Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation
<p>Outline of the paper based on archival literature on recycled plastics.</p> "> Figure 2
<p>Ultimate tensile strength (UTS) of composites as a function of flax fiber volume fraction (V<sub>f</sub>). Adapted from Singleton et al. [<a href="#B54-sustainability-17-00764" class="html-bibr">54</a>]. Error bars indicate the variability in UTS measurements, which becomes more pronounced at higher fiber content.</p> "> Figure 3
<p>The hardness of the material shows a gradual increase with the increasing weight fraction of quartz particulate. Adapted from Sayuti et al. [<a href="#B62-sustainability-17-00764" class="html-bibr">62</a>].</p> "> Figure 4
<p>Mechanical performance comparison of 2/1- and 3/2-laminates with varying metal volume fractions and the presence or absence of inherent adhesion-promoter layers (IAPL), highlighting flexural modulus, bending strength, and bending elongation. Adapted from Nestler et al. [<a href="#B66-sustainability-17-00764" class="html-bibr">66</a>].</p> "> Figure 5
<p>Glass-fiber-reinforced polymer (GFRP) composite (<b>a</b>) impact strength, (<b>b</b>) hardness value, (<b>c</b>) flexural strength, and (<b>d</b>) compressive strength increase with increasing weight of plastic filler material. Adapted from Mahmood et al. [<a href="#B75-sustainability-17-00764" class="html-bibr">75</a>].</p> "> Figure 6
<p>Comparative mechanical properties of PET-reinforced glass fiber samples (PET-0 to PET-4) showing yield stress, stress at break, strain at yield stress, and strain at break. Adapted from Monti et al. [<a href="#B76-sustainability-17-00764" class="html-bibr">76</a>].</p> "> Figure 7
<p>Schematic representation of the interactions between polylactic acid (PLA), coconut fiber, and natural rubber. Adapted from Kaisone et al. [<a href="#B95-sustainability-17-00764" class="html-bibr">95</a>].</p> "> Figure 8
<p>(<b>a</b>) Compressive strength and (<b>b</b>) volume expansion of rigid polyurethane foam (RPUF) incorporating varying weight percentages of pulverized polyvinyl chloride (PVC) and polyethylene terephthalate (PET) fillers. Adapted from Ochigue et al. [<a href="#B98-sustainability-17-00764" class="html-bibr">98</a>].</p> "> Figure 9
<p>Effect of thylene glycidyl methacrylate (E-GMA) content on the impact strength of rHDPE/rPET (75/25 wt%) blends. Adapted from Salleh et al. [<a href="#B102-sustainability-17-00764" class="html-bibr">102</a>].</p> "> Figure 10
<p>Effect of plastic waste replacement on the compressive strength of paving blocks. Adapted from Sandjaya et al. [<a href="#B112-sustainability-17-00764" class="html-bibr">112</a>].</p> "> Figure 11
<p>The shrinkage of the polymer depends on the amount of wood filler and its thermal treatment, with variations observed for untreated filler (1) and fillers modified at 180 °C (2) and 220 °C (3). Adapted from Mukhametzyanov et al. [<a href="#B127-sustainability-17-00764" class="html-bibr">127</a>]. The different colored symbols represent the following: black indicates untreated filler, red indicates filler modified at 180 °C, and blue indicates filler modified at 220 °C. These dis-tinctions were already indicated in the figure title. However, to enhance clarity, we have updated the figure with the following modifications: (1) black for untreated filler, (2) red for filler modified at 180 °C, and (3) blue for filler modified at 220 °C.</p> ">
Abstract
:1. Introduction
2. Types of Thermoplastics
Kinds of Plastic | Polyethylene Terephthalate [41,42] | High-Density Polyethylene [43,44,45] | Polyvinyl Chloride [46,47] | Low-Density Polyethylene [48,49,50] | Polystyrene [51] | Polypropylene [52,53] |
---|---|---|---|---|---|---|
Density (g/cm3) | 1.41 | 0.945–0.965 | 1.3–1.7 | 0.941–0.965 | 1.04–1.07 | 0.90–0.91 |
Melting Point (°C) | 220 | 110–140 | 210 | 111 | 265 | 164–170 |
Flexural Strength (MPa) | 96.5–124.1 | 456 | 16.01 | 8.1 | 34.69 | 16–33 |
Tensile Strength (MPa) | 58.6–72.4 | 26 | 10.27 | 17.5 | 19.9 | 30.0–39.0 |
3. Recycled Plastic in Composite Material
3.1. Natural Fiber-Reinforced Plastic Composites
3.2. Pure Metals-Reinforced Plastic Composites
3.3. Glass-Fiber-Reinforced Plastic Composites
3.4. Textiles-Reinforced Plastic Composites
3.5. Foam and Rubber-Reinforced Plastic Composites
4. Functional Components of Plastic Waste-Reinforced Composites
4.1. Compatibilizers
4.2. Reinforcements
4.3. Binding Agent
