Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks
<p>Expected growth of global mobile subscribers and data traffic [<a href="#B2-symmetry-11-00408" class="html-bibr">2</a>]. (<b>a</b>) Expected growth of global mobile subscribers and (<b>b</b>) expected traffic growth and the percentage of each type of data.</p> "> Figure 2
<p>Expected case electricity usage of wireless access networks.</p> "> Figure 3
<p>Cellular network layout (<span class="html-italic">R<sub>5G</sub></span> = 200 m; <span class="html-italic">R<sub>LTE</sub></span> = 500 m).</p> "> Figure 4
<p>Daily traffic load pattern of a BS.</p> "> Figure 5
<p>The decision-making algorithm proposed for the BS switching-off/on process.</p> "> Figure 6
<p>Pseudocode of the considered PSO algorithm.</p> "> Figure 7
<p>Behavior of the fitness function with a change in the constraint parameters.</p> "> Figure 8
<p>Behavior of the constraint parameters.</p> "> Figure 9
<p>Cell radii versus receiver sensitivity power for different MCSs, with <span class="html-italic">P<sub>tx</sub></span> = 43.1 dB<sub>m</sub> and BW = 10 MHz.</p> "> Figure 10
<p>Data rate versus macrocell radii, with <span class="html-italic">P<sub>tx</sub></span> = 43.1 dB<sub>m</sub>, <span class="html-italic">BW</span> = 10 MHz, and 2 × 2 MIMO.</p> "> Figure 11
<p>5G small cell data rate versus MCS and BW for eight antennas.</p> "> Figure 12
<p>Data rate versus different BWs values for different numbers of antennas at the edge of 5G small cell.</p> "> Figure 13
<p>Energy efficiency versus cell radii, with <span class="html-italic">P<sub>tx</sub></span> = 43.1 dB<sub>m</sub> and <span class="html-italic">BW</span> = 10 MHz.</p> "> Figure 14
<p>5G small cell EE versus MCS and BW at eight antennas.</p> "> Figure 15
<p>Energy efficiency versus different BW values for different numbers of antennas.</p> "> Figure 16
<p>Data rate versus power consumption over time.</p> ">
Abstract
:1. Introduction
1.1. Motivation
- (i)
- According to [13], the world’s yearly electricity usage for the telecommunications sector is increasing and expected to reach 51% of global electricity in 2030 unless the electricity efficiency of wireless access networks and access/data center networks is sufficiently improved. CNs are considered the cardinal contributor to the appreciable rise in energy utilization in the telecommunication sector [14]. Figure 2 shows the expected global electricity usage of cellular networks based on different cellular generations to 2030. BSs are the major consumer of energy in CNs and account for 57% of the total energy consumed [15]. The number of BSs worldwide is increasing, which led OPEX to rise conspicuously because a greater percentage of the OPEX entails electricity bills [16].
- (ii)
- CNOs contribute significantly to greenhouse gas (GHG) emissions. According to [17], the carbon dioxide (CO2) quantity emitted by the mobile sector is envisaged to increase to 179 MtCO2 by 2020, which translates to 51% of the carbon footprint of the information and communication technology (ICT) sector.
1.2. Contributions
- (i)
- To propose a mechanism of cooperation between the LTE and next-generation wireless networks, such as 5G. Thereby, we create an equilibrium between network performance and EE via a 5G BSs switching off/on strategy driven by the network instantaneous traffic load demand while guaranteeing service coverage for mobile subscribers by the remaining active LTE BSs. The proposed BSs switching on/off decision-making algorithm is presented in Section 3.1.
- (ii)
- To determine the optimum criteria of the active LTE BSs (transmission power, the total antenna gain, bandwidth/spectrum, and SINR) that achieves the maximum coverage for the entire area during the 5G BS switch-off session.
