Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review
<p>PRISMA flow diagram: literature screening and selection process.</p> "> Figure 2
<p>Annual trends in the number of publications on outdoor thermal comfort (2003–2024).</p> "> Figure 3
<p>Temporal distribution of keywords in outdoor thermal comfort research.</p> "> Figure 4
<p>Keyword co-occurrence network: research themes and focus areas. The axes represent keywords (on the horizontal axis) and their frequency of co-occurrence (on the vertical axis). This visualization highlights how certain keywords, such as thermal comfort and vegetation, are closely related, signifying the interconnectedness of these concepts within the literature.</p> "> Figure 5
<p>Thematic structure and keyword relationships in outdoor thermal comfort research. The color-coded map represents thematic clusters in the research, such as thermal comfort, microclimate, and design strategies. The varying colors of the clusters indicate different thematic groups, with overlapping themes reflecting an interdisciplinary approach to the topic, involving both environmental and design aspects.</p> "> Figure 6
<p>Tree map of keyword distribution in outdoor thermal comfort research. The size of each box represents the relative frequency of each keyword in recent publications. Larger boxes indicate that a term has been more frequently used, highlighting key topics and research trends in the field of outdoor thermal comfort. Keywords like PET, microclimate, and urban heat islands are central to current research.</p> "> Figure 7
<p>Evolution of research methods and application of simulation techniques. This figure tracks the usage of simulation methods like CFD, ENVI-met, and PET over time. The bars represent the number of studies using each method within specified time frames.</p> "> Figure 8
<p>Thematic evolution of keywords in outdoor thermal comfort research (2013–2024).</p> ">
Abstract
:1. Introduction
2. Research Methodology
2.1. Data Sources and Literature Retrieval
2.2. Literature Screening and Quality Control
- Initial Screening: Titles and abstracts were reviewed to exclude irrelevant documents, non-academic publications, and studies outside the scope of the review. A total of 110 reports were excluded in this round;
- FullText Screening: The remaining studies were reviewed for quality and eligibility. Only articles with rigorous empirical methods were included. Reports were excluded if they were found to have methodological issues (36 studies) or were deemed irrelevant to the main topic (75 studies).
2.3. Qualitative Literature Review
- Summary of Core Theories and Models
- 2.
- Research Method Comparison
- 3.
- Spatial Morphology and Thermal Comfort
2.4. Bibliometric Analysis Methods
- Analysis of Research Output
- 2.
- Keyword Co-Occurrence and Research Hotspots
- 3.
- Citation Analysis and Core Literature
- 4.
- Research Theme Evolution
2.5. Compliance with PRISMA Guidelines
2.6. Summary of Research Methods
3. Thermal Comfort Evaluation Indicator System
3.1. Physical Environment Factors
3.2. Human Stationary Modeling
3.3. Human Non-Stationary Modeling
4. Outdoor Thermal Environment Parameter Acquisition Method
4.1. On-Site Field Measurements
4.2. Laboratory-Controlled Experiments
4.3. Digital Simulation Methods
4.3.1. Energy Balance Model (EBM)
4.3.2. Computational Fluid Dynamics (CFD)
5. Landscape Architecture for Outdoor Thermal Comfort
5.1. Research Area
5.2. Research Indicators
5.3. Indicators of Spatial Characterization
5.4. Emerging Trends in Research on Artificial Intelligence (AI) Technology Applied to Outdoor Thermal Comfort
- Thermal Comfort Interpretation
- 2.
- Thermal Comfort Prediction
- 3.
- Thermal Environment Regulation Systems
- 4.
- Accuracy and Limitations
6. Review of Existing Research
6.1. Development Trends in Thermal Comfort Research
6.2. Research Hotspots and Keywords Co-Occur
6.3. Evolution of Thermal Comfort Evaluation Models
6.4. Shifts in Research Methodology and Technological Evolution
6.5. Keyword Evolution and Future Trends
- Early Focus (2003–2013)
- 2.
- Emerging Models and Evaluation Methods (2014–2018)
- 3.
- Technological Advancements and Simulation (2019–2023)
- 4.
- Future Trends (2024 and Beyond)
6.6. Synthesis: Impact of Spatial Morphology on Outdoor Thermal Comfort
7. Discussion
7.1. Thermal Comfort and Landscape Architecture: A Pathway to Better Outdoor Environments
7.2. The Role of Spatial Morphological Characteristics
7.3. The Practical Significance of Thermal Comfort Research for Landscape Architecture
7.4. Key Directions for Future Research
- Development of Multi-Scale Integrated Evaluation Systems
- 2.
- Dynamic Adaptive Design
- 3.
- Low-Carbon and Ecological Design
- 4.
- Cultural and Behavioral Research
- 5.
