Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal
<p>Maps of the study areas: (<b>a</b>) Khaptad National Park (KNP) and (<b>b</b>) Sagarmatha National Park (SNP). Note that the scales of the two parks are different.</p> "> Figure 2
<p>Population data for (<b>a</b>) SNP and (<b>b</b>) KNP from 1971 to 2021 (Source: Census of Nepal data).</p> "> Figure 3
<p>Flowchart describing the methods used in this study. (Gray box shows LULC change dynamics and yellow box shows CA-ANN based future projection).</p> "> Figure 4
<p>Variables used for LULC prediction in SNP: (<b>a</b>) elevation, (<b>b</b>) slope, (<b>c</b>) distance to road, and (<b>d</b>) distance to river.</p> "> Figure 5
<p>Variables used for LULC prediction in KNP: (<b>a</b>) elevation, (<b>b</b>) slope, (<b>c</b>) distance to road, and (<b>d</b>) distance to river.</p> "> Figure 6
<p>Land use/land cover maps of (<b>a</b>) 1989, (<b>b</b>) 2000, (<b>c</b>) 2010, and (<b>d</b>) 2021 in SNP.</p> "> Figure 7
<p>Land use/land cover change patterns in SNP (1989–2021).</p> "> Figure 8
<p>Land use/land cover maps of (<b>a</b>) 1991, (<b>b</b>) 1999, (<b>c</b>) 2010, and (<b>d</b>) 2020 in KNP.</p> "> Figure 9
<p>Land use/land cover change patterns in the KNP (1991–2020).</p> "> Figure 10
<p>LULC change matrices of SNP for (<b>a</b>) the entire area, (<b>b</b>) the core zone, and (<b>c</b>) the buffer zone. Land use/land cover classes: For = forest, Shr = shrubland, Bar = bare land, Agr = agriculture, Wat = water, Sn/G = snow/glacier, Gra = grassland, Gll = glacier lake, Bup = built up, Kar = kharka.</p> "> Figure 11
<p>LULC change matrices of KNP for (<b>a</b>) the entire area, (<b>b</b>) the core zone, and (<b>c</b>) the buffer zone. Land use/land cover classes: For = forest, Shr = shrubland, Bar = bare land, Agr = agriculture, Wat = water, Gra = grassland, Bup = built up.</p> "> Figure 12
<p>Annual number of international tourists visiting (<b>a</b>) SNP and (<b>b</b>) KNP (data source: MTCTCA). It should be noted that the scales of the yaxes are different.</p> "> Figure 13
<p>Trends in (<b>a</b>) annual mean precipitation and (<b>b</b>) annual mean air temperature for SNP from 1994 to 2023. Data from CHIRPS (index of/products/CHIRPS-2.0 (ucsb.edu) accessed 12 may 2023) for precipitation and from 5 km grids from ERA5 (Climate Data Store (copernicus.eu)) accessed 28 June 2023 for air temperature were used.</p> "> Figure 14
<p>Trends in (<b>a</b>) annual mean precipitation and (<b>b</b>) annual mean air temperature in KNP from 1994 to 2023. Data from CHIRPS (index of/products/CHIRPS-2.0 (ucsb.edu)) accessed 12 May 2023 for precipitation and from 5 km grids from ERA5 (Climate Data Store (copernicus.eu)) accessed 28 June 2023for air temperature were used.</p> "> Figure 15
<p>Neural network learning curves for training LULC prediction in (<b>a</b>) SNP and (<b>b</b>) KNP.</p> "> Figure 16
<p>(<b>a</b>) Projected LULC for SNP in 2030 and (<b>b</b>) changes in area from 1989 to 2032.</p> "> Figure 17
<p>(<b>a</b>) Projected LULC for KNP in 2030 and (<b>b</b>) changes in area from 1991 to 2030.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Demography and Climate of the Study Areas
2.3. LULC Classification
2.4. LULC Data Analysis
2.5. Tourism Data
2.6. Climate Data
2.7. LULC Prediction Techniques
3. Results
3.1. LULC Classification of SNP and KNP
3.1.1. LULC of Core and Buffer Zones of SNP
3.1.2. LULC of Core and Buffer Zones of KNP