1.3. Paper Organization
2. Related Work
3. System Model and Problem Formulation
3.1. System Model and Proposed BSs Switching On/Off Mechanism
3.1.1. High Traffic Load (0.4 < λ ≤ 1)
3.1.2. Low Traffic Load (0 < λ ≤ 0.4)
5G BSs Switch-Off Procedures
- (i)
- Pre-processing Status: The 5G BS is assigned with the task of monitoring the generated traffic load often (e.g., every few minutes) and decides if it would be best, performance-wise, to turn off 5G BSs, depending on the given traffic load. In situations where the traffic load decreases below a given benchmark (λ ≤ 0.4) and remains below it for a specific duration, then the 5G BSs switch-off decision algorithm can be executed. The 5G BSs are the sole determinant of this information.
- (ii)
- Decision Status: At the onset, a unicast control signal is sent from the 5G BSs to the switching off/on module located in the central office requesting that they be switched off. On the receipt of a go-ahead response signal from the module, the 5G BSs initiate a gradual decrease in their transmission power mechanism that will ultimately result in a switch-off. Meanwhile, UEs that are in control of the switched-off 5G BSs are reassigned to active LTE BSs within the neighborhood. Of course, this will be determined by the signal strength. This procedure is akin to the current handover scheme, the only difference being that this involves handing over group of UEs other than a single UE. Considerable research has been performed on group handovers. Most of the relevant studies targeted the support of commuters on mass transit systems like buses and trains. There might be a need for a strategy to predict the group handover a priori. In this case, one of the current group handover techniques [34], in conjunction with our proposed switching-off algorithm, may be adopted for the implementation of our group handover policy.
- (iii)
- Post-processing Status:The 5G BSs that are switched off listen for the wake-up control signal from the switching off/on server.. Meanwhile, the active LTE BSs are in full functionality and are capable of supplying subscribers’ QoS requirements. In addition, LTE BSs are mandated to monitor traffic across the network based on LTE BSs’ information, which is based on the decision to keep the 5G BSs off or start switching them on if the traffic increases to more than 0.4.
II. 5G BSs Switching-On Procedures
- (i)
- Pre-processing Status: In this phase, it is the duty of the LTE BSs to continuously monitor the generated traffic load and make a decision on whether the 5G BSs should be switched on or off. If the current load is more than the stated threshold of 0.4 and stays over the threshold for a given duration, it is plausible to invoke the 5G BSs switching-on decision. This decision is solely dependent on LTE BSs signal information.
- (ii)
- Decision Status: Having analyzed the instantaneous traffic load, the LTE BSs initiate a unicast control signal to be sent to the switching-off/on module, requesting that the 5G BSs be switched on. After the traffic load has been analyzed and the switching-off/on module deems it necessary, multicast signals are then transmitted to wake up the 5G BSs’ control signals. Next, the 5G BSs begin to gradually increase their transmission power and, subsequently, propagate a unicast signal to the switching-off/on module containing the response to the switch-on request. Using the signal strength paths metrics, the UEs serviced by the LTE BSs are handed over to the active 5G BSs (small cells). This transfer is solely determined by the signal strength path of the UE_BS. Meanwhile, LTE BSs remain active to support the 5G BSs while guaranteeing coverage and radio services.
- (iii)
- Post-processing Status: In this status, there is a role reversal in which the post-processing phase of the switching-on algorithm assumes the role and duties of the pre-processing state of the switching-off algorithm already discussed. In this phase, the 5G BSs become active and continue the task of monitoring the UE load traffic.
3.2. Problem Formulation and Mathematical Modeling
3.2.1. Propagation Channel Model
LTE Path Loss Model
II. 5G Path Loss Model
3.2.2. Cell Coverage
3.2.3. Data Rate
3.2.4. Energy Efficiency
4. Optimization Programming and Simulation Setup
4.1. PSO Heuristic Algorithm
4.2. Pseudocode of the Proposed Scheme
4.3. Simulation Setup
5. Results and Discussion
- (i)
- Without the switch-off, all BSs are active for 24 h:
- (ii)
- With the proposed switch-off:
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MAlsharif, H.; Nordin, R.; Abdullah, N.F.; Kelechi, A.H. How to make key 5G wireless technologies environmental friendly: A review. Trans. Emerg. Telecommun. Technol. 2018, 29, e3254. [Google Scholar] [CrossRef]
- Ericsson Mobility Report 2018. November 2018. Available online: https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-november-2018.pdf (accessed on 8 March 2019).
