Sustainable Removal of Phenol Dye-Containing Wastewater by Composite Incorporating ZnFe2O4/Nanocellulose Photocatalysts
<p>XRD patterns of NC, ZFO, and hybrid nanocomposites.</p> "> Figure 2
<p>FT-IR spectra of NC, ZFO, and ZFO/NC nanocomposites.</p> "> Figure 3
<p>(<b>a</b>) UV–visible spectra and (<b>b</b>) Tauc plots for the band gap of NC, ZFO, and ZFO/NC nanocomposites.</p> "> Figure 4
<p>XPS survey spectra of ZFO and ZFO/NC: (<b>a</b>) Fe 2p, (<b>b</b>) Zn 2p, (<b>c</b>) O 1s, (<b>d</b>) C 1s.</p> "> Figure 5
<p>Characterization of synthesized NC and nanocomposites. (<b>a</b>,<b>b</b>) denote TEM images for NC and ZFO/NC, respectively. (<b>c</b>,<b>d</b>) denote SEM images for NC and ZFO/NC, respectively.</p> "> Figure 6
<p>Elemental compositions of (<b>a</b>) ZFO and NC and (<b>b</b>) hybrid nanocomposites; (<b>c</b>) EDS mapping results for ZFO.</p> "> Figure 7
<p>(<b>a</b>) Degradation curves of phenol by NC, ZFO, and xZFO/NC (x = 0.1, 0.3, 0.5, and 0.7) in the absence of a magnetic field; (<b>b</b>) degradation curves of phenol by NC, ZFO, and xZFO/NC under magnetic field conditions; (<b>c</b>) comparison of the degradation efficiency of xZFO/NC in the absence of a magnetic field and in the presence of a magnetic field; (<b>d</b>) the percentage increase in the photodegradation rate of xZFO/NC after the addition of a magnetic field.</p> "> Figure 8
<p>(<b>a</b>) UV–visible absorption spectra of phenol and phenol under UV–vis; (<b>b</b>) absorption spectra of the degradation of phenol by 0.5ZFO/NC under the condition of a magnetic field as a function of time.</p> "> Figure 9
<p>Cyclic experiments on photocatalytic degradation of phenol by 0.5ZFO/NC.</p> "> Figure 10
<p>0.5ZFO/NC in the absence of a magnetic field and in the presence of a magnetic field (MF = magnetic field; NMF = no magnetic field): (<b>a</b>) photocurrent response density; (<b>b</b>) electrochemical impedance spectroscopy (CPE = Constant Phase Angle Element).</p> "> Figure 11
<p>Schematic of the mechanism of visible-light photocatalytic phenol degradation by NC, ZFO, and xZFO/NC.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of ZFO/NC Nanocomposite
2.2.2. Instrumentation and Characterization
2.2.3. Photodegradation Measurements
3. Results and Discussion
3.1. XRD
3.2. FT-IR
3.3. UV–Vis
3.4. XPS
3.5. TEM and SEM
3.6. Photocatalytic Properties
3.7. Photogenerated Carrier Dynamics Analysis
3.8. Photocatalytic Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, X.; Liu, J.; Guo, H.; Li, H.; Liu, E.; Zhao, Y.; Ji, Y.; Fan, J. Preparation of a recyclable and high-performance photocatalyst AgInS2/CN/PAN for RhB and phenol degradation. J. Environ. Chem. Eng. 2023, 11, 109987. [Google Scholar] [CrossRef]
- Zheng, R.; Yang, D.; Chen, Y.; Bian, Z.; Li, H. Fe2O3/TiO2/reduced graphene oxide-driven recycled visible-photocatalytic Fenton reactions to mineralize organic pollutants in a wide pH range. J. Environ. Sci. 2023, 134, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Tamaura, Y.; Kaneko, H. Oxygen-releasing step of ZnFe2O4/(ZnO+Fe3O4)-system in air using concentrated solar energy for solar hydrogen production. Sol. Energy 2005, 78, 616–622. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Wang, X.-B.; Xu, Q.-K.; Chakir, S.; Xu, Y.-F.; Xu, B.; Hu, Y.-H. Micro-/nanostructured ZnFe2O4 hollow sphere/GO composite for structurally enhanced photocatalysis performance. Rare Met. 2023, 42, 813–821. [Google Scholar] [CrossRef]
- Zaman, F.U.; Kumar, A.; Yasin, G.; Boakye, F.O.; Muhammad, F.; Iqbal, S.; Alotaibi, K.M.; Hou, L.; Yuan, C. Enhanced photocatalytic degradation of organic dyes by carbon quantum dots-ZnFe2O4 composites. J. Alloys Compd. 2024, 983, 173860. [Google Scholar] [CrossRef]
