New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution
<p>Multifaceted impact of AI in education.</p> "> Figure 2
<p>Performance of GPT models on various standardized tests.</p> "> Figure 3
<p>The transformer model utilizes the encoder–decoder neural network architecture.</p> "> Figure 4
<p>Overview of literature search process using PRISMA-ScR.</p> "> Figure 5
<p>Popularity worldwide of the search query “AI in education” [<a href="#B62-sustainability-15-12451" class="html-bibr">62</a>].</p> "> Figure 6
<p>Intelligent humanoid leading a tutoring session (DALL·E 2 image).</p> "> Figure 7
<p>Top barriers to providing personalized learning, % of teachers identifying area as a primary barrier.</p> "> Figure 8
<p>Popularity of the search query “AI in education” by region.</p> "> Figure 9
<p>Number of ethics incidents related to AI.</p> ">
Abstract
:1. Introduction
- Review the existing literature related to AI in education;
- Analyze the potential impact of AI in education;
- Identify the main avenues in applications, benefits, and challenges of AI in education.
2. ChatGPT
2.1. Transformer
2.2. GPT
3. Scoping Review
Methodology
- RQ1:
- How can AI have an impact on Higher Education?
- RQ2:
- What are the benefits and challenges associated with the use of AI in Higher Education?
4. Results
4.1. Theme 1: Personalized Learning
4.2. Theme 2: Intelligent Tutoring Systems
4.3. Theme 3: Assessment Automation
4.4. Theme 4: Teacher–Student Collaboration
5. Advantages of AI in Education
5.1. Enhanced Learning Outcomes
5.2. Time and Cost Efficiency
5.3. Global Access to Quality Education
6. Challenges and Ethical Considerations
6.1. Data Privacy and Security
6.2. Bias and Discrimination
6.3. Plagiarism and Academic Integrity
6.4. Teacher–Student Relationship
7. Future Directions and Opportunities
7.1. Augmented and Virtual Reality
7.2. Lifelong Learning and Skill Development
7.3. AI Literacy and Ethics Education
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicolescu, L.; Tudorache, M.T. Human-Computer Interaction in Customer Service: The Experience with AI Chatbots—A Systematic Literature Review. Electronics 2022, 11, 1579. [Google Scholar] [CrossRef]
- Adamopoulou, E.; Moussiades, L. Chatbots: History, technology, and applications. Mach. Learn. Appl. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Hwang, G.J.; Chang, C.Y. A review of opportunities and challenges of chatbots in education. Interact. Learn. Environ. 2021, 1952615. [Google Scholar] [CrossRef]
- Wollny, S.; Schneider, J.; Di Mitri, D.; Weidlich, J.; Rittberger, M.; Drachsler, H. Are we there yet?-A systematic literature review. Front. Artif. Intell. 2021, 4, 654924. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, C.W.; Ade-Ibijola, A. Chatbots applications in education: A systematic review. Comput. Educ. Artif. Intell. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Wilcox, H. Cheating Aussie Student Fails Uni Exam after Being Caught Using Artificial Intelligence Chatbot to Write Essay—Now Australia’s Top Universities Are Considering a Bizarre Solution to Stop It Happening Again. DailyMail. 2023. Available online: https://www.dailymail.co.uk/news/article-11688905/UNSW-student-fails-exam-using-OpenAIs-ChatGPT-write-essay.html (accessed on 2 February 2023).
- Stokel-Walker, C. AI bot ChatGPT writes smart essays-should academics worry? Nature 2022. [Google Scholar] [CrossRef]
- OpenA. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Rudolph, J.; Tan, S.; Tan, S. ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? J. Appl. Learn. Teach. 2023, 6, 342–363. [Google Scholar]
- GPT-4. Available online: https://openai.com/research/gpt-4 (accessed on 21 April 2023).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Schwendimann, R.; Blatter, C.; Dhaini, S.; Simon, M.; Ausserhofer, D. The occurrence, types, consequences and preventability of in-hospital adverse events—A scoping review. BMC Health Serv. Res. 2018, 18, 521. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Pollock, D.; Tricco, A.C.; Peters, M.D.; Mclnerney, P.A.; Khalil, H.; Godfrey, C.M.; Alex, L.; Munn, Z. Methodological quality, guidance, and tools in scoping reviews: A scoping review protocol. JBI Evid. Synth. 2022, 20, 1098–1105. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Hleg, A.I. Ethics Guidelines for Trustworthy AI. B-1049 Brussels. Available online: https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (accessed on 10 May 2023).