- Technological Integration and Interdisciplinary Collaboration
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, D.; Gu, X.; Li, J.; Ren, G.; Liu, J. Contributions of Global Warming and Urbanization to the Intensification of Human-Perceived Heatwaves Over China. J. Geophys. Res. Atmos. 2020, 125, e2019JD032175. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, N.; Yin, X.; Wu, C.; Chen, M.; Jiao, Y.; Yue, T. Global Future Population Exposure to Heatwaves. Environ. Int. 2023, 178, 108049. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, Z.; Dong, Y.; Hu, N.; Wang, C.; Zhang, P.; Jia, G.; He, X. Strengthening of Surface Urban Heat Island Effect Driven Primarily by Urban Size under Rapid Urbanization: National Evidence from China. GISci. Remote Sens. 2022, 59, 2127–2143. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, Y.; Yue, S. A High-Spatial-Resolution Dataset of Human Thermal Stress Indices over South and East Asia. Sci. Data 2021, 8, 229. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, T.; Yang, W.; Hu, X.; Li, C. A Review on the Impact of Outdoor Environment on Indoor Thermal Environment. Buildings 2023, 13, 2600. [Google Scholar] [CrossRef]
- Wei, R.; Yan, J.; Cui, Y.; Song, D.; Yin, X.; Sun, N. Studies on the Specificity of Outdoor Thermal Comfort during the Warm Season in High-Density Urban Areas. Buildings 2023, 13, 2473. [Google Scholar] [CrossRef]
- Norouzi, M.; Chau, H.-W.; Jamei, E. Design and Site-Related Factors Impacting the Cooling Performance of Urban Parks in Different Climate Zones: A Systematic Review. Land 2024, 13, 2175. [Google Scholar] [CrossRef]
- Qureshi, A.M.; Rachid, A.; Bartlett, D. Quantifying the Cooling Effect of Urban Heat Stress Interventions. Int. J. Glob. Warm. 2023, 30, 60. [Google Scholar] [CrossRef]
- Requena-Ruiz, I.; Siret, D.; Stavropulos-Laffaille, X.; Leduc, T. Designing Thermally Sensitive Public Spaces: An Analysis through Urban Design Media. J. Urban Des. 2023, 28, 44–65. [Google Scholar] [CrossRef]
- Cui, L.; Shibata, S. Exploring Climate-Adaptive Green-Space Designs for Hot and Humid Climates: Lessons from Japanese Dry Gardens. Urban For. Urban Green. 2024, 93, 128207. [Google Scholar] [CrossRef]
- Kaveh, S.; Habibi, A.; Nikkar, M.; Aflaki, A. Optimizing Green Infrastructure Strategies for Microclimate Regulation and Air Quality Improvement in Urban Environments: A Case Study. Nat.-Based Solut. 2024, 6, 100167. [Google Scholar] [CrossRef]
- Founda, D. Urban Thermal Risk. Atmosphere 2021, 12, 466. [Google Scholar] [CrossRef]
- Bera, M.; Nag, P.K. Bioclimatic Design of Low-Cost Rural Dwellings. Front. Built Environ. 2022, 8, 773108. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Hpoughten, F.C. Determining Equal Comfortlines. J. Am. Soc. Heat Vent. Eng. 1923, 29, 165–176. [Google Scholar]
- Vernon, H.M.; Warner, C.G. The Influence of the Humidity of the Air on Capacity for Work at High Temperatures. J. Hyg. 1932, 32, 431–462. [Google Scholar] [CrossRef]
- Yaglou, C.P.; Minard, D. Control of Heat Casualties at Military Training Centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–60. [Google Scholar] [CrossRef]
- Siple, P. Measurement of Dry Atmospheric Cooling in Subfreezing Temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar] [CrossRef]
- Tew, M.; Battel, G.; Nelson, C.; AMS. AMS Implementation of a New Wind Chill Temperature Index by the National Weather Service. In Proceedings of the International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Orlando, FL, USA, 13–17 January 2002; pp. 203–205. [Google Scholar]
- Gagge, A.P.; Burton, A.C.; Bazett, H.C. A Practical System of Units for the Description of the Heat Exchange of Man with His Environment. Science 1941, 94, 428–430. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environment Engeering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- ANSI/ASHRAE Standard 55-2013; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2013.