- Yaqoob, I.; Hashem, I.A.T.; Ahmed, A.; Kazmi, S.A.; Hong, C.S. Internet of things forensics: Recent advances, taxonomy, requirements, and open challenges. Future Gener. Comput. Syst. 2019, 92, 265–275. [Google Scholar] [CrossRef]
- Sah, D.K.; Kumar, D.P.; Shivalingagowda, C.; Jayasree, P. 5G Applications and Architectures. In 5G Enabled Secure Wireless Networks; Springer: New York, NY, USA, 2019; pp. 45–68. [Google Scholar]
- Alsharif, M.H.; Nordin, R. Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommun. Syst. 2017, 64, 617–637. [Google Scholar] [CrossRef]
- Abrol, A.; Jha, R.K.; Jain, S.; Kumar, P. Joint power allocation and relay selection strategy for 5G network: A step towards green communication. Telecommun. Syst. 2018, 68, 201–215. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Macias-Lopez, E. Advances in Green Communications and Networking. Mob. Netw. Appl. 2019, 1–4. [Google Scholar]
- Mowla, M.M.; Ahmad, I.; Habibi, D.; Phung, Q.V. A green communication model for 5G systems. IEEE Trans. Green Commun. Netwo. 2017, 1, 264–280. [Google Scholar] [CrossRef]
- Hasan, Z.; Boostanimehr, H.; Bhargava, V.K. Green cellular networks: A survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 2011, 13, 524–540. [Google Scholar] [CrossRef]
- Ismail, M.; Zhuang, W.; Serpedin, E.; Qaraqe, K. A survey on green mobile networking: From the perspectives of network operators and mobile users. IEEE Commun. Surv. Tutor. 2015, 17, 1535–1556. [Google Scholar] [CrossRef]
- Alsamhi, S.; Ma, O.; Ansari, M.S.; Meng, Q. Greening internet of things for smart everythings with a green-environment life: A survey and future prospects. arXiv, 2018; arXiv:1805.00844. [Google Scholar]
- Alnoman, A.; Carvalho, G.H.; Anpalagan, A.; Woungang, I. Energy efficiency on fully cloudified mobile networks: Survey, challenges, and open issues. IEEE Commun. Surv. Tutor. 2018, 20, 1271–1291. [Google Scholar] [CrossRef]
- Andrae, A.; Edler, T. On global electricity usage of communication technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef]
- Malmodin, J.; Lundén, D. The energy and carbon footprint of the global ICT and E&M sectors 2010–2015. Sustainability 2018, 10, 3027. [Google Scholar] [CrossRef]
- Piovesan, N.; Gambin, A.F.; Miozzo, M.; Rossi, M.; Dini, P. Energy sustainable paradigms and methods for future mobile networks: A survey. Comput. Commun. 2018, 119, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Oviroh, P.; Jen, T.-C. The energy cost analysis of hybrid systems and diesel generators in powering selected base transceiver station locations in Nigeria. Energies 2018, 11, 687. [Google Scholar] [CrossRef]
- Suarez, L.; Nuaymi, L.; Bonnin, J.-M. An overview and classification of research approaches in green wireless networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, Y.; Zukerman, M.; Yung, E. Energy-Efficient Base Stations Sleep Mode Techniques in Green Cellular Networks: A Survey. IEEE Commun. Surv. Tutor. 2015, 17, 803–826. [Google Scholar] [CrossRef]
- Li, G.Y.; Xu, Z.; Xiong, C.; Yang, C.; Zhang, S.; Chen, Y. Energy-efficient wireless communications: Tutorial, survey, and open issues. IEEE Wirel. Commun. 2011, 18, 28–35. [Google Scholar] [CrossRef]
- Feng, D.; Jiang, C.; Lim, G.; Cimini, L.J.; Feng, G.; Li, G.Y. A survey of energy-efficient wireless communications. IEEE Commun. Surv. Tutor. 2013, 15, 167–178. [Google Scholar] [CrossRef]