3.2. Accuracy Assessment
3.3. Spatio-Temporal Analysis of LULC
3.4. Tourism Impact on LULC Changes
3.5. Trend Analyis of Climate Patterns in SNP and KNP
3.6. LULC Future Prediction
4. Discussion
4.1. Comparative Analysis of Methodology and Results
4.2. Land Use and Land Cover Dynamics in SNP
4.3. Land Use and Land Cover Dynamics in KNP
4.4. Future LULC Projections in SNP and KNP
4.5. Integrated Sustainability and Management Strategies and Limitations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourdeau, P. De l’après-Ski à l’après-Tourisme, Une Figure de Transition Pour Les Alpes?: Réflexions à Partir Du Cas Français. J. Alp. Res. 2009. [Google Scholar] [CrossRef]
- Nepal, S.K.; Chipeniuk, R. Mountain Tourism: Toward a Conceptual Framework. Tour. Geogr. 2005, 7, 313–333. [Google Scholar] [CrossRef]
- Ives, J.D.; Messerli, B. The Himalayan Dilemma; Routledge: London, UK, 2003; ISBN 978-1-134-98242-4. [Google Scholar]
- Nepal, S.K. Tourism-Induced Rural Energy Consumption in the Annapurna Region of Nepal. Tour. Manag. 2008, 29, 89–100. [Google Scholar] [CrossRef]
- Uddin, K.; Shrestha, H.L.; Murthy, M.S.R.; Bajracharya, B.; Shrestha, B.; Gilani, H.; Pradhan, S.; Dangol, B. Development of 2010 National Land Cover Database for the Nepal. J. Environ. Manag. 2015, 148, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of Land Use and Land Cover Change on Ecosystem Services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-00-915789-6.
- Taati, A.; Sarmadian, F.; Mousavi, A.; Pour, C.T.H.; Shahir, A.H.E. Land Use Classification Using Support Vector Machine and Maximum Likelihood Algorithms by Landsat 5 TM Images. Walailak J. Sci. Technol. 2015, 12, 681–687. [Google Scholar]
- Elmahdy, S.I.; Ali, T.A.; Mohamed, M.M.; Howari, F.M.; Abouleish, M.; Simonet, D. Spatiotemporal Mapping and Monitoring of Mangrove Forests Changes from 1990 to 2019 in the Northern Emirates, UAE Using Random Forest, Kernel Logistic Regression and Naive Bayes Tree Models. Front. Environ. Sci. 2020, 8, 102. [Google Scholar] [CrossRef]
- Guarderas, P.; Smith, F.; Dufrene, M. Land Use and Land Cover Change in a Tropical Mountain Landscape of Northern Ecuador: Altitudinal Patterns and Driving Forces. PLoS ONE 2022, 17, e0260191. [Google Scholar] [CrossRef]
- Garrard, R.; Kohler, T.; Price, M.F.; Byers, A.C.; Sherpa, A.R.; Maharjan, G.R. Land Use and Land Cover Change in Sagarmatha National Park, a World Heritage Site in the Himalayas of Eastern Nepal. Mt. Res. Dev. 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Chaudhary, R.P.; Uprety, Y.; Rimal, S.K. Deforestation in Nepal. In Biological and Environmental Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2016; pp. 335–372. ISBN 978-0-12-394847-2. [Google Scholar]
- Tiwari, M.K.; Saxena, A. Change Detection of Land Use/Landcover Pattern in an around Mandideep and Obedullaganj Area, Using Remote Sensing and GIS. Int. J. Technol. Eng. Syst. 2011, 2, 398–402. [Google Scholar]
- Nepal, S.K. Tourism and the Environment: Perspectives from the Nepal Himalaya. J. Water Resour. Prot. 2003, 7, 16. [Google Scholar]
- World Bank. Harnessing Tourism to Enhance the Value of Biodiversity and Promote Conservation in Nepal 2024. 3 June 2022. Available online: https://www.worldbank.org/en/news/feature/2022/06/03/harnessing-tourism-to-enhance-the-value-of-biodiversity-and-promote-conservation-in-nepal (accessed on 13 November 2024).
