Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia
<p>Map of the study area.</p> "> Figure 2
<p>The LULC of the Nashe watershed in 1990, 2005, and 2019.</p> "> Figure 3
<p>Gain and loss area of the land use land cover class in 1990–2005 and 2005–2019.</p> "> Figure 4
<p>Net change and net persistence area of LULC class of the study periods.</p> "> Figure 5
<p>The predicted 2035 and 2050 LULC of the watershed.</p> "> Figure 6
<p>Land use land cover change in 1990–2050.</p> "> Figure 7
<p>The gain, loss, and net change of the projected LULC area (2019, 2035, and 2050).</p> "> Figure 8
<p>Historical and predicted land use land cover change area coverage.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Types and Sources
2.3. Land Use and Land Cover Change Assessment
2.3.1. Image Classification
2.3.2. Accuracy Assessment
2.3.3. Land Use Land Cover Change Drivers
2.4. LULC Change Prediction and Validation
2.4.1. LULC Prediction
2.4.2. Model Validation
2.5. Analysis of Land Use Land Cover Change
3. Results and Discussions
3.1. Accuracy Assessment of the Classified Images
3.2. LULC Change Analysis
3.3. Driver Variables of LULC Change
3.4. Transition Probability Matrix (TPM)
3.5. Validation of the Model
3.6. Future LULC Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Watershed Management in Action: Lessons Learned from FAO Field Projects; Food & Agriculture Organization: Rome, Italy, 2017; pp. 5–6. [Google Scholar]
- Mmbaga, N.E.; Munishi, L.K.; Treydte, A.C. How dynamics and drivers of land use/land cover change impact elephant conservation and agricultural livelihood development in Rombo, Tanzania. J. Land Use Sci. 2017, 12, 168–181. [Google Scholar] [CrossRef]
- Pérez-Vega, A.; Mas, J.F.; Ligmann-Zielinska, A. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ. Model Softw. 2012, 29, 11–23. [Google Scholar] [CrossRef]
- Kolb, M.; Mas, J.F.; Galicia, L. Evaluating drivers of land-use change and transition potential models in a complex landscape in Southern Mexico. Int. J. Geogr. Inf. Sci. 2013, 27, 1804–1827. [Google Scholar] [CrossRef]
- FAO. Climate Change and Food Security: Risks and Responses; Food & Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Manakos, I.; Braun, M. Land Use and Land Cover Mapping in Europe; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Lee, J.E.; Lintner, B.R.; Boyce, C.K.; Lawrence, P.J. Land use change exacerbates tropical South American drought by sea surface temperature variability Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 2011, 38, 19. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wubie, M.A.; Assen, M.; Nicolau, M.D. Patterns, causes and consequences of land use / cover dynamics in the Gumara watershed of lake Tana basin, Northwestern Ethiopia. Environ. Syst. Res. 2016, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 1–15. [Google Scholar] [CrossRef]
- Wnek, A.; Kudas, D.; Stych, P. National level land-use changes in functional urban areas in Poland, Slovakia, and Czechia. Land 2021, 10, 39. [Google Scholar] [CrossRef]
- Riad, P.; Graefe, S.; Hussein, H.; Buerkert, A. Landscape and urban planning landscape transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landsc. Urban Plan. 2020, 197, 103766. [Google Scholar] [CrossRef]
- Tarasovičová, Z.; Saksa, M.; Blažík, T.; Falťan, V. Changes in agricultural land use in the context of ongoing transformational processes in Slovakia. Agriculture (Pol’nohospodárstvo) 2013, 59, 49–64. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover and land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- Tiwari, A.; Suresh, M.; Rai, A.K. Ecological planning for sustainable development with a green technology : GIS. Int. J. Adv. Res. Comput. Eng. Technol. 2014, 3, 636–641. [Google Scholar]
- Behera, M.D.; Borate, S.N.; Panda, S.N.; Behera, P.R.; Roy, P.S. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model—A geo-information based approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Yirsaw, E.; Wu, W.; Shi, X.; Temesgen, H.; Bekele, B. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustainability 2017, 9, 1204. [Google Scholar] [CrossRef] [Green Version]