- Ole Fanger, P.; Toftum, J. Extension of the PMV Model to Non-Air-Conditioned Buildings in Warm Climates. Energy Build. 2002, 34, 533–536. [Google Scholar] [CrossRef]
- Gagge, A.P.; Stolwijk, J.A.J.; Nishi, Y. An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory Response. ASHRAE Trans. 1971, 77, 21–36. [Google Scholar]
- Gonzalez, R.; Nishi, Y.; Gagge, A.P. Experimental Evaluation of Standard Effective Temperature a New Biometeorological Index of Man’s Thermal Discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef]
- Katavoutas, G.; Flocas, H.A.; Matzarakis, A. Dynamic Modeling of Human Thermal Comfort after the Transition from an Indoor to an Outdoor Hot Environment. Int. J. Biometeorol. 2015, 59, 205–216. [Google Scholar] [CrossRef]
- Krüger, E.; Rossi, F.; Drach, P. Calibration of the Physiological Equivalent Temperature Index for Three Different Climatic Regions. Int. J. Biometeorol. 2017, 61, 1323–1336. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Lee, J.M. Understanding Volume and Correlations of Automated Walk Count: Predictors for Necessary, Optional, and Social Activities in Dilworth Park. Environ. Plan. B-Urban Anal. City Sci. 2021, 48, 331–347. [Google Scholar] [CrossRef]
- Tanabe, S.; Kobayashi, K.; Nakano, J.; Ozeki, Y.; Konishi, M. Evaluation of Thermal Comfort Using Combined Multi-Node Thermoregulation (65MN) and Radiation Models and Computational Fluid Dynamics (CFD). Energy Build. 2002, 34, 637–646. [Google Scholar] [CrossRef]
- Fiala, D.; Lomas, K.J.; Stohrer, M. Computer Prediction of Human Thermoregulatory and Temperature Responses to a Wide Range of Environmental Conditions. Int. J. Biometeorol. 2001, 45, 143–159. [Google Scholar] [CrossRef]
- Huizenga, C.; Hui, Z.; Arens, E. A Model of Human Physiology and Comfort for Assessing Complex Thermal Environments. Build. Environ. 2001, 36, 691–699. [Google Scholar] [CrossRef]
- Havenith, G.; Fiala, D.; Błazejczyk, K.; Richards, M.; Bröde, P.; Holmér, I.; Rintamaki, H.; Benshabat, Y.; Jendritzky, G. The UTCI-Clothing Model. Int. J. Biometeorol. 2012, 56, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the Operational Procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631, 390–406. [Google Scholar] [CrossRef]
- Dafri, I.; Alkama, D. Evaluation of Thermal Comfort in Outdoor Public Space: Case of Study: City of Annaba –Algeria-. J. Phys. Conf. Ser. 2019, 1343, 012026. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, X.; Li, L.; He, S.; Chen, R. Study on Outdoor Thermal Comfort on a Campus in a Subtropical Urban Area in Summer. Sustain. Cities Soc. 2016, 22, 164–170. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Xu, X.; Zhou, X.; Lin, Z.; Ji, Y. Investigation into Outdoor Thermal Comfort Conditions by Different Seasonal Field Surveys in China, Guangzhou. Int. J. Biometeorol. 2019, 63, 1357–1368. [Google Scholar] [CrossRef]
- Sharifi, E.; Boland, J. Passive Activity Observation (PAO) Method to Estimate Outdoor Thermal Adaptation in Public Space: Case Studies in Australian Cities. Int. J. Biometeorol. 2020, 64, 231–242. [Google Scholar] [CrossRef]
- Faustini, F.B.; De Faria, J.R.G.; Fontes, M.S.G.D.C. The Influence of Thermal Comfort Conditions on User’s Exposure Time in Open Spaces. Int. J. Biometeorol. 2020, 64, 243–252. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Hang, J. Solar Radiation Intensity and Outdoor Thermal Comfort in Royal Botanic Garden Melbourne during Heatwave Conditions. Procedia Eng. 2017, 205, 3456–3462. [Google Scholar] [CrossRef]
- Nasir, R.A.; Ahmad, S.S.; Ahmed, A.Z. Perceived and Measured Adaptive Thermal Comfort at an Outdoor Shaded Recreational Area in Malaysia. Adv. Mater. Res. 2013, 610, 1083–1086. [Google Scholar] [CrossRef]
- Zhen, M.; Zou, W.; Zheng, R.; Lu, Y. Urban Outdoor Thermal Environment and Adaptive Thermal Comfort during the Summer. Env. Sci. Pollut. Res. 2022, 29, 77864–77883. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Peng, M. The Outdoor Thermal Comfort of Urban Square: A Field Study in a Cold Season in Chongqing. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012215. [Google Scholar] [CrossRef]
- Huang, T.; Niu, J.; Mak, C.M.; Lin, Z. Comparisons of Respondent Thermal Perceptions in Underneath-Elevated-Building (UEB) Areas and Direct-Radiated (DR) Areas. Procedia Eng. 2017, 205, 4165–4171. [Google Scholar] [CrossRef]
- Hartabela, D.; Dewancker, B.J.; Koerniawan, M.D. A Relationship between Micro-Meteorological and Personal Variables of Outdoor Thermal Comfort: A Case Study in Kitakyushu, Japan. Sustainability 2021, 13, 13634. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Choi, C.Y. The Influence of Perceived Aesthetic and Acoustic Quality on Outdoor Thermal Comfort in Urban Environment. Build. Environ. 2021, 206, 108333. [Google Scholar] [CrossRef]
