The pollution of organic dyes has become a serious environmental problem. It is still urgent to prepare a highly efficient and environment-friendly photocatalyst for pollutants removal. Herein, a micro-/nanostructured ZnFe2O4 hollow sphere/GO (ZnFe2O4/GO) composite photocatalyst was prepared through a one-step hydrothermal method with high performance and recycling property. The obtained micro-/nanostructured composite was assembled by ZnFe2O4 hollow spheres and GO nanosheets. The special self-assembled hollow nanosphere structure enlarged visible light harvesting. In addition, luminescence property demonstrates that the introduction of graphene oxide (GO) inhibits the recombination of electron–hole pairs, leading to enhancement of photocatalytic activity of ZnFe2O4. Under visible light irradiation, the ZnFe2O4/GO composite exhibited excellent photocatalytic activity for Congo red (93%), higher than that of the pure ZnFe2O4 hollow spheres (only 60%) and commercial ZnFe2O4 nanoparticles (40%). Moreover, the micro-/nanostructured ZnFe2O4/GO composite photocatalyst can be regenerated with high efficiency and remains over 80% activity after seven regenerations. This work not only supplies a new strategy for one-step preparation of such ZnFe2O4/GO micro-/nanostructures for structurally enhanced photocatalysis, but also provides a highly efficient photocatalyst for wastewater treatment.
Graphical abstract
摘要
有机染料的污染已成为一个严重的环境问题, 因此制备高效, 环保的污染物去除光催化剂仍是当务之急。本文通过一步水热法制备了具有高效催化和可循环利用性能的微/纳结构ZnFe2O4空心球/GO复合光催化剂 (ZnFe2O4/GO)。该微/纳结构复合物由ZnFe2O4空心球和GO纳米片组装而成。特殊的自组装空心纳米球结构增加了其对可见光的捕获效率。此外, 研究表明氧化石墨烯 (GO) 的引入可抑制电子-空穴对的复合, 从而提高了ZnFe2O4的光催化活性。在可见光照射下, ZnFe2O4/GO复合材料对刚果红 (CR) 表现出优异的光催化活性 (93%), 高于纯ZnFe2O4空心球(仅为60%)和商业ZnFe2O4纳米颗粒(40%)。同时, 微/纳结构ZnFe2O4/GO复合光催化剂经过7次再生后仍保持80%以上的催化活性。本工作不仅为一步制备用于结构增强光催化的ZnFe2O4/GO微纳米结构提供了一种新的策略, 而且为废水处理提供了一种高效的光催化剂。
References
Li S, Wang X, He Q, Chen Q, Xu Y, Yang H, Lü M, Wei F, Liu X. Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes. Chinese J Catal. 2016;37(3):367. https://doi.org/10.1016/s1872-2067(15)61033-6.
Waghmode TR, Kurade MB, Sapkal RT, Bhosale CH, Jeon BH, Govindwar SP. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J Hazard Mater. 2019;371:115. https://doi.org/10.1016/j.jhazmat.2019.03.004.
Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. 2020;298:112040. https://doi.org/10.1016/j.molliq.2019.112040.
Karimi-Maleh H, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588. https://doi.org/10.1016/j.molliq.2020.113588.
Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol. 2020;151:677. https://doi.org/10.1016/j.ijbiomac.2020.02.192.
Ricou-Hoeffer P. Experimental design methodology applied to adsorption of metallic ions onto fly ash. Water Res. 2001;35(4):965. https://doi.org/10.1016/s0043-1354(00)00341-9.
Reddy CV, Reddy IN, Ravindranadh K, Reddy KR, Shetti NP, Kim D, Shim J, Aminabhavi TM. Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J Environ Manag. 2020;260:110088. https://doi.org/10.1016/j.jenvman.2020.110088.
Wang RC, Yu CW. Phenol degradation under visible light irradiation in the continuous system of photocatalysis and sonolysis. Ultrason Sonochem. 2013;20(1):553. https://doi.org/10.1016/j.ultsonch.2012.07.014.
Tian A, Shi XG, Tan HC, Li BX, Ma JW, Yang H. Preparation and photocatalytic properties of Ni doped TiO2 nanotube. Chin J Rare Met. 2021;45(1):41. https://doi.org/10.13373/j.cnki.cjrm.xy19060015.
Wang L, Zeng T, Liao G, Cheng Q, Pan Z. Syntheses, structures and catalytic mechanisms of three new MOFs for aqueous Cr(VI) reduction and dye degradation under UV light. Polyhedron. 2019;157:152. https://doi.org/10.1016/j.poly.2018.09.064.