- Sohl, T.L.; Sleeter, B.M. Land-use and land-cover scenarios and spatial modeling at the regional scale. US Geol. Surv. 2012, 2012–3091, 4. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Wang, X. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Paegelow, M.; Camacho Olmedo, M.T.; Mas, J.F.; Houet, T.; Pontius, R.G. Land change modelling: Moving beyond projections. Int. J. Geogr. Inf. Sci. 2013, 27, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arab. J. Geosci. 2016, 9, 1–18. [Google Scholar] [CrossRef]
- Zadbagher, E.; Becek, K.; Berberoglu, S. Modeling land use/land cover change using remote sensing and geographic information systems: Case study of the Seyhan Basin, Turkey. Environ. Monit. Assess. 2018, 190, 1–15. [Google Scholar] [CrossRef]
- Noszczyk, T. A review of approaches to land use changes modeling. Hum. Ecol. Risk Assess. 2018, 25, 1377–1405. [Google Scholar] [CrossRef]
- Memarian, H.; Kumar Balasundram, S.; Bin Talib, J.; Teh Boon Sung, C.; Mohd Sood, A.; Abbaspour, K. Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J. Geogr. Inf. Syst. 2012, 4, 542–554. [Google Scholar] [CrossRef] [Green Version]
- Regmi, R.R.; Saha, S.K.; Balla, M.K. Geospatial analysis of land use land cover change predictive modeling at Phewa Lake watershed of Nepal. Int. J. Curr. Eng. Technol. 2014, 4, 2617–2627. [Google Scholar]
- Wu, Q.; Li, H.-Q.; Wang, R.-S.; Paulussen, J.; He, Y.; Wang, M.; Wang, B.-H.; Wang, Z. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc. Urban Plan. 2006, 78, 322–333. [Google Scholar] [CrossRef]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Eastman, J.R. IDRISI Selva Tutorial; 17th Version; IDRISI Production: Worcester, MA, USA, 2012; pp. 30–45, 51–63. [Google Scholar]
- Shooshtari, S.J.; Gholamalifard, M. Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sens. Appl. Soc. Environ. 2015, 1, 1–19. [Google Scholar] [CrossRef]
- Tong, S.T.Y.; Sun, Y.; Yang, Y.J. Generating a future land-use change scenario : A case study of the Little Miami River Watershed, Ohio. J. Environ. Inform. 2012, 19, 108–119. [Google Scholar]
- Li, S.H.; Jin, B.X.; Wei, X.Y.; Jiang, Y.Y.; Wang, J.L. Using CA-Markov model to model the spatiotemporal change of land use/cover in fuxian lake for decision support. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Adepoju, M.O.; Millington, A.C.; Tansey, K.T. Land use/land cover change detection in metropolitan Lagos (Nigeria): 1984–2002. In Prospecting for Geospatial Information Integration, Proceedings of the ASPRS Annual Conference, Reno, NV, USA, 1–5 May 2006; ASPRS: Bethesda, MD, USA, 2006. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2014 Revision, United Nations Department of Economic and Social Affairs/Population Division; United Nations: New York, NY, USA, 2014; Available online: http://esa.un.org/unpd/wup/Highlights/WUP2014-Highlights.pdf (accessed on 2 January 2015).
- Triantakonstantis, D.; Stathakis, D. Examining urban sprawl in Europe using spatial metrics. Geocarto Int. 2015, 30, 1–21. [Google Scholar] [CrossRef]
- Ebrahim, E.H.; Mohamed, A. Land use/cover dynamics and its drivers in Gelda catchment, Lake Tana watershed, Ethiopia. Environ. Syst. Res. 2017, 6, 1–13. [Google Scholar]
- Abate, S. Journal of Sustainable Development in Africa. J. Sustain. Dev. Africa. 2011, 13, 87–107. [Google Scholar]
- Yalew, S.G.; Mul, M.L.; van Griensven, A.; Teferi, E.; Priess, J.; Schweitzer, C.; van Der Zaag, P. Land-use change modelling in the upper blue nile basin. Environments 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E. Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Al-sharif, A.A.A.; Pradhan, B. Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab. J. Geosci. 2014, 7, 4291–4301. [Google Scholar] [CrossRef]
- Samal, D.R.; Gedam, S.S. Optimal ground control points for geometric correction using genetic algorithm with global accuracy. Eur. J. Remote Sens. 2015, 48, 85–99. [Google Scholar] [CrossRef]
- Temesgen, G.; Amare, B.; Abraham, M. Evaluations of land use/land cover changes and land degradation in Dera District, Ethiopia: GIS and Remote Sensing Based Analysis. Int. J. Sci. Res. Environ. Sci. 2014, 2, 199–208. [Google Scholar]
- Lucia, M.-B.; Lyons, M.B.; Phinn, S.R.; Roelfsema, C.M. Trends in remote sensing accuracy assessment approaches in the context of natural resources. Remote Sens. 2019, 11, 1–16. [Google Scholar]
- Jenness, J.; Wynne, J.J. Cohen’s Kappa and Classification Table Metrics 2.0: An ArcView 3. x Extension for Accuracy Assessment of Spatially EXPLICIT Models. 2005. Available online: http://www.treesearch.fs.fed.us/pubs/25707 (accessed on 2 January 2015).