4.4. Fillers and Additives
4.5. Coatings and Interlayers
5. Conclusions
6. Recommendations and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awoyera, P.O.; Adesina, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Env. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef]
- Li, H.; Aguirre-Villegas, H.A.; Allen, R.D.; Bai, X.; Benson, C.H.; Beckham, G.T.; Bradshaw, S.L.; Brown, J.L.; Brown, R.C.; Cecon, V.S.; et al. Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chem. 2022, 24, 8899–9002. [Google Scholar] [CrossRef]
- Worm, B.; Lotze, H.K.; Jubinville, I.; Wilcox, C.; Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Env. Resour. 2017, 42, 1–26. [Google Scholar] [CrossRef]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M.N. Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Env. Eng. 2021, 4, 100142. [Google Scholar] [CrossRef]
- Kibria, M.d.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Env. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Browning, S.; Beymer-Farris, B.; Seay, J.R. Addressing the challenges associated with plastic waste disposal and management in developing countries. Curr. Opin. Chem. Eng. 2021, 32, 100682. [Google Scholar] [CrossRef]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total. Env. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, K.; Zhang, X.; Yu, K.; Zhang, H.; He, J.; Ju, Y.; Liu, J. From plastic waste to wealth using chemical recycling: A review. J. Env. Chem. Eng. 2022, 10, 106867. [Google Scholar] [CrossRef]
- Chen, H.L.; Nath, T.K.; Chong, S.; Foo, V.; Gibbins, C.; Lechner, A.M. The plastic waste problem in Malaysia: Management, recycling and disposal of local and global plastic waste. SN Appl. Sci 2021, 3, 437. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid. Commun. 2021, 42, 2000415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, F.; Wei, X.; Yang, Y.; Xu, S.; Deng, D.; Deng, D.; Wang, Y.-Z. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. J. Energy Chem. 2022, 69, 369–388. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 2021, 295, 126456. [Google Scholar] [CrossRef]
- Sharma, B.; Shekhar, S.; Sharma, S.; Jain, P. The paradigm in conversion of plastic waste into value added materials. Clean. Eng. Technol. 2021, 4, 100254. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Nakatani, J. Implications of chemical recycling of plastic waste for climate change impacts: A critical review. Sustain. Prod. Consum. 2024, 48, 301–323. [Google Scholar] [CrossRef]
- Schirmeister, C.G.; Mülhaupt, R. Closing the Carbon Loop in the Circular Plastics Economy. Macromol. Rapid. Commun. 2022, 43, 2200247. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Toan, P.V.; Ty, T.V.; Lavane, K.; Minh, H.V.T.; Duy, D.V.; Kumar, P.; Tantray, F.A.; Meraj, G. Assessment and Sustainable Management Strategies for Plastic Waste in Can Tho City, Vietnam: A Circular Economy Approach. Water 2024, 16, 951. [Google Scholar] [CrossRef]
- Mihai, F.-C.; Meidiana, C.; Elagroudy, S.; Ulman, S.-R.; Gutberlet, J.; Carvalho, C. Plastic Waste Management for Zero Waste to Landfills: Potential, Challenges, and Opportunities. In Zero Waste Management Technologies; Bhat, R.A., Dar, G.H., Hajam, Y.A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 97–136. [Google Scholar] [CrossRef]
- Pan, D.; Su, F.; Liu, C.; Guo, Z. Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 2020, 3, 443–461. [Google Scholar] [CrossRef]
- Mohan, H.T.; Jayanarayanan, K.; Mini, K.M. Recent trends in utilization of plastics waste composites as construction materials. Constr. Build. Mater. 2021, 271, 121520. [Google Scholar] [CrossRef]
- Migliaresi, C.; Pegoretti, A. Fundamentals of Polymeric Composite Materials. In Integrated Biomaterials Science; Barbucci, R., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 69–117. [Google Scholar] [CrossRef]
- Rajak, D.; Pagar, D.; Menezes, P.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Bastos, G.; Patiño-Barbeito, F.; Patiño-Cambeiro, F.; Armesto, J. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features. Materials 2016, 9, 972. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.I.; Maraz, K.M.; A Khan, R. A review on the application of high-performance fiber-reinforced polymer composite materials. GSC Adv. Res. Rev. 2022, 10, 20–36. [Google Scholar] [CrossRef]