- Khanal, N.R. Land Use and Land Cover Dynamics in the Himalaya: A Case Study of the Madi Watershed, Western Development Region, Nepal. Ph.D. Thesis, Tribhuvan University, Kathmandu, Nepal, 2002. [Google Scholar]
- Shrestha, B.M.; Dick, Ø.B.; Singh, B. Effects of Land-Use Change on Carbon Dynamics Assessed by Multi-Temporal Satellite Imagery in a Mountain Watershed of Nepal. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2010, 60, 10–23. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Li, S.; Liu, L.; Wu, X.; Khanal, N.R. Review of Studies on Land Use and Land Cover Change in Nepal. J. Mt. Sci. 2016, 13, 643–660. [Google Scholar] [CrossRef]
- Rai, D.B. Tourism Development and Economic and Socio-Cultural Consequences in Everest Region. Geogr. J. Nepal 2017, 10, 89–104. [Google Scholar] [CrossRef]
- Bhatta, S.; Devkota, N.; Paudel, U.R.; Danuwar, R.K. Prospect of Tourism Development in Khaptad National Park: A Local Perspective. J. Tour. Adventure 2023, 6, 53–71. [Google Scholar] [CrossRef]
- Khadka, B.B.; Bhattarai, J. A Case Study of Khaptad Tourism. Res. Nepal J. Dev. Stud. 2023, 6, 15–23. [Google Scholar] [CrossRef]
- Kunwar, R.M.; Duwadee, N.P. Ethnobotanical Notes on Flora of Khaptad National Park (KNP), Far-Western Nepal. Himal. J. Sci. 2003, 1, 25–30. [Google Scholar] [CrossRef]
- Sherpa, N.T. Cultural Ecosystem Services Provided by Mountain Landscapes—Understanding Recreational Preferences: A Case Study of Sagarmatha (Mt. Everest) National Park and Buffer Zone, Everest Region, Nepal, 2020. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2020. [Google Scholar]
- Mtui, D.T.; Lepczyk, C.A.; Chen, Q.; Miura, T.; Cox, L.J. Assessing Multi-Decadal Land-Cover—Land-Use Change in Two Wildlife Protected Areas in Tanzania Using Landsat Imagery. PLoS ONE 2017, 12, e0185468. [Google Scholar] [CrossRef]
- Acharya, C.N. Sustainable Tourism Perspective of Wildlife Conservation Areas: A Case Study in Nepal. J. Econ. Concerns 2023, 14, 62–82. [Google Scholar] [CrossRef]
- Huang, H.; Lan, Y.; Yang, A.; Zhang, Y.; Wen, S.; Deng, J. Deep Learning versus Object-Based Image Analysis (OBIA) in Weed Mapping of UAV Imagery. Int. J. Remote Sens. 2020, 41, 3446–3479. [Google Scholar] [CrossRef]
- Munappy, A.; Bosch, J.; Olsson, H.H.; Arpteg, A.; Brinne, B. Data Management Challenges for Deep Learning. In Proceedings of the 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Kallithea, Greece, 28–30 August 2019; pp. 140–147. [Google Scholar]
- Han, R.; Liu, P.; Wang, G.; Zhang, H.; Wu, X. Advantage of Combining OBIA and Classifier Ensemble Method for Very High-Resolution Satellite Imagery Classification. J. Sens. 2020, 2020, 8855509. [Google Scholar] [CrossRef]
- NTNC Publications \textbar The National Trust for Nature Conservation (NTNC) 2018.
- DNPWC Khaptad National Park \textbar Department of National Park and Wildlife Conservation 2019.
- DNPWC Khaptad National Park \textbar Department of National Park and Wildlife Conservation 2024.
- Statistics, C.B. of Census Nepal 2021.