- Megersa, K.L.; Tamene, A.D.; Sifan, A.K. Impacts of land use land cover change on sediment yield and stream flow. Int. J. Sci. Technol. 2017, 6, 763–781. [Google Scholar]
- Khoi, D.D. Spatial Modeling of Deforestation and Land Suitability Assessment in the Tam Dao National Park Region, Vietnam Spatial Modeling of Deforestation and Land Suitability Assessment in the Tam Dao National Park Region, Vietnam. Ph.D. Thesis, University of Tsukuba, Tsukuba, Japan, January 2011. [Google Scholar]
- Mas, J.F.; Pérez-Vega, A.; Clarke, K.C. Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecol. Complex. 2012, 11, 38–45. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System—Manual. Available online: www.clarklabs.org (accessed on 2 January 2016).
- Eastman, J.R. IDRISI Terrset Manual; IDRISI Production: Worcester, MA, USA, 2016. [Google Scholar]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using cellular automata and artificial neural network: The case of Chunati wildlife sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Hasan, S.; Shi, W.; Zhu, X.; Abbas, S.; Khan, H.U.A. Future simulation of land use changes in rapidly urbanizing South China based on land change modeler and remote sensing data. Sustainability 2020, 12, 4350. [Google Scholar] [CrossRef]
- Clark, L. Clark Labs. Available online: http://www.clarklabs.org (accessed on 2 January 2015).
- Ayele, G.; Hayicho, H.; Alemu, M. Land use land cover change detection and deforestation modeling: In Delomena district of Bale Zone, Ethiopia. J. Environ. Prot. 2019, 10, 532–561. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Jeong, G.; Park, S.; Tenhunen, J. Predicted land use change in the Soyang River Basin, South Korea. In Proceedings of the TERRECO Science Conference, Garmisch-Partenkirchen, Germany, 2–7 October 2011; pp. 17–24. [Google Scholar]
- Fathizad, H.; Rostami, N.; Faramarzi, M. Detection and prediction of land cover changes using Markov chain model in semi-arid rangeland in western Iran. Environ. Monit. Assess. 2015, 187, 1–12. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zheng, X.Q.; Zang, X.B. Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environ. Sci. 2012, 13, 1238–1245. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, C.; Allen, J.M.; Li, W.; Boyer, M.A.; Segerson, K.; Silander, J.A. Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land 2016, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Mosammam, H.M.; Nia, J.T.; Khani, H.; Teymouri, A.; Kazemi, M. Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egypt J. Remote Sens. Sp. Sci. 2016, 20, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Nadoushan, M.A.; Soffianian, A.; Alebrahim, A. Predicting urban expansion in arak metropolitan area using two land change models. World Appl. Sci. J. 2012, 18, 1124–1132. [Google Scholar]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar]