- Thomas, S.; Kuruvilla, J.; Malhotra, S.K.; Goda, K.; Sreekala, M.S. (Eds.) Polymer Composites, 1st ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2022, 35, 1169–1209. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Schwarzkopf, M.J.; Burnard, M.D. Wood-Plastic Composites—Performance and Environmental Impacts. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Kutnar, A., Muthu, S.S., Eds.; Springer: Singapore, 2016; pp. 19–43. [Google Scholar] [CrossRef]
- Kustroń, P.; Korzeniowski, M.; Piwowarczyk, T.; Sokołowski, P. Development of Resistance Spot Welding Processes of Metal–Plastic Composites. Materials 2021, 14, 3233. [Google Scholar] [CrossRef]
- Ahmad, J.; Zhou, Z. Mechanical Properties of Natural as well as Synthetic Fiber Reinforced Concrete: A Review. Constr. Build. Mater. 2022, 333, 127353. [Google Scholar] [CrossRef]
- Muhammad, A.; Rahman, M.d.R.; Baini, R.; Bin Bakri, M.K. Applications of sustainable polymer composites in automobile and aerospace industry. In Advances in Sustainable Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 185–207. [Google Scholar] [CrossRef]
- Olhan, S.; Khatkar, V.; Behera, B.K. Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J. Mater. Sci. 2021, 56, 18867–18910. [Google Scholar] [CrossRef]
- Sadia, M.; Mahmood, A.; Ibrahim, M.; Shahzad, T.; Arshad, M.I.; Sana, A.; Machado, S.M. Plastic Wastes Management and Disposal in Developing Countries: Challenges and Future Perspectives. In Plastic Waste Management: Methods and Applications, 1st ed.; Parameswaranpillai, J., Deshmukh, K., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 145–171. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Wang, B.; Li, P.; Zhu, J.; Ma, S. Closed-loop chemical recycling of thermosetting polymers and their applications: A review. Green Chem. 2022, 24, 5691–5708. [Google Scholar] [CrossRef]
- Gomes, T.E.; Cadete, M.S.; Dias-de-Oliveira, J.; Neto, V. Controlling the properties of parts 3D printed from recycled thermoplastics: A review of current practices. Polym. Degrad. Stab. 2022, 196, 109850. [Google Scholar] [CrossRef]
- Ahmed, W.; Siraj, S.; Al-Marzouqi, A.H. 3D Printing PLA Waste to Produce Ceramic Based Particulate Reinforced Composite Using Abundant Silica-Sand: Mechanical Properties Characterization. Polymers 2020, 12, 2579. [Google Scholar] [CrossRef] [PubMed]
- Ugarte, L.; Calvo-Correas, T.; Gonzalez-Gurrutxaga, I.; Peña-Rodriguez, C.; Etxeberria, O.; Corcuera, M.A.; Eceiza, A. Towards Circular Economy: Different Strategies for Polyurethane Waste Recycling and the Obtaining of New Products. In Proceedings of the 2nd International Research Conference on Sustainable Energy, Engineering, Materials and Environment, Mieres, Spain, 25–27 July 2018; MDPI: Basel, Switzerland, 2018; p. 1490. [Google Scholar]
- Oladele, I.O.; Omotosho, T.F.; Adediran, A.A. Polymer-Based Composites: An Indispensable Material for Present and Future Applications. Int. J. Polym. Sci. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Uzosike, C.C.; Yee, L.H.; Padilla, R.V. Small-Scale Mechanical Recycling of Solid Plastic Wastes: A Review of PET, PEs, and PP. Energies 2022, 16, 1406. [Google Scholar] [CrossRef]
- Lin, T.A.; Lin, J.-H.; Bao, L. Effect of Melting–Recycling Cycles and Mechanical Fracture on the Thermoplastic Materials Composed of Thermoplastic Polyurethane and Polypropylene Waste Blends. Appl. Sci. 2020, 10, 5810. [Google Scholar] [CrossRef]
- Freeland, B.; McCarthy, E.; Balakrishnan, R.; Fahy, S.; Boland, A.; Rochfort, K.D.; Dabros, M.; Marti, R.; Kelleher, S.M.; Gaughran, J. A Review of Polylactic Acid as a Replacement Material for Single-Use Laboratory Components. Materials 2022, 15, 2989. [Google Scholar] [CrossRef]
- Kayaisang, S.; Saikrasun, S.; Amornsakchai, T. Potential Use of Recycled PET in Comparison with Liquid Crystalline Polyester as a Dual Functional Additive for Enhancing Heat Stability and Reinforcement for High Density Polyethylene Composite Fibers. J. Polym. Environ. 2013, 21, 191–206. [Google Scholar] [CrossRef]
- Kurtoglu, A.E.; Hussein, A.K.; Gulsan, M.E.; Altan, M.F.; Cevik, A. Mechanical Investigation and Durability of HDPE-confined SCC Columns Exposed to Severe Environment. KSCE J. Civ. Eng. 2018, 22, 5046–5057. [Google Scholar] [CrossRef]
- Kusuktham, B.; Teeranachaideekul, P. Mechanical Properties of High Density Polyethylene/Modified Calcium Silicate Composites. Silicon 2014, 6, 179–189. [Google Scholar] [CrossRef]