- Wang, X.; Vasilakos, A.V.; Chen, M.; Liu, Y.; Kwon, T.T. A survey of green mobile networks: Opportunities and challenges. Mob. Netw. Appl. 2012, 17, 4–20. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Nordin, R.; Ismail, M. Survey of Green Radio Communications Networks: Techniques and Recent Advances. J. Comput. Netw. Commun. 2013, 2013, 453893. [Google Scholar] [CrossRef]
- Oh, E.; Krishnamachari, B.; Liu, X.; Niu, Z. Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Commun. Mag. 2011, 49, 56–61. [Google Scholar] [CrossRef]
- Oh, E.; Son, K.; Krishnamachari, B. Dynamic base station switching-on/off strategies for green cellular networks. IEEE Trans. Wirel. Commun. 2013, 12, 2126–2136. [Google Scholar] [CrossRef]
- Chiaraviglio, L.; Ciullo, D.; Meo, M.; Marsan, M.A.; Torino, I. Energy-aware UMTS access networks. In Proceedings of the IEEE W-GREEN, Lappland, Finland, 8–11 September 2008; pp. 1–8. [Google Scholar]
- Chiaraviglio, L.; Ciullo, D.; Meo, M.; Marsan, M.A. Energy-efficient management of UMTS access networks. In Proceedings of the 21st International Conference in Teletraffic Congress, Paris, France, 15–17 September 2009; pp. 1–8. [Google Scholar]
- Marsan, M.A.; Chiaraviglio, L.; Ciullo, D.; Meo, M. Optimal energy savings in cellular access networks. In Proceedings of the IEEE International Conference on Communications (ICC) Workshops, Dresden, Germany, 14–18 June 2009; pp. 1–5. [Google Scholar]
- Zhou, S.; Gong, J.; Yang, Z.; Niu, Z.; Yang, P. Green mobile access network with dynamic base station energy saving. In Proceedings of the ACM MobiCom, Beijing, China, 20–25 September 2009; Volume 2009, pp. 10–12. [Google Scholar]
- Gong, J.; Zhou, S.; Niu, Z.; Yang, P. Traffic-aware base station sleeping in dense cellular networks. In Proceedings of the 2010 18th International Workshop on Quality of Service (IWQoS), Beijing, China, 16–18 June 2010; pp. 1–2. [Google Scholar]
- Xiang, L.; Pantisano, F.; Verdone, R.; Ge, X.; Chen, M. Adaptive traffic load-balancing for green cellular networks. In Proceedings of the 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 11–14 September 2011; pp. 41–45. [Google Scholar]
- Lorincz, J.; Capone, A.; Begusic, D. Impact of service rates and base station switching granularity on energy consumption of cellular networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 342. [Google Scholar] [CrossRef] [Green Version]
- Bousia, A.; Antonopoulos, A.; Alonso, L.; Verikoukis, C. “Green” distance-aware base station sleeping algorithm in LTE-Advanced. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 1347–1351. [Google Scholar]
- Chen, T.; Yang, Y.; Zhang, H.; Kim, H.; Horneman, K. Network energy saving technologies for green wireless access networks. IEEE Wirel. Commun. 2011, 18, 30–38. [Google Scholar] [CrossRef]
- Sun, L.; Tian, H.; Zhang, P. Decision-making models for group vertical handover in vehicular communications. Telecommun. Syst. 2012, 50, 257–266. [Google Scholar] [CrossRef]
- Debus, W.; Axonn, L. RF Path Loss & Transmission Distance Calculations; Axonn, LLC: New York, NY, USA, 2006. [Google Scholar]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Sulyman, A.I.; Nassar, A.; Samimi, M.K.; Maccartney, G.; Rappaport, T.S.; Alsanie, A. Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun. Mag. 2014, 52, 78–86. [Google Scholar] [CrossRef]
