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Homeier, H.H.H.: A modified Newton method with cubic convergence: the multivariable case. J. Comput. Appl. Math. 169, 161–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  14. Noor, M.A., Wassem, M.: Some iterative methods for solving a system of nonlinear equations. Appl. Math. Comput. 57, 101–106 (2009)

    Article  MATH  Google Scholar 

  15. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  16. Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)

    MATH  Google Scholar 

  17. Özban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  19. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janak Raj Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, J.R., Guha, R.K. & Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer Algor 62, 307–323 (2013). https://doi.org/10.1007/s11075-012-9585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9585-7

Keywords

Mathematics Subject Classification (2010)

Navigation