- Sitthi, A.; Nagai, M.; Dailey, M.; Ninsawat, S. Exploring land use and land cover of geotagged social-sensing images using Naive Bayes Classifier. Sustainability 2016, 8, 921. [Google Scholar] [CrossRef] [Green Version]
- Araya, Y.H.; Cabral, P. Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Keshtkar, H.; Haack, B. Land use/land cover dynamics and modeling of urban land expansion by the land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. Int. J. Geo Inf. 2018, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.G.; Bewket, W.; Gärdenäs, A.I.; Bishop, K. Forest cover change over four decades in the Blue Nile Basin, Ethiopia: Comparison of three watersheds. Reg. Environ. Chang. 2014, 14, 253–266. [Google Scholar]
- Khoi, D.D.; Murayama, Y. Forecasting areas vulnerable to forest conversion in the tam Dao National Park region, Vietnam. Remote Sens. 2010, 2, 1249–1272. [Google Scholar] [CrossRef] [Green Version]
- Maguire, D.J.; Batty, M.; Goodchild, M.F. GIS, Spatial Analysis, and Modeling, 1st ed.; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Pontius, G.R.; Malanson, J. Comparison of the structure and accuracy of two land change models. Int. J. Geogr. Inf. Sci. 2005, 19, 243–265. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- Hepinstall, J.A.; Alberti, M.; Marzluff, J.M. Predicting land cover change and avian community responses in rapidly urbanizing environments. Landsc. Ecol. 2008, 23, 1257–1276. [Google Scholar] [CrossRef]
- Cheruto, M.; Kauti, M.; Kisangau, P.; Kariuki, P. Assessment of land use and land cover change using GIS and remote sensing. J. Remote Sens. GIS 2016, 5, 1–6. Available online: https://www.omicsonline.org/open-access/assessment-of-land-use-and-land-cover-change-using-gis-and-remotesensing-techniques-a-case-study-of-makueni-county-kenya-2469-4134-1000175.pdf (accessed on 2 January 2017). [CrossRef]
- Kosal, C.; Tunnicliffe, J.; Asaad, S.; Ota, T. Land use change detection and prediction in upper Siem Reap River, Cambodia. Hydrology 2019, 6, 64. [Google Scholar]
- Lennert, J.; Farkas, J.Z.; Kovács, A.D.; Molnár, A.; Módos, R.; Baka, D.; Kovács, Z. Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability 2020, 12, 3331. [Google Scholar] [CrossRef] [Green Version]
- Oromia Forest and Wildlife Enterprise (OFWE), Farm Africa and SOS Sahel Ethiopia. Bale Mountains Eco-Region Reduction of Emission from Deforestation and Forest Degradation (REDD+) Project-Ethiopia. Available online: https://s3.amazonaws.com/CCBA/Projects/Bale_Mountains_Eco-region_Reductions_of_Emissions_from_Deforestation_and_Forest_Degradation_Project/Bale+Mtns+REDD%2B+VCS%2BCCB+Project+Description+version+3.0.pdf (accessed on 2 January 2015).
Satellite Sensor | Path/Row | Acquisition Date | User Bands | Spatial Resolution | Year |
---|---|---|---|---|---|
Landsat 5 TM | 169/053 | January 1990 | 1–5, 7 | 30 m | 1990 |
170/053 | |||||
Landsat 7 ETM+ | 169/053 | January 2005 | 1–5, 7, and 8 | 30 m, 15 m | 2005 |
170/053 | |||||
Landsat 8 OIL | 169/053 | January 2019 | 1–7, 9, and 8 | 30 m, 15 m | 2019 |
