[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Micro-/nanostructured ZnFe2O4 hollow sphere/GO composite for structurally enhanced photocatalysis performance

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The pollution of organic dyes has become a serious environmental problem. It is still urgent to prepare a highly efficient and environment-friendly photocatalyst for pollutants removal. Herein, a micro-/nanostructured ZnFe2O4 hollow sphere/GO (ZnFe2O4/GO) composite photocatalyst was prepared through a one-step hydrothermal method with high performance and recycling property. The obtained micro-/nanostructured composite was assembled by ZnFe2O4 hollow spheres and GO nanosheets. The special self-assembled hollow nanosphere structure enlarged visible light harvesting. In addition, luminescence property demonstrates that the introduction of graphene oxide (GO) inhibits the recombination of electron–hole pairs, leading to enhancement of photocatalytic activity of ZnFe2O4. Under visible light irradiation, the ZnFe2O4/GO composite exhibited excellent photocatalytic activity for Congo red (93%), higher than that of the pure ZnFe2O4 hollow spheres (only 60%) and commercial ZnFe2O4 nanoparticles (40%). Moreover, the micro-/nanostructured ZnFe2O4/GO composite photocatalyst can be regenerated with high efficiency and remains over 80% activity after seven regenerations. This work not only supplies a new strategy for one-step preparation of such ZnFe2O4/GO micro-/nanostructures for structurally enhanced photocatalysis, but also provides a highly efficient photocatalyst for wastewater treatment.

Graphical abstract

摘要

有机染料的污染已成为一个严重的环境问题, 因此制备高效, 环保的污染物去除光催化剂仍是当务之急。本文通过一步水热法制备了具有高效催化和可循环利用性能的微/纳结构ZnFe2O4空心球/GO复合光催化剂 (ZnFe2O4/GO)。该微/纳结构复合物由ZnFe2O4空心球和GO纳米片组装而成。特殊的自组装空心纳米球结构增加了其对可见光的捕获效率。此外, 研究表明氧化石墨烯 (GO) 的引入可抑制电子-空穴对的复合, 从而提高了ZnFe2O4的光催化活性。在可见光照射下, ZnFe2O4/GO复合材料对刚果红 (CR) 表现出优异的光催化活性 (93%), 高于纯ZnFe2O4空心球(仅为60%)和商业ZnFe2O4纳米颗粒(40%)。同时, 微/纳结构ZnFe2O4/GO复合光催化剂经过7次再生后仍保持80%以上的催化活性。本工作不仅为一步制备用于结构增强光催化的ZnFe2O4/GO微纳米结构提供了一种新的策略, 而且为废水处理提供了一种高效的光催化剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Scheme 2

References

  1. Li S, Wang X, He Q, Chen Q, Xu Y, Yang H, Lü M, Wei F, Liu X. Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes. Chinese J Catal. 2016;37(3):367. https://doi.org/10.1016/s1872-2067(15)61033-6.

    Article  CAS  Google Scholar 

  2. Waghmode TR, Kurade MB, Sapkal RT, Bhosale CH, Jeon BH, Govindwar SP. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J Hazard Mater. 2019;371:115. https://doi.org/10.1016/j.jhazmat.2019.03.004.

    Article  CAS  Google Scholar 

  3. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. 2020;298:112040. https://doi.org/10.1016/j.molliq.2019.112040.

    Article  CAS  Google Scholar 

  4. Karimi-Maleh H, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588. https://doi.org/10.1016/j.molliq.2020.113588.

    Article  CAS  Google Scholar 

  5. Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol. 2020;151:677. https://doi.org/10.1016/j.ijbiomac.2020.02.192.

    Article  CAS  Google Scholar 

  6. Ricou-Hoeffer P. Experimental design methodology applied to adsorption of metallic ions onto fly ash. Water Res. 2001;35(4):965. https://doi.org/10.1016/s0043-1354(00)00341-9.