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Chughtai, A.H.; Abbasi, H.; Karas, I.R. A Review on Change Detection Method and Accuracy Assessment for Land Use Land Cover. Remote Sens. Appl. Soc. Environ. 2021, 22, 100482. [Google Scholar] [CrossRef]
- Mwabumba, M.; Yadav, B.K.; Rwiza, M.J.; Larbi, I.; Twisa, S. Analysis of Land Use and Land-Cover Pattern to Monitor Dynamics of Ngorongoro World Heritage Site (Tanzania) Using Hybrid Cellular Automata-Markov Model. Curr. Res. Environ. Sustain. 2022, 4, 100126. [Google Scholar] [CrossRef]
- Girma, R.; Fürst, C.; Moges, A. Land Use Land Cover Change Modeling by Integrating Artificial Neural Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift. Environ. Chall. 2022, 6, 100419. [Google Scholar] [CrossRef]
- Langsdale, S.M.; Beall, A.; Carmichael, J.; Cohen, S.J.; Forster, C.B.; Neale, T. Exploring the Implications of Climate Change on Water Resources through Participatory Modeling: Case Study of the Okanagan Basin, British Columbia. J. Water Resour. Plan. Manag. 2009, 135, 373–381. [Google Scholar] [CrossRef]
- Naulleau, A.; Gary, C.; Prévot, L.; Berteloot, V.; Fabre, J.-C.; Crevoisier, D.; Gaudin, R.; Hossard, L. Participatory Modeling to Assess the Impacts of Climate Change in a Mediterranean Vineyard Watershed. Environ. Model. Softw. 2022, 150, 105342. [Google Scholar] [CrossRef]
- Williams, D.S. Enhancing Autonomy for Climate Change Adaptation Using Participatory Modeling. Weather Clim. Soc. 2020, 12, 667–678. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; US Geological Survey: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Karasiak, N. Lennepkade/Dzetsaka: Dzetsaka v3. 4.4 (Version v3. 4.4); Zenodo: Geneve, Switzerland, 2019. [Google Scholar]
- Avci, C.; Budak, M.; Yağmur, N.; Balçik, F. Comparison Between Random Forest and Support Vector Machine Algorithms for LULC Classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Amgoth, A.; Rani, H.P.; Jayakumar, K.V. Exploring LULC Changes in Pakhal Lake Area, Telangana, India Using QGIS MOLUSCE Plugin. Spat. Inf. Res. 2023, 31, 429–438. [Google Scholar] [CrossRef]
- Shalaby, A.; Tateishi, R. Remote Sensing and GIS for Mapping and Monitoring Land Cover and Land-Use Changes in the Northwestern Coastal Zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Statistics, N.T. Ministry of Culture, Tourism, and Civil Aviation, 2019.
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; US Geological Survey: Reston, VA, USA, 2014. [Google Scholar]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Fischer, P.; Jardani, A.; Lecoq, N. A Cellular Automata-based Deterministic Inversion Algorithm for the Characterization of Linear Structural Heterogeneities. Water Resour. Res. 2017, 53, 2016–2034. [Google Scholar] [CrossRef]
- Santé, I.; García, A.M.; Miranda, D.; Crecente, R. Cellular Automata Models for the Simulation of Real-World Urban Processes: A Review and Analysis. Landsc. Urban Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013; ISBN 0-203-77158-3. [Google Scholar]
- Avtar, R.; Rinamalo, A.V.; Umarhadi, D.A.; Gupta, A.; Khedher, K.M.; Yunus, A.P.; Singh, B.P.; Kumar, P.; Sahu, N.; Sakti, A.D. Land Use Change and Prediction for Valuating Carbon Sequestration in Viti Levu Island, Fiji. Land 2022, 11, 1274. [Google Scholar] [CrossRef]
- Hegglin, E.; Huggel, C. An Integrated Assessment of Vulnerability to Glacial Hazards: A Case Study in the Cordillera Blanca, Peru. Mt. Res. Dev. 2008, 28, 299–309. [Google Scholar] [CrossRef]