- Hao, T.; Chang, H.; Liang, S.; Jones, P.; Chan, P.W.; Li, L.; Huang, J. Heat and Park Attendance: Evidence from “Small Data” and “Big Data” in Hong Kong. Build. Environ. 2023, 234, 110123. [Google Scholar] [CrossRef]
- Jaung, W.; Carrasco, L.R. Using Mobile Phone Data to Examine Weather Impacts on Recreational Ecosystem Services in an Urban Protected Area. Sci. Rep. 2021, 11, 5544. [Google Scholar] [CrossRef]
- Elraouf, R.A.; ELMokadem, A.; Megahed, N.; Eleinen, O.A.; Eltarabily, S. Evaluating Urban Outdoor Thermal Comfort: A Validation of ENVI-Met Simulation through Field Measurement. J. Build. Perform. Simul. 2022, 15, 268–286. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for Microclimatic Analysis in Urban Thermal Environments. Landsc. Urban Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- Sayad, B.; Alkama, D.; Ahmad, H.; Baili, J.; Aljahdaly, N.H.; Menni, Y. Nature-Based Solutions to Improve the Summer Thermal Comfort Outdoors. Case Stud. Therm. Eng. 2021, 28, 101399. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Li, C.-Q. Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. J. Urban Plann. Dev. 2016, 142, 05015003. [Google Scholar] [CrossRef]
- Nie, T.; Lai, D.; Liu, K.; Lian, Z.; Yuan, Y.; Sun, L. Discussion on Inapplicability of Universal Thermal Climate Index (UTCI) for Outdoor Thermal Comfort in Cold Region. Urban Clim. 2022, 46, 101304. [Google Scholar] [CrossRef]
- Pigliautile, I.; Chàfer, M.; Pisello, A.L.; Pérez, G.; Cabeza, L.F. Inter-Building Assessment of Urban Heat Island Mitigation Strategies: Field Tests and Numerical Modelling in a Simplified-Geometry Experimental Set-Up. Renew. Energy 2020, 147, 1663–1675. [Google Scholar] [CrossRef]
- Krüger, E.L.; Costa, T. Interferences of Urban Form on Human Thermal Perception. Sci. Total Environ. 2019, 653, 1067–1076. [Google Scholar] [CrossRef]
- De Masi, R.F.; Ruggiero, S.; Vanol, G.P. Acrylic White Paint of Industrial Sector for Cool Roofing Application: Experimental Investigation of Summer Behavior and Aging Problem under Mediterranean Climate. Sol. Energy 2018, 169, 468–487. [Google Scholar] [CrossRef]
- Rosso, F.; Fabiani, C.; Chiatti, C.; Pisello, A.L. Cool, Photoluminescent Paints towards Energy Consumption Reductions in the Built Environment. J. Phys. Conf. Ser. 2019, 1343, 012198. [Google Scholar] [CrossRef]
- Han, B.; Zhang, K.; Yu, X. Enhance the Thermal Storage of Cement-Based Composites With Phase Change Materials and Carbon Nanotubes. J. Sol. Energy Eng.-Trans. ASME 2013, 135, 024505. [Google Scholar] [CrossRef]
- Dong, S.; Quek, J.Y.; Van Herk, A.M.; Jana, S. Polymer-Encapsulated TiO2 for the Improvement of NIR Reflectance and Total Solar Reflectance of Cool Coatings. Ind. Eng. Chem. Res. 2020, 59, 17901–17910. [Google Scholar] [CrossRef]
- Naboni, E.; Silvia, C.; Meloni, M.; Scartezzini, J.-L. Outdoor Comfort Simulation of Complex Architectural Designs: A Review of Simulation Tools from the Designer Perspective. In Proceedings of the 2018 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA, Chicago, IL, USA, 26–28 September 2018; pp. 659–666. [Google Scholar]
- Coccolo, S.; Mauree, D.; Naboni, E.; Kaempf, J.; Scartezzini, J.-L. On the Impact of the Wind Speed on the Outdoor Human Comfort: A Sensitivity Analysis. Energy Procedia 2017, 122, 481–486. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, J.; Xu, M.; Ahmadian, E. Effects of Landscape Patterns on the Summer Microclimate and Human Comfort in Urban Squares in China. Sustain. Cities Soc. 2021, 73, 103099. [Google Scholar] [CrossRef]
- Naboni, E.; Meloni, M.; Coccolo, S.; Kaempf, J.; Scartezzini, J.-L. An Overview of Simulation Tools for Predicting the Mean Radiant Temperature in an Outdoor Space. Energy Procedia 2017, 122, 1112–1117. [Google Scholar] [CrossRef]
- Chen, G.; Rong, L.; Zhang, G. Unsteady-State CFD Simulations on the Impacts of Urban Geometry on Outdoor Thermal Comfort within Idealized Building Arrays. Sustain. Cities Soc. 2021, 74, 103187. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, T.-P.; Matzarakis, A. Comparison of Mean Radiant Temperature from Field Experiment and Modelling: A Case Study in Freiburg, Germany. Theor. Appl. Climatol. 2014, 118, 535–551. [Google Scholar] [CrossRef]
- Jaenicke, B.; Meier, F.; Hoelscher, M.-T.; Scherer, D. Evaluating the Effects of Facade Greening on Human Bioclimate in a Complex Urban Environment. Adv. Meteorol. 2015, 2015, 747259. [Google Scholar] [CrossRef]