    Article  CAS  Google Scholar 

  7. Reddy CV, Reddy IN, Ravindranadh K, Reddy KR, Shetti NP, Kim D, Shim J, Aminabhavi TM. Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J Environ Manag. 2020;260:110088. https://doi.org/10.1016/j.jenvman.2020.110088.

    Article  CAS  Google Scholar 

  8. Wang RC, Yu CW. Phenol degradation under visible light irradiation in the continuous system of photocatalysis and sonolysis. Ultrason Sonochem. 2013;20(1):553. https://doi.org/10.1016/j.ultsonch.2012.07.014.

    Article  CAS  Google Scholar 

  9. Tian A, Shi XG, Tan HC, Li BX, Ma JW, Yang H. Preparation and photocatalytic properties of Ni doped TiO2 nanotube. Chin J Rare Met. 2021;45(1):41. https://doi.org/10.13373/j.cnki.cjrm.xy19060015.

    Article  CAS  Google Scholar 

  10. Wang L, Zeng T, Liao G, Cheng Q, Pan Z. Syntheses, structures and catalytic mechanisms of three new MOFs for aqueous Cr(VI) reduction and dye degradation under UV light. Polyhedron. 2019;157:152. https://doi.org/10.1016/j.poly.2018.09.064.

    Article  CAS  Google Scholar 

  11. D’Angelo D, Filice S, Scarangella A, Iannazzo D, Compagnini G, Scalese S. Bi2O3/Nexar polymer nanocomposite membranes for azo dyes removal by UV–vis or visible light irradiation. Catal Today. 2019;321–322:158. https://doi.org/10.1016/j.cattod.2017.12.013.

    Article  CAS  Google Scholar 

  12. Wang B, Cai H, Shen S. Single metal atom photocatalysis. Small Methods. 2019;3(9):1800447. https://doi.org/10.1002/smtd.201800447.

    Article  CAS  Google Scholar 

  13. Yan SC, Li ZS, Zou ZG. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir. 2010;26(6):3894. https://doi.org/10.1021/la904023j.

    Article  CAS  Google Scholar 

  14. Efa MT, Imae T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J Taiwan Inst Chem E. 2018;92:112. https://doi.org/10.1016/j.jtice.2018.02.007.

    Article  CAS  Google Scholar 

  15. Fonseca-Cervantes OR, Pérez-Larios A, Romero Arellano VH, Sulbaran-Rangel B, Guzmán González CA. Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes. 2020;8(9):1032. https://doi.org/10.3390/pr8091032.

    Article  CAS  Google Scholar 

  16. Ferraz NP, Nogueira AE, Marcos FCF, Machado VA, Rocca RR, Assaf EM, Asencios YJO. CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230. https://doi.org/10.1007/s12598-019-01282-7.

    Article  CAS  Google Scholar 

  17. Guo Z, Wu H, Li M, Tang T, Wen J, Li X. Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl Surf Sci. 2020;526:146724. https://doi.org/10.1016/j.apsusc.2020.146724.

    Article  CAS  Google Scholar 

  18. He W, Wang K, Zhu Z, Zou H, Zhou K, Hu Z, Duan Y, Feng Y, Gan L, Lv K, Wang C, Han X, Zhou X. Ultra-small subnano TiOx clusters as excellent cocatalysts for the photocatalytic degradation of tetracycline on plasmonic Ag/AgCl. Catal Sci Technol. 2020;10(1):147. https://doi.org/10.1039/c9cy01876j.

    Article  CAS  Google Scholar 

  19. Nunome T, Irie H, Sakamoto N, Sakurai O, Shinozaki K, Suzuki H, Wakiya N. Magnetic and photocatalytic properties of n- and p-type ZnFe2O4 particles synthesized using ultrasonic spray pyrolysis. J Ceram Soc Jpn. 2013;121(1409):26. https://doi.org/10.2109/jcersj2.121.26.