- Salmoria, G.V.; Fancello, E.A.; Roesler, C.R.M.; Dabbas, F. Functional graded scaffold of HDPE/HA prepared by selective laser sintering: Microstructure and mechanical properties. Int. J. Adv. Manuf. Technol. 2013, 65, 1529–1534. [Google Scholar] [CrossRef]
- Khoshnoud, P.; Abu-Zahra, N. Properties of rigid polyvinyl chloride foam composites reinforced with different shape fillers. J. Thermoplast. Compos. Mater. 2017, 30, 1541–1559. [Google Scholar] [CrossRef]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef]
- Dadbin, S.; Frounchi, M.; Sabet, M. Studies on the properties and structure of electron-beam crosslinked low-density polyethylene/poly[ethylene-co-(vinyl acetate)] blends. Polym. Int. 2005, 54, 686–691. [Google Scholar] [CrossRef]
- Sever, K. The Improvement of Mechanical Properties of Jute Fiber/LDPE Composites by Fiber Surface Treatment. J. Reinf. Plast. Compos. 2010, 29, 1921–1929. [Google Scholar] [CrossRef]
- Khanam, P.N.; AlMaadeed, M.A.A. Processing and characterization of polyethylene-based composites. Adv. Manuf. Polym. Compos. Sci. 2015, 1, 63–79. [Google Scholar] [CrossRef]
- Singha, A.S.; Rana, R.K. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater. Des. 2012, 41, 289–297. [Google Scholar] [CrossRef]
- Hossain, M.d.T.; Shahid, M.d.A.; Mahmud, N.; Habib, A.; Rana, M.d.M.; Khan, S.A.; Hossain, D. Research and application of polypropylene: A review. Discov. Nano 2024, 19, 2. [Google Scholar] [CrossRef]
- Suvidha, Y.; Jain, S.; Kumar, C.A. Studies on partial replacement of waste high density polyethylene (HDPE) and polypropylene (PP) plastic with fine aggregate (FA) on mechanical, durability and thermal properties of M30 and M40 grade concrete. Discov. Civ. Eng. 2024, 1, 8. [Google Scholar] [CrossRef]
- Singleton, A.C.N.; Baillie, C.A.; Beaumont, P.W.R.; Peijs, T. On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos. Part B Eng. 2003, 34, 519–526. [Google Scholar] [CrossRef]
- Ali, M.; Al-Assaf, A.H.; Salah, M. Date Palm Fiber-Reinforced Recycled Polymer Composites: Synthesis and Characterization. Adv. Polym. Technol. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Sriprom, W.; Sirivallop, A.; Choodum, A.; Limsakul, W.; Wongniramaikul, W. Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste. Polymers 2022, 14, 2241. [Google Scholar] [CrossRef]
- Scholten, A.; Plogmann, N.; Meiners, D. Use of Recycled Waste Paper as Fiber Reinforcement for Polypropylene—Examination of Mechanical Properties in Comparison to NFRP. Key Eng. Mater. 2017, 742, 25–30. [Google Scholar] [CrossRef]
- Zhang, X.; Bo, X.; Cong, L.; Wei, L.; McDonald, A.G. Characteristics of undeinked, alkaline deinked, and neutral deinked old newspaper fibers reinforced recycled polypropylene composites. Polym. Compos. 2018, 39, 3537–3544. [Google Scholar] [CrossRef]
- Castro, C.D.P.D.C.; Dias, C.G.B.T.; Faria, J.D.A.F. Production and evaluation of recycled polymers from açaí fibers. Mater. Res. 2010, 13, 159–163. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable Fiber-Reinforced Composites: A Review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- Balcioğlu, H.E. Flexural behaviors of sandwich composites produced using recycled and natural material. Mugla J. Sci. Technol. 2018, 4, 64–73. [Google Scholar] [CrossRef]
- Sayuti, M.; Suraya, S.; Sulaiman, S.; Vijayaram, T.R.; Arifin, M.K.A.; Baharudin, B.T.H.T. Thermal Investigation of Aluminium—11.8% Silicon (LM6) Reinforced SiO2-Particles. Adv. Mater. Res. 2011, 264–265, 620–625. [Google Scholar] [CrossRef]
- Klein, M.; Podlesak, F.; Höfer, K.; Seidlitz, H.; Gerstenberger, C.; Mayr, P.; Kroll, L. Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures. J. Mater. Sci. Res. 2015, 4, 26. [Google Scholar] [CrossRef]
- Osiecki, T.; Timmel, T.; Jałbrzykowski, M.; Przekop, R.E.; Oksiuta, Z. Inverse Fiber Reinforced Polymer/Metal-Hybrid Laminates for Structural Lightweight Applications. Crystals 2021, 11, 1374. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Wu, J.-G.; Wang, L. Mechanical Analysis of Stiffened Plates Made by Layered Braided Composite. In Proceedings of the 3rd Annual International Conference on Advanced Material Engineering (AME 2017), Shanghai, China, 14–16 April 2017; Atlantis Press: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Nestler, D.; Trautmann, M.; Nendel, S.; Wagner, G.; Kroll, L. Innovative hybrid laminates of aluminium alloy foils and fibre-reinforced thermoplastic layers: Innovative hybride Laminate aus Aluminiumlegierungsfolien und faserverstärkten thermoplastischen Schichten. Mater. Werkst. 2016, 47, 1121–1131. [Google Scholar] [CrossRef]