- Gal, C.V.; Kantor, N. Modeling Mean Radiant Temperature in Outdoor Spaces, A Comparative Numerical Simulation and Validation Study. Urban Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Lau, K.K.-L.; Lindberg, F.; Rayner, D.; Thorsson, S. The Effect of Urban Geometry on Mean Radiant Temperature under Future Climate Change: A Study of Three European Cities. Int. J. Biometeorol. 2015, 59, 799–814. [Google Scholar] [CrossRef]
- Thom, J.K.; Coutts, A.M.; Broadbent, A.M.; Tapper, N.J. The Influence of Increasing Tree Cover on Mean Radiant Temperature across a Mixed Development Suburb in Adelaide, Australia. Urban For. Urban Green. 2016, 20, 233–242. [Google Scholar] [CrossRef]
- Konarska, J.; Lindberg, F.; Larsson, A.; Thorsson, S.; Holmer, B. Transmissivity of Solar Radiation through Crowns of Single Urban Trees-Application for Outdoor Thermal Comfort Modelling. Theor. Appl. Climatol. 2014, 117, 363–376. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M. Geometry and Orientation Aspects in Passive Cooling of Canyon Streets with Trees. Energy Build. 2003, 35, 61–68. [Google Scholar] [CrossRef]
- Jaenicke, B.; Milosevic, D.; Manavvi, S. Review of User-Friendly Models to Improve the Urban Micro-Climate. Atmosphere 2021, 12, 1291. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Build. Simul. 2018, 11, 821–870. [Google Scholar] [CrossRef]
- Ghani, S.; Bialy, E.M.; Bakochristou, F.; Gamaledin, S.M.A.; Rashwan, M.M.; Hughes, B. Thermal Comfort Investigation of an Outdoor Air-Conditioned Area in a Hot and Arid Environment. Sci. Technol. Built Environ. 2017, 23, 1113–1131. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Wen, C.-Y.; Yang, A.-S.; Juan, Y.-H. Effects of Height-Asymmetric Street Canyon Configurations on Outdoor Air Temperature and Air Quality. Build. Environ. 2020, 183, 107195. [Google Scholar] [CrossRef]
- Shen, X.; Li, J.; Wang, S.; Su, L.; Li, L. The Impact of Tree-Planting Location on the Microclimate and Thermal Comfort of the Micro-Public Space. Pol. J. Environ. Stud. 2023, 32, 717–730. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Srebric, J.; Hu, Y.; Liu, M.; Su, L.; Wang, S. The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard. Sustainability 2019, 11, 1665. [Google Scholar] [CrossRef]
- Xiao, J.; Yuizono, T. Climate-Adaptive Landscape Design: Microclimate and Thermal Comfort Regulation of Station Square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Evola, G.; Costanzo, V.; Magri, C.; Margani, G.; Marletta, L.; Naboni, E. A Novel Comprehensive Workflow for Modelling Outdoor Thermal Comfort and Energy Demand in Urban Canyons: Results and Critical Issues. Energy Build. 2020, 216, 109946. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kershaw, T.; Shepherd, P.; Elwy, I. A Parametric Optimisation Study of Urban Geometry Design to Assess Outdoor Thermal Comfort. Sustain. Cities Soc. 2021, 75, 103352. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; Mirzaei, P.A. A Tempo-Spatial Modelling Framework to Assess Outdoor Thermal Comfort of Complex Urban Neighbourhoods. Urban Clim. 2020, 33, 100665. [Google Scholar] [CrossRef]
- Khraiwesh, M.M.; Genovese, P.V. Outdoor Thermal Comfort Integrated with Energy Consumption for Urban Block Design Optimization: A Study of the Hot-Summer Mediterranean City of Irbid, Jordan. Sustainability 2023, 15, 8412. [Google Scholar] [CrossRef]
- Milošević, D.D.; Bajšanski, I.V.; Savić, S.M. Influence of Changing Trees Locations on Thermal Comfort on Street Parking Lot and Footways. Urban For. Urban Green. 2017, 23, 113–124. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Q.; Ding, Q.; Zhou, D.; Gao, W.; Fukuda, H. Towards a Rural Revitalization Strategy for the Courtyard Layout of Vernacular Dwellings Based on Regional Adaptability and Outdoor Thermal Performance in the Gully Regions of the Loess Plateau, China. Sustainability 2021, 13, 13074. [Google Scholar] [CrossRef]
- López-Cabeza, V.P.; Diz-Mellado, E.; Rivera-Gómez, C.; Galán-Marín, C.; Samuelson, H.W. Thermal Comfort Modelling and Empirical Validation of Predicted Air Temperature in Hot-Summer Mediterranean Courtyards. J. Build. Perform. Simul. 2022, 15, 39–61. [Google Scholar] [CrossRef]
- Tabadkani, A.; Aghasizadeh, S.; Banihashemi, S.; Hajirasouli, A. Courtyard Design Impact on Indoor Thermal Comfort and Utility Costs for Residential Households: Comparative Analysis and Deep-Learning Predictive Model. Front. Archit. Res. 2022, 11, 963–980. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, Y.; Jin, H. The Effects of Different Space Forms in Residential Areas on Outdoor Thermal Comfort in Severe Cold Regions of China. Int. J. Environ. Res. Public Health 2019, 16, 3960. [Google Scholar] [CrossRef]
- Hado, A.K.; Hassan, S.A. Iraq Green Buildings Code Effect on Improving Outdoor Thermal Comfort for Residential Complex. Asian J. Water Environ. Pollut. 2023, 20, 115–120. [Google Scholar] [CrossRef]