D’Angelo D, Filice S, Scarangella A, Iannazzo D, Compagnini G, Scalese S. Bi2O3/Nexar polymer nanocomposite membranes for azo dyes removal by UV–vis or visible light irradiation. Catal Today. 2019;321–322:158. https://doi.org/10.1016/j.cattod.2017.12.013.
Wang B, Cai H, Shen S. Single metal atom photocatalysis. Small Methods. 2019;3(9):1800447. https://doi.org/10.1002/smtd.201800447.
Yan SC, Li ZS, Zou ZG. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir. 2010;26(6):3894. https://doi.org/10.1021/la904023j.
Efa MT, Imae T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J Taiwan Inst Chem E. 2018;92:112. https://doi.org/10.1016/j.jtice.2018.02.007.
Fonseca-Cervantes OR, Pérez-Larios A, Romero Arellano VH, Sulbaran-Rangel B, Guzmán González CA. Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes. 2020;8(9):1032. https://doi.org/10.3390/pr8091032.
Ferraz NP, Nogueira AE, Marcos FCF, Machado VA, Rocca RR, Assaf EM, Asencios YJO. CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230. https://doi.org/10.1007/s12598-019-01282-7.
Guo Z, Wu H, Li M, Tang T, Wen J, Li X. Phosphorus-doped graphene quantum dots loaded on TiO2 for enhanced photodegradation. Appl Surf Sci. 2020;526:146724. https://doi.org/10.1016/j.apsusc.2020.146724.
He W, Wang K, Zhu Z, Zou H, Zhou K, Hu Z, Duan Y, Feng Y, Gan L, Lv K, Wang C, Han X, Zhou X. Ultra-small subnano TiOx clusters as excellent cocatalysts for the photocatalytic degradation of tetracycline on plasmonic Ag/AgCl. Catal Sci Technol. 2020;10(1):147. https://doi.org/10.1039/c9cy01876j.
Nunome T, Irie H, Sakamoto N, Sakurai O, Shinozaki K, Suzuki H, Wakiya N. Magnetic and photocatalytic properties of n- and p-type ZnFe2O4 particles synthesized using ultrasonic spray pyrolysis. J Ceram Soc Jpn. 2013;121(1409):26. https://doi.org/10.2109/jcersj2.121.26.
Sun Y, Wang W, Zhang L, Sun S, Gao E. Magnetic ZnFe2O4 octahedra: synthesis and visible light induced photocatalytic activities. Mater Lett. 2013;98:124. https://doi.org/10.1016/j.matlet.2013.02.014.
Yadav NG, Chaudhary LS, Sakhare PA, Dongale TD, Patil PS, Sheikh AD. Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J Colloid Interface Sci. 2018;527:289. https://doi.org/10.1016/j.jcis.2018.05.051.
Wang X, Liu J, Leong S, Lin X, Wei J, Kong B, Xu Y, Low ZX, Yao J, Wang H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl Mater Interfaces. 2016;8(14):9080. https://doi.org/10.1021/acsami.6b00028.
Wang X, Cai W, Lin Y, Wang G, Liang C. Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J Mater Chem. 2010;20(39):8582. https://doi.org/10.1039/c0jm01024c.
Wang X, Cai W, Liu S, Wang G, Wu Z, Zhao H. ZnO hollow microspheres with exposed porous nanosheets surface: structurally enhanced adsorption towards heavy metal ions. Colloid Surf A. 2013;422:199. https://doi.org/10.1016/j.colsurfa.2013.01.031.
Wang X, Cai W, Wang G, Wu Z, Zhao H. One-step fabrication of high performance micro/nanostructured Fe3S4–C magnetic adsorbent with easy recovery and regeneration properties. CrystEngComm. 2013;15(15):2956. https://doi.org/10.1039/c3ce26856j.
Nguyen TB, Doong R. Heterostructured ZnFe2O4/TiO2 nanocomposites with a highly recyclable visible-light-response for bisphenol A degradation. RSC Adv. 2017;7(79):50006. https://doi.org/10.1039/c7ra08271a.
Nguyen TB, Huang CP, Doong RA. Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light. Sci Total Environ. 2019;646:745. https://doi.org/10.1016/j.scitotenv.2018.07.352.
Dai Z, Zhen Y, Sun Y, Li L, Ding D. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem Eng J. 2021;415:129002. https://doi.org/10.1016/j.cej.2021.129002.