- Kada, D.; Koubaa, A.; Tabak, G.; Migneault, S.; Garnier, B.; Boudenne, A. Tensile properties, thermal conductivity, and thermal stability of short carbon fiber reinforced polypropylene composites. Polym. Compos. 2018, 39, E664–E670. [Google Scholar] [CrossRef]
- Sun, C.; Song, M.; Shen, R.J.; Du, Y. Mechanical Behavior of SiC Fiber Reinforced Al Matrix Composites: A Study Based on Finite Element Method. Adv. Mater. Res. 2011, 239–242, 2785–2789. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, B.S. Mechanical Properties of Metallic Glass Matrix Composites Synthesized by Powder Consolidation as Precursor of Porous Material. Appl. Mech. Mater. 2012, 152–154, 643–646. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Cimpan, C.; Maul, A.; Jansen, M.; Pretz, T.; Wenzel, H. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manag. 2015, 156, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Hackert, A.; Drebenstedt, C.; Timmel, T.; Osiecki, T.; Kroll, L. Composite Sandwich with Aluminum Foam Core and Adhesive Bonded Carbon Fiber Reinforced Thermoplastic Cover Layer. Key Eng. Mater. 2017, 744, 277–281. [Google Scholar] [CrossRef]
- Ortiz-Cañavate, J.; Ferrándiz, S.; Cambralla, C.; Igual, J. Quality Comparison of Three Metal Additive Manufacturing Technologies on an Automotive Sealant Nozzle. Key Eng. Mater. 2023, 956, 41–50. [Google Scholar] [CrossRef]
- Plettke, R.; Schaub, A.; Gröschel, C.; Scheitler, C.; Vetter, M.; Hentschel, O.; Ranft, F.; Merklein, M.; Schmidt, M.; Drummer, D. A New Process Chain for Joining Sheet Metal to Fibre Composite Sheets. Key Eng. Mater. 2014, 611–612, 1468–1475. [Google Scholar] [CrossRef]
- Al Mahmood, A. Characterization of Glass Fibre Reinforced Polymer Composite Prepared by Hand Layup Method. Am. J. Biosci. Bioeng. 2017, 5, 8. [Google Scholar] [CrossRef]
- Monti, M.; Scrivani, M.; Kociolek, I.; Larsen, Å.; Olafsen, K.; Lambertini, V. Enhanced Impact Strength of Recycled PET/Glass Fiber Composites. Polymers 2021, 13, 1471. [Google Scholar] [CrossRef]
- Mondadori, N.; Nunes, R.; Canto, L.; Zattera, A. Composites of Recycled PET Reinforced with Short Glass Fiber. J. Thermoplast. Compos. Mater. 2012, 25, 747–764. [Google Scholar] [CrossRef]
- Scelsi, L.; Hodzic, A.; Soutis, C.; Hayes, S.A.; Rajendran, S.; AlMa’adeed, M.A.; Kahraman, R. A review on composite materials based on recycled thermoplastics and glass fibres. Plast. Rubber Compos. 2011, 40, 1–10. [Google Scholar] [CrossRef]
- Volpe, V.; Lanzillo, M.S.; Molaro, A.; Affinita, G.; Pantani, R. Characterization of Recycled/Virgin Polyethylene Terephthalate Composite Reinforced with Glass Fiber for Automotive Applications. J. Compos. Sci. 2022, 6, 59. [Google Scholar] [CrossRef]
- Pender, K.; Yang, L. Investigation of catalyzed thermal recycling for glass fiber-reinforced epoxy using fluidized bed process. Polym. Compos. 2019, 40, 3510–3519. [Google Scholar] [CrossRef]
- Cosimbescu, L.; Merkel, D.R.; Darsell, J.; Petrossian, G. Simple but Tricky: Investigations of Terephthalic Acid Purity Obtained from Mixed PET Waste. Ind. Eng. Chem. Res. 2021, 60, 12792–12797. [Google Scholar] [CrossRef]
- Bernava, A. The Use of Disperse Dyes for Dyeing of Recycled Polyethylene Terephthalate Fibres. Key Eng. Mater. 2021, 903, 100–105. [Google Scholar] [CrossRef]
- Wang, S.; Salmon, S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022, 3, 376–403. [Google Scholar] [CrossRef]
- Sarioğlu, E.; Kaynak, H.K. PET Bottle Recycling for Sustainable Textiles. In Polyester—Production, Characterization and Innovative Applications; Camlibel, N.O., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Revest, V. Bio-based Plastics: A ‘Sustainable’ Alternative for the Plastic Industry? Int. J. Env. Sci. Nat. Resour. 2023, 31, 556325. [Google Scholar] [CrossRef]
- Tang, K.H.D. State of the Art in Textile Waste Management: A Review. Textiles 2023, 3, 454–467. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Persson, A.; Skrifvars, M. Reusing textile waste as reinforcements in composites. J. Appl. Polym. Sci. 2014, 131, app.40687. [Google Scholar] [CrossRef]
- Mishra, R.; Behera, B.; Militky, J. Recycling of textile waste into green composites: Performance characterization. Polym. Compos. 2014, 35, 1960–1967. [Google Scholar] [CrossRef]