- Attarchi, S.; Gloaguen, R. Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest. Remote Sens. 2014, 6, 3624–3647. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J. Land Use and Land Cover Change Detection Using Satellite Remote Sensing Techniques in the Mountainous Three Gorges Area, China. Int. J. Remote Sens. 2010, 31, 1519–1542. [Google Scholar] [CrossRef]
- Balha, A.; Mallick, J.; Pandey, S.; Gupta, S.; Singh, C.K. A Comparative Analysis of Different Pixel and Object-Based Classification Algorithms Using Multi-Source High Spatial Resolution Satellite Data for LULC Mapping. Earth Sci. Inform. 2021, 14, 2231–2247. [Google Scholar] [CrossRef]
- Peiman, R. Pre-Classification and Post-Classification Change-Detection Techniques to Monitor Land-Cover and Land-Use Change Using Multi-Temporal Landsat Imagery: A Case Study on Pisa Province in Italy. Int. J. Remote Sens. 2011, 32, 4365–4381. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring Land Use and Land Cover Changes in the Mountainous Cities of Oman Using GIS and CA-Markov Modelling Techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine Learning in Modelling Land-Use and Land Cover-Change (LULCC): Current Status, Challenges and Prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Bajracharya, B.; Uddin, K.; Shrestha, B. Land Cover Mapping in the HKKH Region; Cases from Three Mountain Protected Areas; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2009. [Google Scholar]
- Bhatta, S.; Boustead, R.; Luger, K. The highest mountain in the shadow of climate change: Managing tourism and conservation in a World Heritage Site: Sagarmatha National Park, Nepal. In 50 Years World Heritage Convention: Shared Responsibility–Conflict & Reconciliation 2022 Oct 11; Springer International Publishing: Cham, Switzerlands, 2022; pp. 281–294. [Google Scholar]
- Bhattarai, B.R.; Wright, W.; Poudel, B.S.; Aryal, A.; Yadav, B.P.; Wagle, R. Shifting Paradigms for Nepal’s Protected Areas: History, Challenges and Relationships. J. Mt. Sci. 2017, 14, 964–979. [Google Scholar] [CrossRef]
- Crate, S.A.; Nuttall, M. (Eds.) Anthropology and Climate Change: From Transformations to Worldmaking, 3rd ed.; Routledge: London, UK, 2023; ISBN 978-1-00-324249-9. [Google Scholar]
- Chand, M.B.; Watanabe, T. Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018. Remote Sens. 2019, 11, 1058. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate Change Impact on Glacier and Snow Melt and Runoff in Tamakoshi Basin in the Hindu Kush Himalayan (HKH) Region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Leng, R.; Harrison, S.; Anderson, K. Himalayan Alpine Ecohydrology: An Urgent Scientific Concern in a Changing Climate. Ambio 2023, 52, 390–410. [Google Scholar] [CrossRef]
- Ghimire, N.P.; Jha, P.K. Assessment of the Surface Water Quality in High-Altitude Springs in the Sagarmatha (Everest) National Park, Nepal. Our Nat. 2024, 22, 1–9. [Google Scholar] [CrossRef]
- Badal, B.P. Soft Adventure and Spiritual Tourism: A Case Study of Khaptad National Park. Janabhawana Res. J. 2024, 3, 99–115. [Google Scholar] [CrossRef]
- Subedi, B.K. Prospects of Tourism in Nepalese Economy. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 376–384. [Google Scholar]
- Nepal, S. Tourism and Remote Mountain Settlements: Spatial and Temporal Development of Tourist Infrastructure in the Mt Everest Region, Nepal. Tour. Geogr. 2005, 7, 205–227. [Google Scholar] [CrossRef]