    Article  CAS  Google Scholar 

  20. Sun Y, Wang W, Zhang L, Sun S, Gao E. Magnetic ZnFe2O4 octahedra: synthesis and visible light induced photocatalytic activities. Mater Lett. 2013;98:124. https://doi.org/10.1016/j.matlet.2013.02.014.

    Article  CAS  Google Scholar 

  21. Yadav NG, Chaudhary LS, Sakhare PA, Dongale TD, Patil PS, Sheikh AD. Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J Colloid Interface Sci. 2018;527:289. https://doi.org/10.1016/j.jcis.2018.05.051.

    Article  CAS  Google Scholar 

  22. Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low ZX, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl Mater Interfaces. 2016;8(14):9080. https://doi.org/10.1021/acsami.6b00028.

    Article  CAS  Google Scholar 

  23. Wang X, Cai W, Lin Y, Wang G, Liang C. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem. 2010;20(39):8582. https://doi.org/10.1039/c0jm01024c.

    Article  CAS  Google Scholar 

  24. Wang X, Cai W, Liu S, Wang G, Wu Z, Zhao H. ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions. Colloid Surf A. 2013;422:199. https://doi.org/10.1016/j.colsurfa.2013.01.031.

    Article  CAS  Google Scholar 

  25. Wang X, Cai W, Wang G, Wu Z, Zhao H. One-step fabrication of high performance micro/nanostructured Fe3S4–C magnetic adsorbent with easy recovery and regeneration properties. CrystEngComm. 2013;15(15):2956. https://doi.org/10.1039/c3ce26856j.

    Article  CAS  Google Scholar 

  26. Nguyen TB, Doong R. Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Adv. 2017;7(79):50006. https://doi.org/10.1039/c7ra08271a.

    Article  CAS  Google Scholar 

  27. Nguyen TB, Huang CP, Doong RA. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci Total Environ. 2019;646:745. https://doi.org/10.1016/j.scitotenv.2018.07.352.

    Article  CAS  Google Scholar 

  28. Dai Z, Zhen Y, Sun Y, Li L, Ding D. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem Eng J. 2021;415:129002. https://doi.org/10.1016/j.cej.2021.129002.

    Article  CAS  Google Scholar 

  29. Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sensor Actuat B-Chem. 2012;171–172:932. https://doi.org/10.1016/j.snb.2012.06.006.

    Article  CAS  Google Scholar 

  30. Keerthana SP, Yuvakkumar R, Kumar PS, Ravi G, Velauthapillai D. Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ Res. 2021;197:111047. https://doi.org/10.1016/j.envres.2021.111047.

    Article  CAS  Google Scholar 

  31. Liu X, Huang WY, Zhou Q, Chen XR, Yang K, Li D, Dionysiou DD. Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants. Rare Met. 2021;40(5):1086. https://doi.org/10.1007/s12598-020-01574-3.

    Article  CAS  Google Scholar 

  32. Woo MA, Kim TW, Kim IY, Hwang SJ. Synthesis and lithium electrode application of ZnO−ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles. Solid State Ionics. 2011;182(1):91. https://doi.org/10.1016/j.ssi.2010.10.025.

    Article  CAS  Google Scholar 

  33. Wang X, Zhang J, Chen J, Ma Q, Fan S, Zhao T. Effect of preparation methods on the structure and catalytic performance of Fe–Zn/K catalysts for CO2 hydrogenation to light olefins. Chinese J Chem Eng. 2018;26(4):761. https://doi.org/10.1016/j.cjche.2017.10.013.

    Article  CAS  Google Scholar 

  34. Shen J, Ma G, Zhang J, Quan W, Li L. Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity. Appl Surf Sci. 2015;359:455. https://doi.org/10.1016/j.apsusc.2015.10.101.

    Article  CAS  Google Scholar 

  35. Wang X, Cai W, Wang G, Liang C. Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism. J Mater Res. 2012;27(6):951. https://doi.org/10.1557/jmr.2012.15.