- Terzopoulos, G.; Satratzemi, M. Voice assistants and artificial intelligence in education. In Proceedings of the 9th Balkan Conference on Informatics, Sofia, Bulgaria, 26–28 September 2019; pp. 1–6. [Google Scholar]
- Webber, S.S.; Detjen, J.; MacLean, T.L.; Thomas, D. Team challenges: Is artificial intelligence the solution? Bus. Horizons 2019, 62, 741–750. [Google Scholar] [CrossRef]
- Marcinkowski, F.; Kieslich, K.; Starke, C.; Lünich, M. Implications of AI (un-) fairness in higher education admissions: The effects of perceived AI (un-) fairness on exit, voice and organizational reputation. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; pp. 122–130. [Google Scholar]
- Ahmed, A.A.A.; Ganapathy, A. Creation of automated content with embedded artificial intelligence: A study on learning management system for educational entrepreneurship. Acad. Entrep. J. 2021, 27, 1–10. [Google Scholar]
- Borenstein, J.; Howard, A. Emerging challenges in AI and the need for AI ethics education. AI Ethics 2021, 1, 61–65. [Google Scholar] [CrossRef]
- González-Calatayud, V.; Prendes-Espinosa, P.; Roig-Vila, R. Artificial intelligence for student assessment: A systematic review. Appl. Sci. 2021, 11, 5467. [Google Scholar] [CrossRef]
- Kamalov, F.; Sulieman, H.; Sant, R.; Calonge, D. Machine learning based approach to exam cheating detection. PLoS ONE 2021, 16, e0254340. [Google Scholar] [CrossRef]
- Miao, F.; Holmes, W.; Huang, R.; Zhang, H. AI and Education: A Guidance for Policymakers; UNESCO Publishing: Paris, France, 2021. [Google Scholar]
- Timan, T.; Mann, Z. Data protection in the era of artificial intelligence: Trends, existing solutions and recommendations for privacy-preserving technologies. In The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem; Springer International Publishing: Cham, Switzerland, 2021; pp. 153–175. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization. Recommendations on the Ethics of Artificial Intelligence. 2021. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380455 (accessed on 10 April 2023).
- JISC. AI in Tertiary Education: A Summary of the Current State of Play. Second Edition. June 2022. Available online: https://repository.jisc.ac.uk/8783/1/ai-in-tertiary-education-report-june-2022.pdf (accessed on 20 April 2023).
- Kulshreshtha, D.; Shayan, M.; Belfer, R.; Reddy, S.; Serban, I.V.; Kochmar, E. Few-shot Question Generation for Personalized Feedback in Intelligent Tutoring Systems. arXiv 2022, arXiv:2206.04187. [Google Scholar]
- Long, T.; Qin, J.; Shen, J.; Zhang, W.; Xia, W.; Tang, R.; He, X.; Yu, Y. Improving knowledge tracing with collaborative information. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; pp. 599–607. [Google Scholar]
- Mishkin, P.; Ahmad, L.; Brundage, M.; Krueger, G.; Sastry, G. DALL• E 2 Preview: Risks and Limitations. Noudettu 2022, 28, 2022. Available online: https://github.com/openai/dalle-2-preview/blob/main/system-card.md (accessed on 22 April 2023).
- Nguyen, A.; Ngo, H.N.; Hong, Y.; Dang, B.; Nguyen, B.P.T. Ethical principles for artificial intelligence in education. Educ. Inf. Technol. 2022, 28, 4221–4241. [Google Scholar] [CrossRef] [PubMed]
- Government AI Readiness Index. Oxford Insights. 2022. Available online: https://www.oxfordinsights.com/government-ai-readiness-index-2022 (accessed on 10 May 2023).