Rahman MM, Khan SB, Faisal M, Asiri AM, Alamry KA. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sensor Actuat B-Chem. 2012;171–172:932. https://doi.org/10.1016/j.snb.2012.06.006.
Keerthana SP, Yuvakkumar R, Kumar PS, Ravi G, Velauthapillai D. Rare earth metal (Sm) doped zinc ferrite (ZnFe2O4) for improved photocatalytic elimination of toxic dye from aquatic system. Environ Res. 2021;197:111047. https://doi.org/10.1016/j.envres.2021.111047.
Liu X, Huang WY, Zhou Q, Chen XR, Yang K, Li D, Dionysiou DD. Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants. Rare Met. 2021;40(5):1086. https://doi.org/10.1007/s12598-020-01574-3.
Woo MA, Kim TW, Kim IY, Hwang SJ. Synthesis and lithium electrode application of ZnO−ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles. Solid State Ionics. 2011;182(1):91. https://doi.org/10.1016/j.ssi.2010.10.025.
Wang X, Zhang J, Chen J, Ma Q, Fan S, Zhao T. Effect of preparation methods on the structure and catalytic performance of Fe–Zn/K catalysts for CO2 hydrogenation to light olefins. Chinese J Chem Eng. 2018;26(4):761. https://doi.org/10.1016/j.cjche.2017.10.013.
Shen J, Ma G, Zhang J, Quan W, Li L. Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity. Appl Surf Sci. 2015;359:455. https://doi.org/10.1016/j.apsusc.2015.10.101.
Wang X, Cai W, Wang G, Liang C. Standing porous ZnO nanoplate-built hollow microspheres and kinetically controlled dissolution/crystal growth mechanism. J Mater Res. 2012;27(6):951. https://doi.org/10.1557/jmr.2012.15.
Dui J, Zhu G, Zhou S. Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). ACS Appl Mater Interfaces. 2013;5(20):10081. https://doi.org/10.1021/am402656t.
Yu M, Huang Y, Wang K, Han X, Wang M, Zhu Y, Liu L. Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. Appl Surf Sci. 2018;462:955. https://doi.org/10.1016/j.apsusc.2018.08.134.
Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J. CdS/graphene nanocomposite photocatalysts. Adv Energy Mater. 2015;5(14):1500010. https://doi.org/10.1002/aenm.201500010.
Mady AH, Baynosa ML, Tuma D, Shim JJ. Facile microwave-assisted green synthesis of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV- and visible-light irradiation. Appl Catal B-Environ. 2017;203:416. https://doi.org/10.1016/j.apcatb.2016.10.033.
Liu Q, Xu Y, Wang J, Xie M, Wei W, Huang L, Xu H, Song Y, Li H. Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloid Surface A. 2018;553:114. https://doi.org/10.1016/j.colsurfa.2018.05.019.
Chen D, Wang X, Zhang X, Yang Y, Xu Y, Qian G. Facile fabrication of mesoporous biochar/ZnFe2O4 composite with enhanced visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energy. 2019;44(36):19967. https://doi.org/10.1016/j.ijhydene.2019.06.021.
Ma X, Jiang Q, Guo W, Zheng M, Xu W, Ma F, Hou B. Fabrication of g-C3N4/Au/CdZnS Z-scheme photocatalyst to enhance photocatalysis performance. RSC Adv. 2016;6(34):28263. https://doi.org/10.1039/c5ra27429j.
Wang Q, Sun K, Lu Q, Wei M, Yao L, Guo E. Synthesis of novel elm branch-like hierarchical γ-Bi2MoO6 nanostructures with enhanced visible-light-driven photocatalytic performance. Dyes Pigments. 2018;155:194. https://doi.org/10.1016/j.dyepig.2018.03.048.
Deng X, Chen Y, Wen J, Xu Y, Zhu J, Bian Z. Polyaniline-TiO2 composite photocatalysts for light-driven hexavalent chromium ions reduction. Sci Bull. 2020;65(2):105. https://doi.org/10.1016/j.scib.2019.10.020.
Mao L, Cai XY, Zhu MS. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met. 2021;40(5):1067. https://doi.org/10.1007/s12598-020-01589-w.
Hao L, Kang L, Huang H, Ye L, Han K, Yang S, Yu H, Batmunkh M, Zhang Y, Ma T. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv Mater. 2019;31(25):1900546. https://doi.org/10.1002/adma.201900546.