    Article  CAS  Google Scholar 

  36. Dui J, Zhu G, Zhou S. Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). ACS Appl Mater Interfaces. 2013;5(20):10081. https://doi.org/10.1021/am402656t.

    Article  CAS  Google Scholar 

  37. Yu M, Huang Y, Wang K, Han X, Wang M, Zhu Y, Liu L. Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. Appl Surf Sci. 2018;462:955. https://doi.org/10.1016/j.apsusc.2018.08.134.

    Article  CAS  Google Scholar 

  38. Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J. CdS/graphene nanocomposite photocatalysts. Adv Energy Mater. 2015;5(14):1500010. https://doi.org/10.1002/aenm.201500010.

    Article  CAS  Google Scholar 

  39. Mady AH, Baynosa ML, Tuma D, Shim JJ. Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl Catal B-Environ. 2017;203:416. https://doi.org/10.1016/j.apcatb.2016.10.033.

    Article  CAS  Google Scholar 

  40. Liu Q, Xu Y, Wang J, Xie M, Wei W, Huang L, Xu H, Song Y, Li H. Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloid Surface A. 2018;553:114. https://doi.org/10.1016/j.colsurfa.2018.05.019.

    Article  CAS  Google Scholar 

  41. Chen D, Wang X, Zhang X, Yang Y, Xu Y, Qian G. Facile fabrication of mesoporous biochar/ZnFe2O4 composite with enhanced visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2019;44(36):19967. https://doi.org/10.1016/j.ijhydene.2019.06.021.

    Article  CAS  Google Scholar 

  42. Ma X, Jiang Q, Guo W, Zheng M, Xu W, Ma F, Hou B. Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance. RSC Adv. 2016;6(34):28263. https://doi.org/10.1039/c5ra27429j.

    Article  CAS  Google Scholar 

  43. Wang Q, Sun K, Lu Q, Wei M, Yao L, Guo E. Synthesis of novel elm branch-like hierarchical γ-Bi2MoO6 nanostructures with enhanced visible-light-driven photocatalytic performance. Dyes Pigments. 2018;155:194. https://doi.org/10.1016/j.dyepig.2018.03.048.

    Article  CAS  Google Scholar 

  44. Deng X, Chen Y, Wen J, Xu Y, Zhu J, Bian Z. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction. Sci Bull. 2020;65(2):105. https://doi.org/10.1016/j.scib.2019.10.020.

    Article  CAS  Google Scholar 

  45. Mao L, Cai XY, Zhu MS. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met. 2021;40(5):1067. https://doi.org/10.1007/s12598-020-01589-w.

    Article  CAS  Google Scholar 

  46. Hao L, Kang L, Huang H, Ye L, Han K, Yang S, Yu H, Batmunkh M, Zhang Y, Ma T. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv Mater. 2019;31(25):1900546. https://doi.org/10.1002/adma.201900546.

    Article  CAS  Google Scholar 

  47. Xu J, Xu D, Zhu B, Cheng B, Jiang C. Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl Surf Sci. 2018;435:1136. https://doi.org/10.1016/j.apsusc.2017.11.232.

    Article  CAS  Google Scholar 

  48. Li X, Hou Y, Zhao Q, Wang L. A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J Colloid Interface Sci. 2011;358(1):102. https://doi.org/10.1016/j.jcis.2011.02.052.

    Article  CAS  Google Scholar 

  49. Lin J, Hu H, Gao N, Ye J, Chen Y, Ou H. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant. J Water Process Eng. 2020;33:101010. https://doi.org/10.1016/j.jwpe.2019.101010.

    Article  Google Scholar 

  50. Chang F, Yang C, Wang J, Lei B, Li S, Kim H. Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D–2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Sep Purif Technol. 2021;266:118237. https://doi.org/10.1016/j.seppur.2020.118237.