- Qadir, J. Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. TechRxiv 2022, TechRxiv:techrxiv.21789434.v1. [Google Scholar]
- St-Hilaire, F.; Vu, D.D.; Frau, A.; Burns, N.; Faraji, F.; Potochny, J.; Robert, S.; Roussel, A.; Zheng, S.; Glazier, T.; et al. A New era: Intelligent tutoring systems will transform online learning for millions. arXiv 2022, arXiv:2203.03724. [Google Scholar]
- Swiecki, Z.; Khosravi, H.; Chen, G.; Martinez-Maldonado, R.; Lodge, J.M.; Milligan, S.; Selwyn, N.; Gašević, D. Assessment in the age of artificial intelligence. Comput. Educ. Artif. Intell. 2022, 3, 100075. [Google Scholar] [CrossRef]
- Wahle, J.P.; Ruas, T.; Foltýnek, T.; Meuschke, N.; Gipp, B. Identifying machine-paraphrased plagiarism. In Proceedings of the Information for a Better World: Shaping the Global Future: 17th International Conference, iConference 2022, Virtual Event, 28 February–4 March 2022; Proceedings, Part I; Springer International Publishing: Cham, Switzerland, 2022; pp. 393–413. [Google Scholar]
- AlAfnan, M.A.; Dishari, S.; Jovic, M.; Lomidze, K. Chatgpt as an educational tool: Opportunities, challenges, and recommendations for communication, business writing, and composition courses. J. Artif. Intell. Technol. 2023, 3, 60–68. [Google Scholar] [CrossRef]
- Bouschery, S.G.; Blazevic, V.; Piller, F.T. Augmenting human innovation teams with artificial intelligence: Exploring transformer-based language models. J. Prod. Innov. Manag. 2023, 40, 139–153. [Google Scholar] [CrossRef]
- Chan, C.K.Y.; Tsi, L.H. The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? arXiv 2023, arXiv:2305.01185. [Google Scholar]
- Chen, Y.; Jensen, S.; Albert, L.J.; Gupta, S.; Lee, T. Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Inf. Syst. Front. 2023, 25, 161–182. [Google Scholar] [CrossRef]
- Chetouani, M.; Dignum, V.; Lukowicz, P.; Sierra, C. (Eds.) Human-Centered Artificial Intelligence: Advanced Lectures; Springer Nature: Berlin, Germany, 2023; Volume 13500. [Google Scholar]
- Cotton, D.R.; Cotton, P.A.; Shipway, J.R. Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innov. Educ. Teach. Int. 2023, 1–12. [Google Scholar] [CrossRef]
- Dai, W.; Lin, J.; Jin, F.; Li, T.; Tsai, Y.; Gasevic, D.; Chen, G. Can large language models provide feedback to students? A case study on ChatGPT. EdArVix 2023. [Google Scholar]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Elkins, S.; Kochmar, E.; Cheung, J.C.; Serban, I. How Useful are Educational Questions Generated by Large Language Models? arXiv 2023, arXiv:2304.06638. [Google Scholar]
- European Schoolnet. ChatGPT and the Role of AI in Assessment, Data4Learning Webinar Series; European Schoolnet: Brussels, Belgium, 2023. [Google Scholar]
- Hu, X.; Shubeck, K.; Sabatini, J. Artificial Intelligence-enabled adaptive assessments with Intelligent Tutors. In Innovating Assessments to Measure and Support Complex Skills; Foster, N., Piacentini, M., Eds.; OECD Publishing: Paris, France, 2023. [Google Scholar]
- Liu, Z.; Li, Y.; Wei, L.; Wang, W. Adaptive Exercise Recommendation Based on Cognitive Level and Collaborative Filtering. In Proceedings of the Computer Science and Education: 17th International Conference, ICCSE 2022, Ningbo, China, 18–21 August 2022; Revised Selected Papers, Part II; Springer Nature: Singapore, 2023; pp. 503–518. [Google Scholar]
- Lodge, J.M.; Thompson, K.; Corrin, L. Mapping out a research agenda for generative artificial intelligence in tertiary education. Australas. J. Educ. Technol. 2023, 39, 1–8. [Google Scholar] [CrossRef]
- Liu, D.; Bridgeman, A.; Chan, Y.K.C. ‘Please Do Not Assume the Worst of Us’: Students Know AI Is Here to Stay and Want Unis to Teach Them How to Use It. The Conversation. Available online: https://theconversation.com/please-do-not-assume-the-worst-of-us-students-know-ai-is-here-to-stay-and-want-unis-to-teach-them-how-to-use-it-203426 (accessed on 15 May 2023).