170/053 |
LULC Types | Description |
---|---|
Agricultural Land | Includes areas used for perennial and annual crops, irrigated areas, scattered rural settlements, commercial farms (sesame cultivations and sugarcane plantations). |
Forest Land | Areas covered with dense trees (deciduous forests, evergreen forests, mixed forests). |
Range Land | Includes areas covered with small trees, less dense forests, bushes, and shrubs. These areas are less dense than forests. |
Grass Land | Areas covered by grasses are usually used for grazing and those remain for some months in a year. |
Urban Area | Areas of commercial areas, urban and rural settlements, industrial areas. |
Water Body | Areas covered by rivers, streams, and reservoirs |
No. | Values | Strength of Agreement |
---|---|---|
1 | <0 | Poor |
2 | 0.01–0.40 | Slight |
3 | 0.41–0.60 | Moderate |
4 | 0.61–0.80 | Substantial |
5 | 0.81–1.00 | Almost Perfect |
LULC Types | Agricultural Land | Forest Land | Range Land | Grass Land | Urban Land | Water Body | UA (%) | |
1990 | Agricultural Land | 86 | 0 | 3 | 5 | 0 | 1 | 90.53 |
Forest Land | 0 | 78 | 6 | 0 | 1 | 0 | 91.76 | |
Range Land | 1 | 4 | 67 | 3 | 0 | 0 | 89.33 | |
Grass Land | 4 | 3 | 0 | 56 | 5 | 2 | 80.00 | |
Urban Land | 0 | 4 | 4 | 2 | 50 | 0 | 83.33 | |
Water Body | 0 | 0 | 0 | 4 | 0 | 51 | 92.73 | |
PA (%) | 94.51 | 87.64 | 83.75 | 80.00 | 89.29 | 94.44 | ||
K = 85.71%; OA = 0.88 | ||||||||
LULC Types | Agricultural Land | Forest Land | Range Land | Grass Land | Urban Land | Water Body | UA (%) | |
2005 | Agricultural Land | 89 | 2 | 4 | 4 | 1 | 0 | 89.00 |
Forest Land | 0 | 81 | 4 | 3 | 2 | 0 | 90.00 | |
Range Land | 3 | 4 | 72 | 0 | 1 | 0 | 90.00 | |
Grass Land | 5 | 0 | 1 | 54 | 1 | 4 | 83.08 | |
Urban Land | 0 | 1 | 0 | 2 | 52 | 0 | 94.55 | |
Water Body | 1 | 0 | 0 | 2 | 0 | 47 | 94.00 | |
PA (%) | 90.82 | 92.05 | 88.89 | 83.08 | 91.23 | 92.16 | ||
K = 87.59%; OA = 0.90 | ||||||||
LULC types | Agricultural Land | Forest Land | Range Land | Grass Land | Urban Land | Water Body | UA (%) | |
2019 | Agricultural Land | 100 | 0 | 1 | 3 | 1 | 0 | 95.24 |
Forest Land | 2 | 84 | 4 | 0 | 0 | 0 | 93.33 | |
Range Land | 1 | 4 | 63 | 2 | 0 | 0 | 90.00 | |
Grass Land | 2 | 1 | 4 | 57 | 0 | 1 | 87.69 | |
Urban Land | 0 | 0 | 1 | 2 | 57 | 0 | 95.00 | |
Water Body | 0 | 0 | 0 | 2 | 0 | 48 | 96.00 | |
PA (%) | 95.24 | 94.38 | 86.30 | 86.36 | 98.28 | 97.96 | ||
K = 91.43%; OA = 0.93 |
LULC Types | Area | Change | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 2005 | 2019 | 1990–2005 | 2005–2019 | 1990–2019 | ||||||||||
Ha | % | Ha | % | Ha | % | Ha | % | Rate of Change (ha/Year) | Ha | % | Rate of Change (ha/Year) | Ha | % | Rate of Change (ha/Year) | |
Agricultural Land | 41,587.2 | 44.0 | 47,658.5 | 50.4 | 57,869.0 | 61.2 | 6071.3 | 14.6 | 404.8 | 10,210.5 | 21.4 | 680.7 | 16,281.7 | 39.2 | 561.4 |
Forest Land | 31,033.9 | 32.8 | 26,579.3 | 28.1 | 16,019.1 | 16.9 | −4454.6 | −14.4 | −297.0 | −10,560.2 | −39.7 | −704.0 | −15,014.8 | −48.4 | −517.8 |