- Fahmy, M.; Sharples, S.; Yahiya, M. LAI Based Trees Selection for Mid Latitude Urban Developments: A Microclimatic Study in Cairo, Egypt. Build. Environ. 2010, 45, 345–357. [Google Scholar] [CrossRef]
- Karimi, A.; Bayat, A.; Mohammadzadeh, N.; Mohajerani, M.; Yeganeh, M. Microclimatic Analysis of Outdoor Thermal Comfort of High-Rise Buildings with Different Configurations in Tehran: Insights from Field Surveys and Thermal Comfort Indices. Build. Environ. 2023, 240, 110445. [Google Scholar] [CrossRef]
- Zafarmandi, S.; Mahdavinejad, M.; Norford, L.; Matzarakis, A. Analyzing Thermal Comfort Sensations in Semi-Outdoor Space on a University Campus: On-Site Measurements in Tehran’s Hot and Cold Seasons. Atmosphere 2022, 13, 1034. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- López-Cabeza, V.P.; Diz-Mellado, E.; Rivera-Gómez, C.A.; Galán-Marín, C. Shade and Thermal Comfort in Courtyards: Experimental versus Simulation Results. Buildings 2022, 12, 1961. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V.; Beltramino, S. Improving Outdoor Thermal Comfort in Built Environment Assessing the Impact of Urban Form and Vegetation. Int. J. Heat Technol. 2022, 40, 23–31. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Zhao, L. Outdoor Thermal Comfort and Activities in the Urban Residential Community in a Humid Subtropical Area of China. Energy Build. 2016, 133, 498–511. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zou, Y.; Xia, D.; Lou, S.; Guo, T.; Zhong, Z. Improving the Thermal Comfort of an Open Space via Landscape Design: A Case Study in Hot and Humid Areas. Atmosphere 2022, 13, 1604. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Guo, T.; Luo, X.; Ji, K.; Zhou, M.; Wan, F. The Impact of Tree Species and Planting Location on Outdoor Thermal Comfort of a Semi-Outdoor Space. Int. J. Biometeorol. 2023, 67, 1689–1701. [Google Scholar] [CrossRef]
- Shata, R.O.; Mahmoud, A.H.; Fahmy, M. Correlating the Sky View Factor with the Pedestrian Thermal Environment in a Hot Arid University Campus Plaza. Sustainability 2021, 13, 468. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, M.; Khastar, S.R.; Taleghani, M. Numerical Evaluation of Thermal Comfort in Traditional Courtyards to Develop New Microclimate Design in a Hot and Dry Climate. Sustain. Cities Soc. 2017, 35, 449–467. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S.J.; Oliveira, B.; Hacon, S. Wind and Greenery Effects in Attenuating Heat Stress: A Case Study. J. Clean. Prod. 2021, 291, 125919. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Xue, P.; Du, J.; Liu, J. Investigation of Outdoor Thermal Sensation and Comfort Evaluation Methods in Severe Cold Area. Sci. Total Environ. 2020, 749, 141520. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, I.; Elkadi, H. The Outdoor Thermal Benchmarks in Melbourne Urban Climate. Sustain. Cities Soc. 2018, 43, 587–600. [Google Scholar] [CrossRef]
- Yang, W.; Wong, N.H.; Lin, Y. Thermal Comfort in High-Rise Urban Environments in Singapore. Procedia Eng. 2015, 121, 2125–2131. [Google Scholar] [CrossRef]
- Xiong, K.; He, B.-J. Wintertime Outdoor Thermal Sensations and Comfort in Cold-Humid Environments of Chongqing China. Sustain. Cities Soc. 2022, 87, 104203. [Google Scholar] [CrossRef]
- Khalili, S.; Fayaz, R.; Zolfaghari, S.A. Analyzing Outdoor Thermal Comfort Conditions in a University Campus in Hot-Arid Climate: A Case Study in Birjand, Iran. Urban Clim. 2022, 43, 101128. [Google Scholar] [CrossRef]
- Altunkasa, C.; Uslu, C. Use of Outdoor Microclimate Simulation Maps for a Planting Design to Improve Thermal Comfort. Sustain. Cities Soc. 2020, 57, 102137. [Google Scholar] [CrossRef]
- Fabbri, K.; Ugolini, A.; Iacovella, A.; Bianchi, A.P. The Effect of Vegetation in Outdoor Thermal Comfort in Archaeological Area in Urban Context. Build. Environ. 2020, 175, 106816. [Google Scholar] [CrossRef]
- Xue, S.; Xiao, Y. Study on the Outdoor Thermal Comfort Threshold of Lingnan Garden in Summer. Procedia Eng. 2016, 169, 422–430. [Google Scholar] [CrossRef]
- Ma, X.; Wang, M.; Zhao, J.; Zhang, L.; Liu, W. Performance of Different Urban Design Parameters in Improving Outdoor Thermal Comfort and Health in a Pedestrianized Zone. Int. J. Environ. Res. Public Health 2020, 17, 2258. [Google Scholar] [CrossRef]
- Losi, G.; Bonzanini, A.; Aquino, A.; Poesio, P. Analysis of Thermal Comfort in a Football Stadium Designed for Hot and Humid Climates by CFD. J. Build. Eng. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, T.-P.; Hwang, R.-L. Thermal Comfort for Urban Parks in Subtropics: Understanding Visitor’s Perceptions, Behavior and Attendance. Adv. Meteorol. 2013, 2013, 640473. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, H.; Deng, Q.; Mochida, A. A Field Study of Thermal Comfort in Outdoor and Semi-Outdoor Environments in a Humid Subtropical Climate City. J. Asian Archit. Build. Eng. 2013, 12, 73–79. [Google Scholar] [CrossRef]