- Malmström, H.; Stöhr, C.; Ou, A.W. Chatbots and other AI for learning: A survey of use and views among university students in Sweden. Chalmers Stud. Commun. Learn. High. Educ. 2023, 1. [Google Scholar]
- Perkins, M. Academic Integrity considerations of AI Large Language Models in the post-pandemic era: ChatGPT and beyond. J. Univ. Teach. Learn. Pract. 2023, 20, 7. [Google Scholar] [CrossRef]
- Rasul, T.; Nair, S.; Kalendra, D.; Robin, M.; de Oliveira Santini, F.; Ladeira, W.J.; Sun, M.; Day, I.; Rather, R.; Heathcote, L. The role of ChatGPT in higher education: Benefits, challenges, and future research directions. J. Appl. Learn. Teach. 2023, 6. [Google Scholar]
- Sabzalieva, E.; Valentini, A. ChatGPT and Artificial Intelligence in Higher Education: Quick Start Guide; UNESCO: Paris, France, 2023. [Google Scholar]
- Sullivan, M.; Kelly, A.; McLaughlan, P. ChatGPT in higher education: Considerations for academic integrity and student learning. J. Appl. Learn. Teach. 2023, 6. [Google Scholar]
- UAE. United Arab Emirates 100 Practical Applications and Uses of Generative AI; Minister of State for Artificial Intelligence, Digital Economy & Remote Work Applications Office: Dubai, United Arab Emirates, 2023. [Google Scholar]
- Walton Family Foundation. Teachers and Students Embrace ChatGPT for Education. 2023. Available online: https://www.waltonfamilyfoundation.org/learning/teachers-and-students-embrace-chatgpt-for-education (accessed on 12 May 2023).
- Wylie, I. Can Artificial Intelligence Deliver Real Learning at Business School? Financial Times. 2023. Available online: https://www.ft.com/content/34de1ae6-fdde-43e3-a39a-50e30b8b97a1 (accessed on 4 May 2023).
- Clarke, V.; Braun, V.; Hayfield, N. Thematic analysis. Qualitative psychology: A practical guide to research methods. Qual. Psychol. 2015, 3, 222–248. [Google Scholar]
- Popkhadze, N. The Good, The Bad and The Ugly: AI in the higher education. Hallinnon Tutk. 2021, 40, 254–263. [Google Scholar] [CrossRef]
- Google Trends. Google Trends. Available online: https://www.google.com/trends (accessed on 25 April 2023).
- Luan, H.; Tsai, C.C. A review of using machine learning approaches for precision education. Educ. Technol. Soc. 2021, 24, 250–266. [Google Scholar]
- Jonnalagadda, A.; Rajvir, M.; Singh, S.; Chandramouliswaran, S.; George, J.; Kamalov, F. An Ensemble-Based Machine Learning Model for Emotion and Mental Health Detection. J. Inf. Knowl. Manag. 2023, 22, 2250075. [Google Scholar] [CrossRef]
- Mahfood, B.; Elnagar, A.; Kamalov, F. Emotion Recognition from Speech Using Convolutional Neural Networks. In Proceedings of the Data Analytics and Management: ICDAM 2022; Springer Nature: Singapore, 2023; pp. 719–731. [Google Scholar]
- Mousavinasab, E.; Zarifsanaiey, N.; Niakan, R.; Kalhori, S.; Rakhshan, M.; Keikha, L.; Ghazi, S.M. Intelligent tutoring systems: A systematic review of characteristics, applications, and evaluation methods. Interact. Learn. Environ. 2021, 29, 142–163. [Google Scholar] [CrossRef]
- Kochmar, E.; Vu, D.D.; Belfer, R.; Gupta, V.; Serban, I.V.; Pineau, J. Automated data-driven generation of personalized pedagogical interventions in intelligent tutoring systems. Int. J. Artif. Intell. Educ. 2022, 32, 323–349. [Google Scholar] [CrossRef]
- Minn, S. AI-assisted knowledge assessment techniques for adaptive learning environments. Comput. Educ. Artif. Intell. 2022, 3, 100050. [Google Scholar] [CrossRef]
- Vittorini, P.; Menini, S.; Tonelli, S. An AI-based system for formative and summative assessment in data science courses. Int. J. Artif. Intell. Educ. 2021, 31, 159–185. [Google Scholar] [CrossRef]
- Villegas-Ch, W.; Arias-Navarrete, A.; Palacios-Pacheco, X. Proposal of an Architecture for the Integration of a Chatbot with Artificial Intelligence in a Smart Campus for the Improvement of Learning. Sustainability 2020, 12, 1500. [Google Scholar] [CrossRef]