Grass Land | 9443.4 | 10.0 | 7964.7 | 8.4 | 6966.0 | 7.4 | −1478.8 | −15.7 | −98.6 | −998.6 | −12.5 | −66.6 | −2477.4 | −26.2 | −85.4 |
Range Land | 10,637.8 | 11.3 | 9835.5 | 10.4 | 8555.0 | 9.1 | −802.4 | −7.5 | −53.5 | −1280.5 | −13.0 | −85.4 | −2082.9 | −19.6 | −71.8 |
Urban Land | 471.1 | 0.5 | 882.6 | 0.9 | 1084.0 | 1.2 | 411.5 | 87.3 | 27.4 | 201.4 | 22.8 | 13.4 | 612.9 | 130.1 | 21.1 |
Water Body | 1404.6 | 1.5 | 1657.6 | 1.8 | 4085.0 | 4.3 | 253.0 | 18.0 | 16.9 | 2427.4 | 146.4 | 161.8 | 2680.4 | 190.8 | 92.4 |
Total | 94,578 | 100 | 94,578 | 100 | 94,578 | 100 |
Driver Variables | Cramer’s V | p-Value |
---|---|---|
Elevation | 0.2967 | 0.0000 |
Slope | 0.0094 | 0.0000 |
Distance_from_Urban | 0.1547 | 0.0000 |
Distance_from_stream | 0.2158 | 0.0000 |
Distance_from_road | 0.1391 | 0.0000 |
Evidence Likelihood | 0.4472 | 0.0000 |
LULC Types | 2005 | |||||||
Agricultural Land | Forest Land | Grass Land | Range Land | Urban Land | Water Body | Total | ||
1990 | Agricultural Land | 39,662.13 | 302.16 | 179.91 | 1121.71 | 321.25 | 0.06 | 41,587.21 |
Forest Land | 5214.82 | 18,856.81 | 292.80 | 6429.98 | 59.35 | 180.12 | 31,033.88 | |
Grass Land | 2001.18 | 617.60 | 6419.75 | 372.33 | 32.42 | 0.12 | 9443.40 | |
Range Land | 778.37 | 6783.15 | 1072.00 | 1911.17 | 0.74 | 92.39 | 10,637.83 | |
Urban Land | 1.98 | 0.13 | 0.18 | 0.00 | 468.79 | 0.01 | 471.10 | |
Water Body | 0.01 | 19.44 | 0.00 | 0.28 | 0.00 | 1384.91 | 1404.64 | |
Total | 47,658.49 | 26,579.30 | 7964.65 | 9835.47 | 882.55 | 1657.60 | 94,578.05 | |
LULC Types | 2019 | |||||||
Agricultural Land | Forest Land | Grass Land | Range Land | Urban Land | Water Body | Total | ||
2005 | Agricultural Land | 35,763.83 | 4299.68 | 1181.79 | 4196.23 | 349.90 | 1867.06 | 47,658.48 |
Forest Land | 12,051.96 | 10,869.35 | 1360.03 | 1708.26 | 167.12 | 422.57 | 26,579.30 | |
Grass Land | 4673.21 | 913.15 | 802.00 | 1317.94 | 20.25 | 238.11 | 7964.65 | |
Range Land | 5021.16 | 3101.81 | 212.67 | 1314.36 | 51.83 | 133.64 | 9835.47 | |
Urban Land | 337.82 | 14.09 | 9.28 | 15.25 | 494.75 | 11.37 | 882.55 | |
Water Body | 20.97 | 221.04 | 0.26 | 2.92 | 0.13 | 1412.28 | 1657.60 | |
Total | 57,868.95 | 16,019.13 | 6966.01 | 8554.95 | 1083.98 | 4085.03 | 94,578.05 |
LULC Category | Projected | Actual | ||
---|---|---|---|---|
Area (Ha) | Area (%) | Area (Ha) | Area (%) | |
Agricultural Land | 54,161.90 | 57.27 | 57,868.95 | 61.19 |
Forest Land | 20,384.75 | 21.55 | 16,019.13 | 16.94 |
Range Land | 9388.67 | 9.93 | 6966.01 | 7.37 |
Grass Land | 8288.78 | 8.76 | 8554.95 | 9.05 |
Urban Land | 608.90 | 0.64 | 1083.98 | 1.15 |
Water Body | 1745.06 | 1.85 | 4085.03 | 4.32 |
Total | 94,578.05 | 100.00 | 94,578.05 | 100.00 |
Index. | Value |
---|---|
Kno | 0.9026 |
Klocation | 0.9213 |
KlocationStrata | 0.8836 |
Kstandard | 0.8743 |
Agreement/Disagreement | Value | Value (%) |
---|---|---|
Agreement Chance | 0.1629 | 16.29 |