- Chetri, M.; Gurung, C.R. Vegetation Composition, Species Performance and Its Relationship Among Livestock and Wildlife in the Grassland of Upper Mustang, Nepal; Sichuan Publising Group, Sichuan Publication House of Science and Technology: Scihuan, China, 2004; pp. 235–244. [Google Scholar]
- Bhattarai, N.; Watanabe, T.; Avtar, R.; Karky, B.S.; Thapa, R.B. Harnessing REDD+ for Community Involvement and Equitable Benefit Distribution: Insights from Dhankuta District, Nepal. J. Green Econ. Low-Carbon Dev. 2023, 2, 58–71. [Google Scholar] [CrossRef]
- Ragettli, S.; Herberz, T.; Siegfried, T. An Unsupervised Classification Algorithm for Multi-Temporal Irrigated Area Mapping in Central Asia. Remote Sens. 2018, 10, 1823. [Google Scholar] [CrossRef]
- Soliva, R.; Kollmair, M.; Müller-Böker, U. Nature Conservation and Sustainable Development. In Translating Development: The Case of Nepal; Social Science Press: New Delhi, India, 2003; pp. 142–177. [Google Scholar] [CrossRef]
- Baral, N.; Acharya, D.; Rana, C. Study on Drivers of Deforestation and Degradation of Forests in High Mountain Regions of Nepal; REDD: Kathmandu, Nepal, 2012. [Google Scholar]
- Dixit, A.; Goswami, A.; Jain, S.; Das, P. Assessing Snow Cover Patterns in the Indus-Ganga-Brahmaputra River Basins of the Hindu Kush Himalayas Using Snow Persistence and Snow Line as Metrics. Environ. Chall. 2024, 14, 100834. [Google Scholar] [CrossRef]
- Shrestha, S.; Balayar, S. Exploring Tourism Destination: A Potential of Mountain Tourism in Sudurpaschim Province. J. Tour. Himal. Adventures 2023, 5, 91–106. [Google Scholar] [CrossRef]
- Font, X.; Tribe, J. (Eds.) Forest Tourism and Recreation: Case Studies in Environmental Management; Cabi Publishing: Wallingford, UK, 2000. [Google Scholar]
- Khanal, S.; Shrestha, M. Agro-Tourism: Prospects, Importance, Destinations and Challenges in Nepal. Arch. Agric. Environ. Sci. 2019, 4, 464–471. [Google Scholar] [CrossRef]
- Zhu, K.; Zhu, Y.; Zhao, Z.; Du, Y.; Wang, Y.; Guo, X.; Fu, J.; Gao, J. Analysis of Ecological Vulnerability and Driving Factors in the Context of Global Climate Change: A Case Study of Himalayan Transboundary Landscape. Research Square 2024, in press. [Google Scholar] [CrossRef]
- Sarwar, M.; Mahmood, S. Assessing the Impact of Climate Change on Glacial Lake Outburst Flood (GLOF) in Eastern Hindu Kush Region Using Integrated Geo-Statistical and Spatial Hydrological Approach. Prev. Treat. Nat. Disasters 2024, 3. [Google Scholar] [CrossRef]
- del Pozo, A.; Catenacci-Aguilera, G.; Acosta-Gallo, B. Consequences of Land Use Changes on Native Forest and Agricultural Areas in Central-Southern Chile during the Last Fifty Years. Land 2024, 13, 610. [Google Scholar] [CrossRef]
- Selawaty, D.; Lutfi, M.; Gai, A.M.; Patrissia, R.U. Sustainable Tourism: A Challenge for Nature-Based Tourism (NBT) Object. In Proceedings of the Third International Conference on Government Education Management and Tourism, Bandung, Indonesia, 19–20 January 2024; Volume 3. [Google Scholar]
- Biswas, S.N.; Kumar, P. Mountain Tourism and Ecological Impacts: Himalayan Region and Beyond: Himalayan Region and Beyond; IGI Global: New York, NY, USA, 2024. [Google Scholar]
- IUCN SAGARMATHA NATIONAL PARK—World Heritage Datasheet 2011. Available online: http://world-heritage-datasheets.unep-wcmc.org/datasheet/output/site/sagarmatha-national-park/ (accessed on 13 November 2024).