- Zhou, Z.; Deng, Q.; Yang, W.; Zhou, J. Effect of Seasonal Adaptation on Outdoor Thermal Comfort in a Hot-Summer and Cold-Winter City. Adv. Build. Energy Res. 2020, 14, 202–217. [Google Scholar] [CrossRef]
- Lin, T.-P.; de Dear, R.; Hwang, R.-L. Effect of Thermal Adaptation on Seasonal Outdoor Thermal Comfort. Int. J. Climatol. 2011, 31, 302–312. [Google Scholar] [CrossRef]
- Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of Comfort Conditions in Urban Open Spaces. Application in the Island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Abdallah, A.S.H.; Al-Saadi, S.N.J. Outdoor Space Quality: Impact of Deep Canyon Thermal Comfort in an Urban Residential Community. Sci. Technol. Built Environ. 2020, 27, 477–488. [Google Scholar] [CrossRef]
- Al-Atrash, F.Z.; Al-Ayyoub, A. Evaluating Urban Outdoor Thermal Comfort in Jabal Al Natheef Amman. Sustainability 2023, 15, 4092. [Google Scholar] [CrossRef]
- Guo, F.; Wang, Z.; Dong, J.; Zhang, H.; Lu, X.; Lau, S.S.; Miao, Y. Spatial Differences in Outdoor Thermal Comfort during the Transition Season in Cold Regions of China. Buildings 2022, 12, 720. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Lau, K.K.-L. Effect of Long-Term Acclimatization on Summer Thermal Comfort in Outdoor Spaces: A Comparative Study between Melbourne and Hong Kong. Int. J. Biometeorol. 2018, 62, 1311–1324. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Assessing the Outdoor Thermal Comfort Conditions of Exercising People in the Semi-Arid Region of India. Sustain. Cities Soc. 2022, 76, 103366. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Akbar, S.N.A.B.A.; Heng, S.L.; Roth, M. Assessment of Measured and Perceived Microclimates within a Tropical Urban Forest. Urban For. Urban Green. 2016, 16, 62–75. [Google Scholar] [CrossRef]
- Yuan, J.; Farnham, C.; Emura, K. Effect of Different Reflection Directional Characteristics of Building Facades on Outdoor Thermal Environment and Indoor Heat Loads by CFD Analysis. Urban Clim. 2021, 38, 100875. [Google Scholar] [CrossRef]
- Oh, W.; Ooka, R.; Nakano, J.; Kikumoto, H.; Ogawa, O. Environmental Index for Evaluating Thermal Sensations in a Mist Spraying Environment. Build. Environ. 2019, 161, 106219. [Google Scholar] [CrossRef]
- Mahgoub, A.O.; Gowid, S.; Ghani, S. Global Evaluation of WBGT and SET Indices for Outdoor Environments Using Thermal Imaging and Artificial Neural Networks. Sustain. Cities Soc. 2020, 60, 102182. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M.R. Human Thermal Comfort and Heat Stress in an Outdoor Urban Arid Environment: A Case Study. Adv. Meteorol. 2013, 2013, 693541. [Google Scholar] [CrossRef]
- Fang, Z.; Feng, X.; Liu, J.; Lin, Z.; Mak, C.M.; Niu, J.; Tse, K.-T.; Xu, X. Investigation into the Differences among Several Outdoor Thermal Comfort Indices against Field Survey in Subtropics. Sustain. Cities Soc. 2019, 44, 676–690. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Dahanayake, K.W.D.; Kalani, C.; Adegun, O.B.; Balogun, A.A. Modelling the Effect of Tree-Shading on Summer Indoor and Outdoor Thermal Condition of Two Similar Buildings in a Nigerian University. Energy Build. 2016, 130, 721–732. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, M.; Lu, S.; Mai, X. Influence of Urban Geometry on Thermal Environment of Urban Street Canyons in Hong Kong. Buildings 2022, 12, 1836. [Google Scholar] [CrossRef]
- Sahoh, B.; Kaewrat, C.; Yeranee, K.; Kittiphattanabawon, N.; Kliangkhlao, M. Causal AI-Powered Event Interpretation: A Cause-and-Effect Discovery for Indoor Thermal Comfort Measurements. IEEE Internet Things J. 2022, 9, 23188–23200. [Google Scholar] [CrossRef]
- Xi, T.; Wang, M.; Cao, E.; Li, J.; Wang, Y.; Sa’ad, S.U. Preliminary Research on Outdoor Thermal Comfort Evaluation in Severe Cold Regions by Machine Learning. Buildings 2024, 14, 284. [Google Scholar] [CrossRef]
- Eslamirad, N.; Malekpour Kolbadinejad, S.; Mahdavinejad, M.; Mehranrad, M. Thermal Comfort Prediction by Applying Supervised Machine Learning in Green Sidewalks of Tehran. Smart Sustain. Built Environ. 2020, 9, 361–374. [Google Scholar] [CrossRef]
- Jeong, J.; Jeong, J.; Lee, M.; Lee, J.; Chang, S. Data-Driven Approach to Develop Prediction Model for Outdoor Thermal Comfort Using Optimized Tree-Type Algorithms. Build. Environ. 2022, 226, 109663. [Google Scholar] [CrossRef]