- Lee, D.; Yeo, S. Developing an AI-based chatbot for practicing responsive teaching in mathematics. Comput. Educ. 2022, 191, 104646. [Google Scholar] [CrossRef]
- Klimova, B.; Seraj, P.M.I. The use of chatbots in university EFL settings: Research trends and pedagogical implications. Front. Psychol. 2023, 14, 1146. [Google Scholar] [CrossRef]
- Lin, C.J.; Mubarok, H. Learning analytics for investigating the mind map-guided AI chatbot approach in an EFL flipped speaking classroom. Educ. Technol. Soc. 2021, 24, 16–35. [Google Scholar]
- Nwana, H.S. Intelligent tutoring systems: An overview. Artif. Intell. Rev. 1990, 4, 251–277. [Google Scholar] [CrossRef]
- Bhutoria, A. Personalized education and artificial intelligence in United States, China, and India: A systematic Review using a Human-In-The-Loop model. Comput. Educ. Artif. Intell. 2022, 3, 100068. [Google Scholar] [CrossRef]
- Hao, K. China has started a grand experiment in AI education. It could reshape how the world learns. MIT Technol. Rev. 2019, 123. [Google Scholar]
- Kamalov, F.; Leung, H.H. Numerical computing in engineering mathematics. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; IEEE: Manhattan, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Kamalov, F.; Santandreu, D.; Leung, H.H.; Johnson, J.; El Khatib, Z. Leveraging computer algebra systems in calculus: A case study with SymPy. In Proceedings of the 2023 IEEE Global Engineering Education Conference (EDUCON), Kuwait City, Kuwait, 1–4 May 2023; IEEE: Manhattan, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Bryant, J.; Heitz, C.; Sanghvi, S.; Wagle, D. How Artificial Intelligence Will Impact K-12 Teachers; McKinsey and Company: New York, NY, USA, 2020. [Google Scholar]
- Luan, H. Democratizing education through AI-driven learning platforms. In Handbook of Artificial Intelligence in Education; Springer: Berlin/Heidelberg, Germany, 2020; pp. 59–74. [Google Scholar]
- Calonge, D.S.; Aman Shah, M.; Riggs, K.; Connor, M. MOOCs and upskilling in Australia: A qualitative literature study. Cogent Educ. 2019, 6, 1687392. [Google Scholar] [CrossRef]
- Shah, M.A.; Calonge, D.S. Frugal MOOCs: An adaptable contextualized approach to MOOC designs for refugees. Int. Rev. Res. Open Distrib. Learn. 2019, 20, 1–19. [Google Scholar]
- Khanh, Q.V.; Chehri, A.; Quy, N.M.; Han, N.D.; Ban, N.T. Innovative Trends in the 6G Era: A Comprehensive Survey of Architecture, Applications, Technologies, and Challenges. IEEE Access 2023. [Google Scholar]
- Tondeur, J.; van Braak, J.; Zhu, C. Unpacking the potential of AI-driven learning in education: A multilevel framework. Comput. Educ. 2020, 151, 103858. [Google Scholar]
- Huang, R.H.; Soman, R. A new approach to promoting equity in education through AI-driven learning. J. Comput. Educ. 2020, 7, 279–299. [Google Scholar]
- Holmes, W.; Porayska-Pomsta, K.; Holstein, K.; Sutherl, E.; Baker, T.; Shum, S.B.; Koedinger, K.R. Ethics of AI in education: Towards a community-wide framework. Int. J. Artif. Intell. Educ. 2021, 1–23. [Google Scholar] [CrossRef]
- Maslej, N.; Fattorini, L.; Brynjolfsson, E.; Etchemendy, J.; Ligett, K.; Lyons, T.; Manyika, J.; Ngo, H.; Niebles, J.C.; Parli, V. The AI Index 2023 Annual Report; AI Index Steering Committee, Institute for Human-Centered AI, Stanford University: Stanford, CA, USA, 2023. [Google Scholar]
- AI Ethics Initiative. 2017. Available online: https://aiethicsinitiative.org (accessed on 11 May 2023).
- Universite de Montréal. Declaration of Montréal for a Responsible Development of AI. Université de Montréal. 2018. Available online: https://www.montrealdeclaration-responsibleai.com (accessed on 11 May 2023).