- Messerli, P. The Development of Tourism in the Swiss Alps: Economic, Social, and Environmental Effects Experience and Recommendations from the Swiss MAB Programme. Mt. Res. Dev. 1987, 7, 13–23. [Google Scholar] [CrossRef]
- Barros, A.; Monz, C.; Pickering, C. Is Tourism Damaging Ecosystems in the Andes? Current Knowledge and an Agenda for Future Research. AMBIO 2015, 44, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Huddart, D.; Stott, T. The Andes. In Adventure Tourism: Environmental Impacts and Management; Huddart, D., Stott, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 291–324. ISBN 978-3-030-18623-4. [Google Scholar]
- Biberos-Bendezú, K.; Vázquez-Rowe, I. Environmental Impacts of Introducing Cable Cars in the Andean Landscape: A Case Study for Kuelap, Peru. Sci. Total Environ. 2020, 718, 137323. [Google Scholar] [CrossRef]
- Maldonado-Oré, E.M.; Custodio, M. Visitor Environmental Impact on Protected Natural Areas: An Evaluation of the Huaytapallana Regional Conservation Area in Peru. J. Outdoor Recreat. Tour. 2020, 31, 100298. [Google Scholar] [CrossRef]
- Bhatta, K.D.; Chan, R.C. Ecotourism, Environmental Impacts and Sustainability in the Himalayan Settlements: Study of Sagarmatha (Mt. Everest) National Park, Nepal. Himal. J. Appl. Sci. Eng. 2023, 4, 16–32. [Google Scholar] [CrossRef]
- Byers, A. A. A Comparative Study of Tourism Impacts on Alpine Ecosystems in the Sagarmatha (Mt. Everest) National Park, Nepal and the Huascarán National Park, Peru. In Ecotourism and Environmental Sustainability; Routledge: London, UK, 2009; ISBN 978-1-315-57876-7. [Google Scholar]
- Rinzin, C.; Vermeulen, W.J.V.; Glasbergen, P. Ecotourism as a Mechanism for Sustainable Development: The Case of Bhutan. Environ. Sci. 2007, 4, 109–125. [Google Scholar] [CrossRef]
- Mukherji, A.; Sinisalo, A.; Nüsser, M.; Garrard, R.; Eriksson, M. Contributions of the Cryosphere to Mountain Communities in the Hindu Kush Himalaya: A Review. Reg. Environ. Change 2019, 19, 1311–1326. [Google Scholar] [CrossRef]
Year | Overall Accuracy | Kappa Coefficient |
---|---|---|
(a) SNP | ||
1989 | 82.12 | 0.794 |
2000 | 83.40 | 0.806 |
2010 | 83.47 | 0.806 |
2021 | 84.87 | 0.825 |
(b) KNP | ||
1991 | 85.52 | 0.767 |
1999 | 85.02 | 0.772 |
2010 | 84.92 | 0.773 |
2020 | 86.86 | 0.794 |
(a) SNP | Elevation | Slope | Distance to Road | Distance to River |
Elevation | 0.124 | 0.422 | 0.679 | |
Slope | 0.102 | 0.071 | ||
Distance to road | 0.355 | |||
Distance to river | ||||
(b) KNP | Elevation | Slope | Distance to Road | Distance to River |
Elevation | 0.031 | 0.566 | 0.457 | |
Slope | 0.056 | −0.101 | ||
Distance to road | 0.431 | |||
Distance to river |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A. Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal. Sustainability 2024, 16, 10670. https://doi.org/10.3390/su162310670
Gupta A. Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal. Sustainability. 2024; 16(23):10670. https://doi.org/10.3390/su162310670
Chicago/Turabian StyleGupta, Ankita. 2024. "Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal" Sustainability 16, no. 23: 10670. https://doi.org/10.3390/su162310670
APA StyleGupta, A. (2024). Analyzing Land Use/Land Cover Dynamics in Mountain Tourism Areas: A Case Study of the Core and Buffer Zones of Sagarmatha and Khaptad National Parks, Nepal. Sustainability, 16(23), 10670. https://doi.org/10.3390/su162310670