- Prasad, P.S.H.; Satyanarayana, A.N.V. Assessment of Outdoor Thermal Comfort Using Landsat 8 Imageries with Machine Learning Tools over a Metropolitan City of India. Pure Appl. Geophys. 2023, 180, 3621–3637. [Google Scholar] [CrossRef]
- Ngarambe, J.; Yun, G.Y.; Santamouris, M. The Use of Artificial Intelligence (AI) Methods in the Prediction of Thermal Comfort in Buildings: Energy Implications of AI-Based Thermal Comfort Controls. Energy Build. 2020, 211, 109807. [Google Scholar] [CrossRef]
- Shahrestani, S.S.; Zomorodian, Z.S.; Karami, M.; Mostafavi, F. A Novel Machine Learning-Based Framework for Mapping Outdoor Thermal Comfort. Adv. Build. Energy Res. 2023, 17, 53–72. [Google Scholar] [CrossRef]
- Shah, R.; Pandit, R.; Gaur, M. Determining the Influence of Meteorological Parameters on Outdoor Thermal Comfort Using ANFIS and ANN. Mausam 2023, 74, 741–760. [Google Scholar] [CrossRef]
- Matallah, M.E.; Mahar, W.A.; Bughio, M.; Alkama, D.; Ahriz, A.; Bouzaher, S. Prediction of Climate Change Effect on Outdoor Thermal Comfort in Arid Region. Energies 2021, 14, 4730. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.; Gou, Z.; Liu, J. Assessment of Macroclimate and Microclimate Effects on Outdoor Thermal Comfort via Artificial Neural Network Models. Urban Clim. 2022, 42, 101134. [Google Scholar] [CrossRef]
- Ghahramani, A.; Galicia, P.; Lehrer, D.; Varghese, Z.; Wang, Z.; Pandit, Y. Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications and Future Directions. Front. Built Environ. 2020, 6, 49. [Google Scholar] [CrossRef]
- Zhao, Y.; Genovese, P.V.; Li, Z. Intelligent Thermal Comfort Controlling System for Buildings Based on IoT and AI. Future Internet 2020, 12, 30. [Google Scholar] [CrossRef]
- Siqi, J.; Yuhong, W.; Nyuk Hien, W. The Effect of Urban Greening on Pedestrian’s Thermal Comfort and Walking Behaviour. E3S Web Conf. 2023, 396, 05013. [Google Scholar] [CrossRef]
- Lai, D.; Jia, S.; Qi, Y.; Liu, J. Window-Opening Behavior in Chinese Residential Buildings across Different Climate Zones. Build. Environ. 2018, 142, 234–243. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Nishadh, K.A.; Jawahar, P. Air Pollution Knowledge Assessments (APnA) for 20 Indian Cities. Urban Clim. 2019, 27, 124–141. [Google Scholar] [CrossRef]
- Clark, C.; Busiek, B.; Adriaens, P. Quantifying Thermal Impacts of Green Infrastructure: Review and Gaps. Proc. Water Environ. Fed. 2010, 2010, 69–77. [Google Scholar] [CrossRef]
- Xiao, J.; Yuizono, T.; Li, R. Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan. Sustainability 2024, 16, 5582. [Google Scholar] [CrossRef]
- Wai, C.Y.; Tariq, M.A.U.R.; Muttil, N. A Systematic Review on the Existing Research, Practices, and Prospects Regarding Urban Green Infrastructure for Thermal Comfort in a High-Density Urban Context. Water 2022, 14, 2496. [Google Scholar] [CrossRef]
- Xu, H.; Liao, J.; Hong, Y. The Effect of Green Stormwater Infrastructures on Urban-Tier Human Thermal Comfort—A Case Study in High-Density Urban Blocks. Forests 2024, 15, 862. [Google Scholar] [CrossRef]
- Lin, J.; Brown, R. Integrating Microclimate into Landscape Architecture for Outdoor Thermal Comfort: A Systematic Review. Land 2021, 10, 196. [Google Scholar] [CrossRef]
- Kianmehr, A.; Lim, T.C. Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate 2022, 10, 60. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Ning, X.; Du, L.; Zhang, Y.; Wu, C. Low-Carbon City Building and Green Development: New Evidence from Quasi Natural Experiments from 277 Cities in China. Sustainability 2023, 15, 11609. [Google Scholar] [CrossRef]
- Naheed, S.; Shooshtarian, S. A Review of Cultural Background and Thermal Perceptions in Urban Environments. Sustainability 2021, 13, 9080. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Zhang, T.; Hu, Y.; He, J. The Impact Mechanism of Urban Built Environment on Urban Greenways Based on Computer Vision. Forests 2024, 15, 1171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wang, Y.; Zhang, L.; Xu, N.; Tang, F. Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review. Sustainability 2025, 17, 2330. https://doi.org/10.3390/su17052330
Liu T, Wang Y, Zhang L, Xu N, Tang F. Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review. Sustainability. 2025; 17(5):2330. https://doi.org/10.3390/su17052330
Chicago/Turabian StyleLiu, Tingfeng, Yaolong Wang, Longhao Zhang, Ninghan Xu, and Fengliang Tang. 2025. "Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review" Sustainability 17, no. 5: 2330. https://doi.org/10.3390/su17052330
APA StyleLiu, T., Wang, Y., Zhang, L., Xu, N., & Tang, F. (2025). Outdoor Thermal Comfort Research and Its Implications for Landscape Architecture: A Systematic Review. Sustainability, 17(5), 2330. https://doi.org/10.3390/su17052330