- Lv, H.; Ma, L.; Zeng, P.; Kea, D.; Peng, T. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J. Mater. Chem. 2010, 20, 3665–3672. [Google Scholar] [CrossRef]
- Su, L.; Feng, J.; Zhou, X.; Ren, C.; Li, H.; Chen, X. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal. Chem. 2012, 84, 5753–5758. [Google Scholar] [CrossRef]
- Su, M.; He, C.; Sharma, V.K.; Asi, M.A.; Xia, D.; Li, X.-Z.; Deng, H.; Xiong, Y. Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light. J. Hazard. Mater. 2012, 211–212, 95–103. [Google Scholar] [CrossRef]
- Hankare, P.P.; Patil, R.P.; Jadhav, A.V.; Garadkar, K.M.; Sasikala, R. Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite. Appl. Catal. B 2011, 107, 333–339. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Kuzminova, A.; Cherian, R.M.; Joshy, K.S.; Pasquini, D.; John, M.J.; Hato, M.J.; Thomas, S.; Penkova, A. Edible Carrageenan Films Reinforced with Starch and Nanocellulose: Development and Characterization. Sustainability 2023, 15, 15817. [Google Scholar] [CrossRef]
- Che Su, N.; Basirun, A.A.; Hameed Sultan, N.S.; Kanakaraju, D.; Wilfred, C.D. Modified Nanocellulose-Based Adsorbent from Sago Waste for Diclofenac Removal. Sustainability 2023, 15, 5650. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Pang, Y.L.; Mah, S.K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J. Nanotechnol. 2018, 9, 2479–2498. [Google Scholar] [CrossRef] [PubMed]
- Jamal, N.; Radhakrishnan, A.; Raghavan, R.; Bhaskaran, B. Efficient photocatalytic degradation of organic dye from aqueous solutions over zinc oxide incorporated nanocellulose under visible light irradiation. Main Group Met. Chem. 2020, 43, 84–91. [Google Scholar] [CrossRef]
- Ihsani, R.N.; Alomari, A.H.; Gareso, P.L.; Heryanto, H.; Ardiansyah, A.; Karim, M.K.A.; Tahir, D. Composite cellulose/bismuth/PVA nanocrystal for high-performance X-ray radiation shielding. Radiat. Phys. Chem. 2025, 226, 112189. [Google Scholar] [CrossRef]
- Konicki, W.; Siber, D.; Narkiewicz, U. Removal of Rhodamine B from aqueous solution by ZnFe2O4 nanocomposite with magnetic separation performance. Pol. J. Chem. Technol. 2017, 19, 65–74. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Deng, B.; Tan, W.; Li, R.; Xu, Y.; Zhang, H. Degradation of Bisphenol A by Activating Peroxymonosulfate with Mn0.6Zn0.4Fe2O4 Fabricated from Spent Zn-Mn Alkaline Batteries. Chem. Eng. J. 2019, 364, 541–551. [Google Scholar] [CrossRef]
- Zhai, Z.; Ren, K.; Zheng, X.; Chen, Y.; Shi, H. Simultaneous Photocatalytic Tetracycline Oxidation and Chromate Reduction via a Jointed Synchronous Pathway upon Z-Scheme Bi12O17Cl2/AgBr: Insight into Intermediates and Mechanism. Environ. Sci. Nano 2022, 9, 1780–1793. [Google Scholar] [CrossRef]
- Zhuang, W.; Yao, D.; Li, M.; Xu, W.; Cen, Q.; Zhang, M.; Li, H.; Yan, X.; Zhang, H. Synergistically enhanced water-resistive perovskite nanocrystals for cell nucleus imaging and acid phosphatase detection. Sens. Actuators B 2024, 416, 136014. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, N.G. Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater. 2020, 12, 78. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, B.; Li, X.; Wang, X.; Huang, K.; Chen, Z. MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chem. Eng. J. 2022, 430, 132728. [Google Scholar] [CrossRef]
- Greczynski, G.; Haasch, R.T.; Hellgren, N.; Lewin, E.; Hultman, L. X-ray photoelectron spectroscopy of thin films. Nat. Rev. Methods Primers 2023, 3, 40. [Google Scholar] [CrossRef]
- Xiao, J.; Yang, W.; Gao, S.; Sun, C.; Li, Q. Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination. J. Mater. Sci. Technol. 2018, 34, 2331–2336. [Google Scholar] [CrossRef]