    Article  CAS  Google Scholar 

  51. Kumar A, Singh S, Khanuja M. A comparative photocatalytic study of pure and acid-etched template free graphitic C3N4 on different dyes: an investigation on the influence of surface modifications. Mater Chem Phys. 2020;243:122402. https://doi.org/10.1016/j.matchemphys.2019.122402.

    Article  CAS  Google Scholar 

  52. Borthakur P, Boruah PK, Darabdhara G, Sengupta P, Das MR, Boronin AI, Kibis LS, Kozlova MN, Fedorov VE. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J Environ Chem Eng. 2016;4(4):4600. https://doi.org/10.1016/j.jece.2016.10.023.

    Article  CAS  Google Scholar 

  53. Wang Y, Liu Y, Bao S, Yu Y, Li J, Yang W, Xu S, Li H. Aminated metal-free red phosphorus nanosheets for adsorption and photocatalytic reduction of Cr(VI) from water. Sep Purif Technol. 2021;274:118968. https://doi.org/10.1016/j.seppur.2021.118968.

    Article  CAS  Google Scholar 

  54. Xu Q, Feng J, Li L, Xiao Q, Wang J. Hollow ZnFe2O4/TiO2 composites: high-performance and recyclable visible-light photocatalyst. J Alloy Compd. 2015;641:110. https://doi.org/10.1016/j.jallcom.2015.04.076.

    Article  CAS  Google Scholar 

  55. He D, Wu X, Chen Y, Situ Y, Zhong L, Huang H. In-situ growth of lepidocrocite on Bi2O3 rod: a perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation. Chemosphere. 2018;210:334. https://doi.org/10.1016/j.chemosphere.2018.06.142.

    Article  CAS  Google Scholar 

  56. Li X, Xie J, Jiang C, Yu J, Zhang P. Review on design and evaluation of environmental photocatalysts. Front Env Sci Eng. 2018;12(5):1. https://doi.org/10.1007/s11783-018-1076-1.

    Article  CAS  Google Scholar 

  57. Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese J Catal. 2022;43(2):178. https://doi.org/10.1016/s1872-2067(21)63910-4.

    Article  CAS  Google Scholar 

  58. Yang J, Hu R, Meng W, Du Y. A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chem Commun. 2016. https://doi.org/10.1039/c5cc09222a.

    Article  Google Scholar 

  59. Elhakim AA, El-Kemary M, Ibrahim MM, El-Mehasseb IM, El-Sheshtawy HS. Direct Z-scheme of WO3/GO decorated with silver nanoparticles for synergetic adsorption and photocatalytic activity for organic and inorganic water pollutants removal. Appl Surf Sci. 2021;564:150410. https://doi.org/10.1016/j.apsusc.2021.150410.

    Article  CAS  Google Scholar 

  60. He S, Yan C, Chen XZ, Wang Z, Ouyang T, Guo ML, Liu ZQ. Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl Catal B-Environ. 2020;276:119138. https://doi.org/10.1016/j.apcatb.2020.119138.

    Article  CAS  Google Scholar 

  61. Haque MM, Haque MA, Mosharaf MK, Marcus PK. Novel bacterial biofilm consortia that degrade and detoxify the carcinogenic diazo dye Congo red. Arch Microbiol. 2021;203(2):643. https://doi.org/10.1007/s00203-020-02044-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Major Project of Natural Science Research in Colleges and Universities of Anhui Province (No. KJ2019ZD51), the National Natural Science Foundation of China (No. 21976003), the Key Research and Development Project of Anhui Province (Nos. 2022h11020025 and 202104a07020027) and the Open Foundation of Key Laboratory of Combustion and Pyrolysis Study of China Tobacco (No. 2021305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Biao Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YY., Wang, XB., Xu, QK. et al. Micro-/nanostructured ZnFe2O4 hollow sphere/GO composite for structurally enhanced photocatalysis performance. Rare Met. 42, 813–821 (2023). https://doi.org/10.1007/s12598-022-02200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02200-0

Navigation