Xu J, Xu D, Zhu B, Cheng B, Jiang C. Adsorptive removal of an anionic dye Congo red by flower-like hierarchical magnesium oxide (MgO)-graphene oxide composite microspheres. Appl Surf Sci. 2018;435:1136. https://doi.org/10.1016/j.apsusc.2017.11.232.
Li X, Hou Y, Zhao Q, Wang L. A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J Colloid Interface Sci. 2011;358(1):102. https://doi.org/10.1016/j.jcis.2011.02.052.
Lin J, Hu H, Gao N, Ye J, Chen Y, Ou H. Fabrication of GO@MIL-101(Fe) for enhanced visible-light photocatalysis degradation of organophosphorus contaminant. J Water Process Eng. 2020;33:101010. https://doi.org/10.1016/j.jwpe.2019.101010.
Chang F, Yang C, Wang J, Lei B, Li S, Kim H. Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D–2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Sep Purif Technol. 2021;266:118237. https://doi.org/10.1016/j.seppur.2020.118237.
Kumar A, Singh S, Khanuja M. A comparative photocatalytic study of pure and acid-etched template free graphitic C3N4 on different dyes: an investigation on the influence of surface modifications. Mater Chem Phys. 2020;243:122402. https://doi.org/10.1016/j.matchemphys.2019.122402.
Borthakur P, Boruah PK, Darabdhara G, Sengupta P, Das MR, Boronin AI, Kibis LS, Kozlova MN, Fedorov VE. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J Environ Chem Eng. 2016;4(4):4600. https://doi.org/10.1016/j.jece.2016.10.023.
Wang Y, Liu Y, Bao S, Yu Y, Li J, Yang W, Xu S, Li H. Aminated metal-free red phosphorus nanosheets for adsorption and photocatalytic reduction of Cr(VI) from water. Sep Purif Technol. 2021;274:118968. https://doi.org/10.1016/j.seppur.2021.118968.
Xu Q, Feng J, Li L, Xiao Q, Wang J. Hollow ZnFe2O4/TiO2 composites: high-performance and recyclable visible-light photocatalyst. J Alloy Compd. 2015;641:110. https://doi.org/10.1016/j.jallcom.2015.04.076.
He D, Wu X, Chen Y, Situ Y, Zhong L, Huang H. In-situ growth of lepidocrocite on Bi2O3 rod: a perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation. Chemosphere. 2018;210:334. https://doi.org/10.1016/j.chemosphere.2018.06.142.
Li X, Xie J, Jiang C, Yu J, Zhang P. Review on design and evaluation of environmental photocatalysts. Front Env Sci Eng. 2018;12(5):1. https://doi.org/10.1007/s11783-018-1076-1.
Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese J Catal. 2022;43(2):178. https://doi.org/10.1016/s1872-2067(21)63910-4.
Yang J, Hu R, Meng W, Du Y. A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chem Commun. 2016. https://doi.org/10.1039/c5cc09222a.
Elhakim AA, El-Kemary M, Ibrahim MM, El-Mehasseb IM, El-Sheshtawy HS. Direct Z-scheme of WO3/GO decorated with silver nanoparticles for synergetic adsorption and photocatalytic activity for organic and inorganic water pollutants removal. Appl Surf Sci. 2021;564:150410. https://doi.org/10.1016/j.apsusc.2021.150410.
He S, Yan C, Chen XZ, Wang Z, Ouyang T, Guo ML, Liu ZQ. Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Appl Catal B-Environ. 2020;276:119138. https://doi.org/10.1016/j.apcatb.2020.119138.
Haque MM, Haque MA, Mosharaf MK, Marcus PK. Novel bacterial biofilm consortia that degrade and detoxify the carcinogenic diazo dye Congo red. Arch Microbiol. 2021;203(2):643. https://doi.org/10.1007/s00203-020-02044-1.
Acknowledgements
This study was financially supported by the Major Project of Natural Science Research in Colleges and Universities of Anhui Province (No. KJ2019ZD51), the National Natural Science Foundation of China (No. 21976003), the Key Research and Development Project of Anhui Province (Nos. 2022h11020025 and 202104a07020027) and the Open Foundation of Key Laboratory of Combustion and Pyrolysis Study of China Tobacco (No. 2021305).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhao, YY., Wang, XB., Xu, QK. et al. Micro-/nanostructured ZnFe2O4 hollow sphere/GO composite for structurally enhanced photocatalysis performance. Rare Met. 42, 813–821 (2023). https://doi.org/10.1007/s12598-022-02200-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12598-022-02200-0