- Liang, P.-L.; Yuan, L.-Y.; Deng, H.; Wang, X.-C.; Wang, L.; Li, Z.-J.; Luo, S.-Z.; Shi, W.-Q. Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Appl. Catal. B 2020, 267, 118688. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Li, M.; Li, Z.; Yuan, Y.; Yang, X.; Guo, L. Highly efficient toluene gas sensor based on spinel structured hollow urchin-like core-shell ZnFe2O4 spheres. Sens. Actuators B 2021, 349, 130734. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Liu, H.; Zheng, Y.; Li, M.; Tang, K.; Pan, B.; Liu, C.; Luo, J.; Pang, X. Multi-crosslinked robust alginate/polyethyleneimine modified graphene aerogel for efficient organic dye removal. Colloids Surf. A 2024, 683, 133034. [Google Scholar] [CrossRef]
- Lefatshe, K.; Muiva, C.M.; Kebaabetswe, L.P. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr. Polym. 2017, 164, 301–308. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Fouda, A. Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int. J. Biol. Macromol. 2018, 106, 784–792. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, P.; Wang, Z.; Zhang, S.; Gao, H.; Hu, J.; Shao, G. Direct evidence of multichannel-improved charge-carrier mechanism for enhanced photocatalytic H2 evolution. Sci. Rep. 2017, 7, 16116. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, Y.; Xiao, P.; Zhang, Y. Guiding charge transfer kinetics into cocatalyst for efficient solar water splitting. Electrochim. Acta 2019, 307, 43–50. [Google Scholar] [CrossRef]
- Podborska, A.; Suchecki, M.; Mech, K.; Marzec, M.; Pilarczyk, K.; Szaciłowski, K. Light intensity-induced photocurrent switching effect. Nat. Commun. 2020, 11, 854. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Lu, H.; Ma, J.; Zhou, X.; Wang, Z.; Yi, C. Macro-/nanoporous Al-doped ZnO/cellulose composites based on tunable cellulose fiber sizes for enhancing photocatalytic properties. Carbohydr. Polym. 2020, 250, 116873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tian, L.; Zhang, Z.; Han, J.; Wu, Z.; Wei, Z.; Wang, S.; Cao, Y.; Zhang, S.; Zhang, Y. Effective degradation of phenol by in-situ photocatalytic-Fenton-like technology with BiVO4/Bi2WO6/Ti3C2 QDs. Surf. Interfaces 2024, 55, 105315. [Google Scholar] [CrossRef]
- Valenzuela, M.A.; Bosch, P.; Jiménez-Becerrill, J.; Quiroz, O.; Páez, A.I. Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol. A 2002, 148, 177–182. [Google Scholar] [CrossRef]
- Behera, A.; Kandi, D.; Majhi, S.M.; Martha, S.; Parida, K. Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation. Beilstein J. Nanotechnol. 2018, 9, 436–446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Gao, K.; Jiang, W.; Xu, J.; Lushchyk, P. Sustainable Removal of Phenol Dye-Containing Wastewater by Composite Incorporating ZnFe2O4/Nanocellulose Photocatalysts. Sustainability 2024, 16, 11023. https://doi.org/10.3390/su162411023
Li Z, Gao K, Jiang W, Xu J, Lushchyk P. Sustainable Removal of Phenol Dye-Containing Wastewater by Composite Incorporating ZnFe2O4/Nanocellulose Photocatalysts. Sustainability. 2024; 16(24):11023. https://doi.org/10.3390/su162411023
Chicago/Turabian StyleLi, Zan, Kun Gao, Wenrui Jiang, Jiao Xu, and Pavel Lushchyk. 2024. "Sustainable Removal of Phenol Dye-Containing Wastewater by Composite Incorporating ZnFe2O4/Nanocellulose Photocatalysts" Sustainability 16, no. 24: 11023. https://doi.org/10.3390/su162411023
APA StyleLi, Z., Gao, K., Jiang, W., Xu, J., & Lushchyk, P. (2024). Sustainable Removal of Phenol Dye-Containing Wastewater by Composite Incorporating ZnFe2O4/Nanocellulose Photocatalysts. Sustainability, 16(24), 11023. https://doi.org/10.3390/su162411023