Abstract
In this paper, we develop a fourth order method for solving the systems of nonlinear equations. The algorithm is composed of two weighted-Newton steps and requires the information of one function and two first Fréchet derivatives. Therefore, for a system of n equations, per iteration it uses n + 2n 2 evaluations. Computational efficiency is compared with Newton’s method and some other recently published methods. Numerical tests are performed, which confirm the theoretical results. From the comparison with known methods it is observed that present method shows good stability and robustness.
Similar content being viewed by others
References
Amat, S., Busquier, S., Gutiérrez, J.M.: Geometrical constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method for functions of several variables. Appl. Math. Comput. 183, 199–208 (2006)
Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)
Cordero, A., Martínez, E., Torregrosa, J.R.: Iterative methods of order four and five for systems of nonlinear equations. Appl. Math. Comput. 231, 541–551 (2009)
Darvishi, M.T., Barati, A.: A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Appl. Math. Comput. 188, 257–261 (2007)
Frontini, M., Sormani, E.: Some variant of Newton’s method with third-order convergence. Appl. Math. Comput. 140, 419–426 (2003)
Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)
Gautschi, W.: Numerical Analysis: An Introduction. Birkhäuser, Boston (1997)
Grau-Sánchez, M., Grau, À., Noguera, M.: On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 236, 1259–1266 (2011)
Gutiérrez, J.M., Hernández, M.A.: A family of Chebyshev–Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 55, 113–130 (1997)
Homeier, H.H.H.: A modified Newton method for rootfinding with cubic convergence. J. Comput. Appl. Math. 157, 227–230 (2003)
Homeier, H.H.H.: A modified Newton method with cubic convergence: the multivariable case. J. Comput. Appl. Math. 169, 161–169 (2004)
Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)
Noor, M.A., Wassem, M.: Some iterative methods for solving a system of nonlinear equations. Appl. Math. Comput. 57, 101–106 (2009)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
Ostrowski, A.M.: Solution of Equations and Systems of Equations. Academic Press, New York (1966)
Özban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17, 677–682 (2004)
Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)
Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)
Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharma, J.R., Guha, R.K. & Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer Algor 62, 307–323 (2013). https://doi.org/10.1007/s11075-012-9585-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9585-7