Agreement Quantity | 0.3335 | 33.35 |
Agreement GridCell | 0.4254 | 42.54 |
Disagreement GridCell | 0.0269 | 2.69 |
Disagreement Quantity | 0.0513 | 5.13 |
LULC Types | Area | Change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2035 | 2050 | 2019–2035 | 2035–2050 | 2019–2050 | |||||||
Ha | % | Ha | % | Ha | % | Ha | % | Ha | % | Ha | % | |
Agricultural Land | 57,869.0 | 61.2 | 69,021.2 | 73.0 | 69,264.4 | 73.2 | 11,152.3 | 19.3 | 243.2 | 0.4 | 11,395.5 | 20.0 |
Forest Land | 16,019.1 | 16.9 | 11,759.0 | 12.4 | 7636.1 | 8.1 | −4260.1 | −26.6 | −4123.0 | −35.1 | −8383.1 | −52.3 |
Grass Land | 6966.0 | 7.4 | 2336.8 | 2.5 | 2392.7 | 2.5 | −4629.2 | −66.5 | 55.9 | 2.4 | −4573.4 | −65.7 |
Range Land | 8555.0 | 9.1 | 4929.3 | 5.2 | 6749.8 | 7.1 | −3625.7 | −42.4 | 1820.5 | 36.9 | −1805.2 | −21.1 |
Urban Land | 1084.0 | 1.2 | 1893.5 | 2.0 | 3612.9 | 3.8 | 809.6 | 74.7 | 1719.3 | 90.8 | 2528.9 | 233.3 |
Water Body | 4085.0 | 4.3 | 4638.2 | 4.9 | 4922.3 | 5.2 | 553.2 | 13.5 | 284.1 | 6.1 | 837.3 | 20.5 |
Total | 94,578 | 100 | 94,578 | 100 | 94,578 | 100 |
LULC Types | 2035 | |||||||
Agricultural Land | Forest Land | Grass Land | Range Land | Urban Land | Water Body | Total | ||
2019 | Agricultural Land | 44,533.17 | 6988.39 | 77.18 | 3731.99 | 385.73 | 2152.50 | 57,868.95 |
Forest Land | 11,991.32 | 2864.52 | 508.76 | 337.33 | 122.17 | 195.03 | 16,019.13 | |
Grass Land | 1897.14 | 650.99 | 3593.18 | 648.95 | 26.04 | 149.71 | 6966.01 | |
Range Land | 3745.42 | 4286.30 | 60.93 | 371.37 | 13.30 | 77.64 | 8554.95 | |
Urban Land | 319.97 | 27.64 | 2.31 | 21.40 | 702.63 | 10.04 | 1083.98 | |
Water Body | 86.07 | 166.48 | 0.25 | 0.11 | 0.00 | 3832.13 | 4085.03 | |
Total | 69,021.20 | 11,759.00 | 2336.80 | 4929.30 | 1893.53 | 4638.21 | 94,578.05 | |
LULC Types | 2050 | |||||||
Agricultural Land | Forest Land | Grass Land | Range Land | Urban Land | Water Body | Total | ||
2035 | Agricultural Land | 60,912.11 | 4365.93 | 27.74 | 515.43 | 3200.00 | 0.00 | 69,021.20 |
Forest Land | 8798.27 | 2959.71 | 0.00 | 1.03 | 0.00 | 0.00 | 11,759.00 | |
Grass Land | 0.57 | 1.07 | 2335.16 | 0.00 | 0.00 | 0.00 | 2336.80 | |
Range Land | 245.57 | 309.40 | 0.00 | 3774.33 | 0.00 | 600.00 | 4929.30 | |
Urban Land | 1200.00 | 0.00 | 0.00 | 0.00 | 693.53 | 0.00 | 1893.53 | |
Water Body | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 4638.21 | 4638.21 | |
Total | 69,264.44 | 7636.05 | 2392.65 | 6749.77 | 3612.85 | 4922.29 | 94,578.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. https://doi.org/10.3390/su13073740
Leta MK, Demissie TA, Tränckner J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability. 2021; 13(7):3740. https://doi.org/10.3390/su13073740
Chicago/Turabian StyleLeta, Megersa Kebede, Tamene Adugna Demissie, and Jens Tränckner. 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia" Sustainability 13, no. 7: 3740. https://doi.org/10.3390/su13073740
APA StyleLeta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740