- Khalili, P.; Skrifvars, M.; Dhakal, H.N.; Dashatan, S.H.; Danielsson, M.; Gràcia, A.F. Mechanical Properties of Bio-Based Sandwich Composites Containing Recycled Polymer Textiles. Polymers 2023, 15, 3815. [Google Scholar] [CrossRef] [PubMed]
- Studer, J.; Dransfeld, C.; Jauregui Cano, J.; Keller, A.; Wink, M.; Masania, K.; Fiedler, B. Effect of fabric architecture, compaction and permeability on through thickness thermoplastic melt impregnation. Compos. Part. Appl. Sci. Manuf. 2019, 122, 45–53. [Google Scholar] [CrossRef]
- Weck, D.; Sauer, S.; Adam, F.; Starke, E.; Böhm, R.; Modler, N. Embedded Sensor Networks for Textile-Reinforced Thermoplastics: Sensor Network Design and Mechanical Composite Performance. Adv. Eng. Mater. 2016, 18, 444–451. [Google Scholar] [CrossRef]
- Hasan, M.; Staiger, E.; Ashir, M.; Cherif, C. Development of carbon fibre/polyamide 6, 6 commingled hybrid yarn for textile-reinforced thermoplastic composites. J. Thermoplast. Compos. Mater. 2015, 28, 1708–1724. [Google Scholar] [CrossRef]
- Bonifazi, G.; Gasbarrone, R.; Palmieri, R.; Serranti, S. End-of-Life Textile Recognition in a Circular Economy Perspective: A Methodological Approach Based on Near Infrared Spectroscopy. Sustainability 2022, 14, 10249. [Google Scholar] [CrossRef]
- Vahidifar, A.; Esmizadeh, E.; Rodrigue, D.; Khonakdar, H.A.; Wagenknecht, U. Towards novel super-elastic foams based on isoperene rubber: Preparation and characterization. Polym. Adv. Technol. 2020, 31, 1508–1518. [Google Scholar] [CrossRef]
- Kaisone, T.; Harnkarnsujarit, N.; Leejarkpai, T.; Nampitch, T. Mechanical and Thermal Properties of Toughened PLA Composite Foams with Modified Coconut Fiber. Appl. Mech. Mater. 2016, 851, 179–185. [Google Scholar] [CrossRef]
- Buddhacosa, N.; Giustozzi, F.; Wang, C.; Yuen, A.C.Y.; Khatibi, A.; Das, R.; Kandare, E. High temperature and fire properties of sustainable syntactic foam reinforced by end-of-life tyre-derived rubber particles. Fire Mater. 2024, 48, 561–579. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Liu, J.; Han, D.; Rohani, S.; Gao, Z.; Gong, J. Inhibition of Crystal Nucleation and Growth: A Review. Cryst. Growth Des. 2024, 24, 2645–2665. [Google Scholar] [CrossRef]
- Ochigue, P.C.D.; Dingcong, R.G.; Bondaug, J.C.S.; Magalong, B.C.G.; Dumancas, G.G.; Gutierrez, C.S.; Alguno, A.C.; Malaluan, R.M.; Lubguban, A.A.; Bacosa, H.P. Upcycling PVC and PET as Volume-Enhancing Functional Fillers for the Development of High-Performance Bio-Based Rigid Polyurethane Foams. Sustainability 2024, 16, 8540. [Google Scholar] [CrossRef]
- Wicaksono, S.T.; Ardhyananta, H.; Rasyida, A.; Fadila Rifki, F. Study of the Effect of PP and LDPE Thermoplastic Binder Addition on the Mechanical Properties and Physical Properties of Particulate Composites for Building Material Application. Mater. Sci. Forum 2019, 964, 115–123. [Google Scholar] [CrossRef]
- Garcia-Campo, M.; Quiles-Carrillo, L.; Masia, J.; Reig-Pérez, M.; Montanes, N.; Balart, R. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials 2017, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Hamadache, H.; Djidjelli, H.; Boukerrou, A.; Kaci, M.; José Antonio, J.; Martín-Martínez, J.M. Different compatibility approaches to improve the thermal and mechanical properties of EVA/starch composites. Polym. Compos. 2019, 40, 3242–3253. [Google Scholar] [CrossRef]
- Salleh, M.N.; Ahmad, S.; Ghani, M.H.A.; Chen, R.S. Effect of compatibilizer on impact and morphological analysis of recycled HDPE/PET blends. In Proceedings of the AIP Conference Proceedings, Selangor, Malaysia, 3–4 July 2013; American Institute of Physics: College Park, MD, USA, 2013; pp. 70–74. [Google Scholar] [CrossRef]
- Suthar, L.; Meena, S.; Kumar, U. Utilization of Plastic Waste in Reinforcing Sandy Soil for Sustainable Engineering Applications. J. Eng. Sci. 2024, 11, H1–H8. [Google Scholar] [CrossRef]
- Self, J.L.; Zervoudakis, A.J.; Peng, X.; Lenart, W.R.; Macosko, C.W.; Ellison, C.J. Linear, Graft, and Beyond: Multiblock Copolymers as Next-Generation Compatibilizers. JACS Au 2022, 2, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Dunn, C.B.; Qiang, Z. Design of Copolymer-Based Blend Compatibilizers for Mixed Plastic Recycling. Macromol. Chem. Phys. 2023, 224, 2300291. [Google Scholar] [CrossRef]
- Alshkane, Y.M. Reinforcement of sandy soil using plastic fibres made from waste plastic bottles. Iraqi J. Civ. Eng. 2017, 11, 45–54. [Google Scholar] [CrossRef]