- Stefania, S.; Issam, T.; Matthew, B. LTE—The UMTS Long Term Evolution: From Theory to Practice; A John Wiley and Sons, Ltd.: New York, NY, USA, 2009; Volume 6, pp. 136–144. [Google Scholar]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Bhattacharya, A.; De, A.; Biswas, A.; Roy, B.; Bhattacharjee, A.K. Application of Particle Swarm Optimization in Design of a Low-Profile Fractal Patch Antenna. In Advances in Computer, Communication and Control; Springer: New York, NY, USA, 2019; pp. 207–214. [Google Scholar]
- Tabibi, S.; Ghaffari, A. Energy-Efficient Routing Mechanism for Mobile Sink in Wireless Sensor Networks Using Particle Swarm Optimization Algorithm. Wirel. Pers. Commun. 2019, 104, 199–216. [Google Scholar] [CrossRef]
- Hildmann, H.; Atia, D.; Ruta, D.; Poon, K.; Isakovic, A. Nature-Inspired? Optimization in the Era of IoT: Particle Swarm Optimization (PSO) Applied to Indoor-Distributed Antenna Systems (I-DAS). In The IoT Physical Layer; Springer: New York, NY, USA, 2019; pp. 171–192. [Google Scholar]
- Kulkarni, R.V.; Venayagamoorthy, G.K. Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2011, 41, 262–267. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Nordin, R.; Ismail, M. Classification, Recent Advances and Research Challenges in Energy Efficient Cellular Networks. Wirel. Pers. Commun. 2014, 77, 1249–1269. [Google Scholar] [CrossRef]
- Anderson, C.R.; Rappaport, T.S. In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wirel. Commun. 2004, 3, 922–928. [Google Scholar] [CrossRef]
- Dehos, C.; Domenico, A.; Dussopt, L. Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Commun. Mag. 2014, 52, 88–95. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Z.; Chih, L.I. Perspectives on high frequency small cell with ultra dense deployment. In Proceedings of the IEEE International Conference on Communications in China (ICCC), Shanghai, China, 13–15 October 2014; pp. 502–506. [Google Scholar]
Item | Parameter | Acronym | LTE | Unit |
---|---|---|---|---|
Network parameters | Frequency | f | 2.6 | GHz |
Bandwidth | BW | 1.4–20 | MHz | |
Cell radius | R | 0.5 | km | |
Base station parameters | Transmission power | – | 10–40 | W |
40–46 | dBm | |||
Antenna height | hBS | 20 | m | |
Antenna gain | Gmin–Gmax | 5–10 | dB | |
Number of antennas | NAnt. | 2 | # | |
Number of sectors | NSect. | 3 | # | |
Number of carriers | NCarr | 1 | # | |
Mobile station parameters | Thermal noise density | No | 174 | dBm/Hz |
Noise figure | Nf | 9 | dB | |
Implementation margin | IM | 3 | dB | |
Antenna height | hUE | 1.5 | M | |
Propagation losses | Morphology | Uurban | ||
Propagation model | 3GPP UMa-NLOS | |||
Avg. building height | hbl | 20 | m | |
Street width | Wst | 20 | m | |
SINR | SINRmin | −5.1 | dB | |
SINRmax | 18.6 | |||
Shadow fading margin | σ | 4–8 | dB | |
Exponent path loss | α | 3.2 | # |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, M.H.; Kelechi, A.H.; Kim, J.; Kim, J.H. Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks. Symmetry 2019, 11, 408. https://doi.org/10.3390/sym11030408
Alsharif MH, Kelechi AH, Kim J, Kim JH. Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks. Symmetry. 2019; 11(3):408. https://doi.org/10.3390/sym11030408
Chicago/Turabian StyleAlsharif, Mohammed H., Anabi Hilary Kelechi, Jeong Kim, and Jin Hong Kim. 2019. "Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks" Symmetry 11, no. 3: 408. https://doi.org/10.3390/sym11030408
APA StyleAlsharif, M. H., Kelechi, A. H., Kim, J., & Kim, J. H. (2019). Energy Efficiency and Coverage Trade-Off in 5G for Eco-Friendly and Sustainable Cellular Networks. Symmetry, 11(3), 408. https://doi.org/10.3390/sym11030408