- Cestari, S.; Mendes, L.; Altstädt, V.; Lopes, L. Upcycling Polymers and Natural Fibers Waste—Properties of a Potential Building Material. Recycling 2016, 1, 205–218. [Google Scholar] [CrossRef]
- Turku, I.; Kärki, T.; Puurtinen, A. Durability of wood plastic composites manufactured from recycled plastic. Heliyon 2018, 4, e00559. [Google Scholar] [CrossRef] [PubMed]
- Mahyoub, B.; Abdu, A.; Ahmed, A.; Kamal, I. Utilization of plastic and glass waste mixed with sand as an alternative brick materials. Zast. Mater. 2023, 64, 392–401. [Google Scholar] [CrossRef]
- Vaccaro, P.A.; Galvín, A.P.; Ayuso, J.; Barbudo, A.; López-Uceda, A. Mechanical Performance of Concrete Made with the Addition of Recycled Macro Plastic Fibres. Appl. Sci. 2021, 11, 9862. [Google Scholar] [CrossRef]
- Ahmed, H.; Sugini. A study on interlocking brick innovation using recycled plastic waste to support the acoustic and thermal performance of a building. ARTEKS J. Tek. Arsit. 2021, 6, 335–348. [Google Scholar] [CrossRef]
- Sandjaya, A.; Sabrina, O.; Novita, T. Strength of paving block by replacing up to 40% of fine aggregate by weight with plastic waste. E3S Web Conf. 2023, 429, 05027. [Google Scholar] [CrossRef]
- Desyani, N.A.; Yuwono, A.S.; Putra, H. Assessing the Performance of Melted Plastic as a Replacement for Sand in Paving Block. Adv. Technol. Innov. 2023, 8, 219–228. [Google Scholar] [CrossRef]
- Ali, B. Evaluation of the Properties of Hot Mixed Asphalt Modified by Plastic Waste. Quaid-E-Awam Univ. Res. J. Eng. Sci. Technol. 2021, 19, 105–113. [Google Scholar] [CrossRef]
- Jafar, J.J. Utilisation of waste plastic in bituminous mix for improved performance of roads. KSCE J. Civ. Eng. 2016, 20, 243–249. [Google Scholar] [CrossRef]
- Zhu, B.; Ye, Q.; Seo, Y.; Wei, N. Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase. Environ. Sci. Technol. Lett. 2022, 9, 650–657. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Tyagi, P.; Gupta, M.K.; Pappu, A. Sustainable approach toward novel poly(vinyl chloride) composite using calcite-rich waste particulates. J. Vinyl. Addit. Technol. 2022, 28, 649–658. [Google Scholar] [CrossRef]
- Sokołowska, J.J.; Piotrowski, T.; Garbacz, A.; Kowalik, P. Effect of Introducing Recycled Polymer Aggregate on the Properties of C-PC Composites. Adv. Mater. Res. 2013, 687, 520–526. [Google Scholar] [CrossRef]
- Khan, A.; Savi, P.; Quaranta, S.; Rovere, M.; Giorcelli, M.; Tagliaferro, A.; Rosso, C.; Jia, C.Q. Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers 2017, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Matykiewicz, D. Biochar as an Effective Filler of Carbon Fiber Reinforced Bio-Epoxy Composites. Processes 2020, 8, 724. [Google Scholar] [CrossRef]
- Goncharova, M.A.; Krokhotin, V.V.; Ivashkin, A.N. The Influence of Fiber Reinforcement on the Properties of the Self-Compacting Concrete Mix and Concrete. Solid State Phenom. 2020, 299, 112–117. [Google Scholar] [CrossRef]
- Ju, S.; Yoon, J.; Sung, D.; Pyo, S. Mechanical Properties of Coal Ash Particle-Reinforced Recycled Plastic-Based Composites for Sustainable Railway Sleepers. Polymers 2020, 12, 2287. [Google Scholar] [CrossRef]
- Tamayo-Vegas, S.; Muhsan, A.; Liu, C.; Tarfaoui, M.; Lafdi, K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers 2022, 14, 1842. [Google Scholar] [CrossRef]
- Kaczor, D.; Bajer, K.; Domek, G.; Madajski, P.; Raszkowska-Kaczor, A.; Szroeder, P. Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite. Acta Mech. Autom. 2022, 16, 316–324. [Google Scholar] [CrossRef]
- Sahoo, S.; Sahoo, A.B.; Priyadarshee, J.; Gohatre, O.K. Influence of coconut shell powder on physico-mechanical, thermal, and morphological properties of polyvinyl chloride recovered from waste rigid pipes. Polym. Compos. 2021, 42, 6588–6598. [Google Scholar] [CrossRef]
- Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E. Potential of using coconut shell particle fillers in eco-composite materials. J. Alloys. Compd. 2011, 509, 2381–2385. [Google Scholar] [CrossRef]
- Abreu, A.S.; Oliveira, M.; Machado, A.V. Effect of clay mineral addition on properties of bio-based polymer blends. Appl. Clay. Sci. 2015, 104, 277–285. [Google Scholar] [CrossRef]
- Mukhametzyanov, S.R.; Safin, R.R.; Galyavetdinov, N.R. Improvement of Composite Filaments for Extrusive 3D Printing. Mater. Sci. Forum 2020, 989, 827–832. [Google Scholar] [CrossRef]
- Członka, S.; Strąkowska, A.; Strzelec, K.; Kairytė, A.; Kremensas, A. Bio-Based Polyurethane Composite Foams with Improved Mechanical, Thermal, and Antibacterial Properties. Materials 2020, 13, 1108. [Google Scholar] [CrossRef]
- Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M. Evaluation of the Effect of Waste from Agricultural Production on the Properties of Flexible Polyurethane Foams. Polymers 2023, 15, 3529. [Google Scholar] [CrossRef]
- Thathsarani, M.S.; Dheerasinghe, M.J.; Rajapaksha, S.M.; Ranatunga, S.K.; Perera, S.; Patabendige, C.N.K. Sustainable Use of Biomass Boiler Ash as a Reinforcement Filler for Polyamide 6 Composite. Adv. Technol. 2021, 1, 161–176. [Google Scholar] [CrossRef]
- Cui, L.; Lionti, K.; Ranade, A.; Larson-Smith, K.; Dubois, G.J.; Dauskardt, R.H. Highly Transparent Multifunctional Bilayer Coatings on Polymers Using Low-Temperature Atmospheric Plasma Deposition. ACS Nano 2014, 8, 7186–7191. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Zhao, Z.; Dauskardt, R.H. Dual Precursor Atmospheric Plasma Deposition of Transparent Bilayer Protective Coatings on Plastics. ACS Appl. Mater. Interfaces 2015, 7, 17929–17934. [Google Scholar] [CrossRef]
- Gupta, A.K.; Lin, Y.; Pesek, S.; McDougal, N.; Kent, R.; Dietsche, L. Predictive Analysis of Laminated Glass Performance Under Static and Dynamic Loading Conditions. In Proceedings of the Challenging Glass Conference Proceedings, TU Delft, The Netherlands, 19–20 June 2024; Volume 9. [Google Scholar] [CrossRef]
- Kamarudin, M.K.; Mohd Rais, N.H.; Yusoff, M.M.; Parke, G.A.R. Buckling behaviour of laminated glass panel in compression. MATEC Web Conf. 2019, 258, 05010. [Google Scholar] [CrossRef]
- Debeaufort, F.; Riondet, J.; Brachais, C.-H.; Benbettaieb, N. Influence of Gelatin-Based Coatings Crosslinked with Phenolic Acids on PLA Film Barrier Properties. Coatings 2022, 12, 993. [Google Scholar] [CrossRef]
- Wu, Z.; Zhong, X.; Liu, C.; Wang, Z.; Dai, W.; Wang, Q. Plastic Deformation Induced by Nanoindentation Test Applied on ZrN/Si3N4 Multilayer Coatings. Coatings 2017, 8, 11. [Google Scholar] [CrossRef]
- Ksiazek, M.; Boron, L.; Tchorz, A. Study on the Microstructure, Mechanical Properties, and Erosive Wear Behavior of HVOF Sprayed Al2O3-15 wt.%TiO2 Coating with NiAl Interlayer on Al-Si Cast Alloy. Materials 2020, 13, 4122. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Kim, H.-K.; La, J.-H.; Lee, S.-Y. Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings. Jpn. J. Appl. Phys. 2016, 55, 01AA02. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Hao, D.; Esmail, O.M.A.O. Microstructure and Mechanical Properties of Laser-Welded Joints between DP590 Dual-Phase Steel and 304 Stainless Steel with Preset Nickel Coating. Materials 2023, 16, 2774. [Google Scholar] [CrossRef]
- Vereschaka, A.; Seleznev, A.; Gaponov, V. Wear Resistance, Patterns of Wear and Plastic Properties of Cr,Mo-(Cr,Mo,)N-(Cr,Mo,Al)N Composite Coating with a Nanolayer Structure. Coatings 2022, 12, 758. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, S.; Shao, T. Weakening effect of plastic yielding inception in thin hard coating systems. Chin. Phys. B 2021, 30, 038104. [Google Scholar] [CrossRef]
- Farahat, M.E.; Anderson, M.A.; Martell, M.; Ratcliff, E.L.; Welch, G.C. New Perylene Diimide Ink for Interlayer Formation in Air-Processed Conventional Organic Photovoltaic Devices. ACS Appl. Mater. Interfaces 2022, 14, 43558–43567. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, L.; Han, M.; Luo, S.; Jin, J.; Wang, L.; Gu, J.; Miao, H. The Performance of TiAlSiN Coated Cemented Carbide Tools Enhanced by Inserting Ti Interlayers. Metals 2019, 9, 918. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochigue, P.C.D.; Aguilos, M.A.; Lubguban, A.A.; Bacosa, H.P. Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation. Sustainability 2025, 17, 764. https://doi.org/10.3390/su17020764
Ochigue PCD, Aguilos MA, Lubguban AA, Bacosa HP. Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation. Sustainability. 2025; 17(2):764. https://doi.org/10.3390/su17020764
Chicago/Turabian StyleOchigue, Princess Claire D., Maricar A. Aguilos, Arnold A. Lubguban, and Hernando P. Bacosa. 2025. "Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation" Sustainability 17, no. 2: 764. https://doi.org/10.3390/su17020764
APA StyleOchigue, P. C. D., Aguilos, M. A., Lubguban, A. A., & Bacosa, H. P. (2025). Circular Economy Solutions: The Role of Thermoplastic Waste in Material Innovation. Sustainability, 17(2), 764. https://doi.org/10.3390/su17020764