- Nazir, A.; Mitra, R.; Sulieman, H.; Kamalov, F. Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention. Sensors 2023, 23, 5811. [Google Scholar] [CrossRef]
- Schiff, D. Education for AI, not AI for Education: The role of education and ethics in national AI policy strategies. Int. J. Artif. Intell. Educ. 2022, 32, 527–563. [Google Scholar] [CrossRef]
- Zeide, E. The structural consequences of big data-driven education. Big Data 2017, 5, 164–172. [Google Scholar] [CrossRef]
- Bessen, J.E.; Impink, S.M.; Reichensperger, L.; Seamans, R. GDPR and the Importance of Data to AI Startups; NYU Stern School of Business: New York, NY, USA, 2020. [Google Scholar]
- Ntoutsi, E.; Fafalios, P.; Gadiraju, U.; Iosifidis, V.; Nejdl, W.; Vidal, M.E.; Ruggieri, S.; Turini, F.; Papadopoulos, S.; Krasanakis, E.; et al. Bias in data-driven artificial intelligence systems—An introductory survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1356. [Google Scholar] [CrossRef]
- Holstein, K.; Wortman Vaughan, J.; Daumé, H., III; Dudík, M.; Wallach, H. Improving fairness in machine learning systems: What do industry practitioners need? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–16. [Google Scholar]
- Khalil, M.; Prinsloo, P.; Slade, S. In the nexus of integrity and surveillance: Proctoring (re) considered. J. Comput. Assist. Learn. 2022, 38, 1589–1602. [Google Scholar] [CrossRef]
- Selwyn, N.; O’Neill, C.; Smith, G.; Andrejevic, M.; Gu, X. A necessary evil? The rise of online exam proctoring in Australian universities. Media Int. Aust. 2021, 186, 149–164. [Google Scholar] [CrossRef]
- Terwiesch, C. Would Chat GPT Get a Wharton MBA? [White Paper]. Wharton School of Business. 2023. Available online: https://mackinstitute.wharton.upenn.edu/wp-content/uploads/2023/01/Christian-Terwiesch-Chat-GTP-1.24.pdf (accessed on 8 May 2023).
- Meo, S.A.; Talha, M. Turnitin: Is it a text matching or plagiarism detection tool? Saudi J. Anaesth. 2019, 13 (Suppl. S1), S48. [Google Scholar] [CrossRef]
- Khalil, M.; Er, E. Will ChatGPT get you caught? Rethinking of plagiarism detection. arXiv 2023, arXiv:2302.04335. [Google Scholar]
- Buckingham, D. The Media Education Manifesto; Polity Press: Cambridge, UK, 2019. [Google Scholar]
- Lindsey, R.; Dalenberg, A.; Kramer, L. The role of human touch in leveraging AI for education. J. Educ. Technol. Syst. 2020, 49, 167–183. [Google Scholar]
- Yeadon, W.; Inyang, O.O.; Mizouri, A.; Peach, A.; Testrow, C.P. The death of the short-form physics essay in the coming AI revolution. Phys. Educ. 2023, 58, 035027. [Google Scholar] [CrossRef]
- Hwang, G.J.; Chien, S.Y. Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective. Comput. Educ. Artif. Intell. 2022, 3, 100082. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Bessen, J. Artificial intelligence and jobs: The role of demand. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 291–307. [Google Scholar]
- Kabudi, T.; Pappas, I.; Olsen, D.H. AI-enabled adaptive learning systems: A systematic mapping of the literature. Comput. Educ. Artif. Intell. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Boddington, P.; Rump, B. Ethics in computing, AI and data use: A case for a key stage 1-4 computer ethics curriculum. ACM Trans. Comput. Educ. 2020, 20, 1–20. [Google Scholar]
Author | Year | Main Contributions of the Surveyed Work | |
---|---|---|---|
1 | Hleg et al. [17] | 2019 | Presents ethics guidelines for trustworthy AI |
2 | Terzopoulos et al. [18] | 2019 | Explores the capabilities of voice assistants in the classroom |
3 | Webber et al. [19] | 2019 | Discusses the potential application of AI to improve teamwork |
4 | Marcinkowski et al. [20] | 2020 | Investigates algorithmic vs. human decision-making in HE admissions |
5 | Ahmed et al. [21] | 2021 | Investigates an LMS in entrepreneurship |
6 | Borenstein et al. [22] | 2021 | Examines the ethical implications of Artificial Intelligence technologies |
7 | González-Calatayud et al. [23] | 2021 | Analyzes the use of AI for student assessment |
8 | Kamalov et al. [24] | 2021 | Explores Machine Learning for exam-cheating detection |
9 | Miao et al. [25] | 2021 | Discusses AI in Education policy |
10 | Timan et al. [26] | 2021 | Discusses data protection in the age of AI |
11 | UNESCO [27] | 2021 | Provides recommendations on the ethics of AI |
12 | JISC [28] | 2022 | Discusses and reflects on AI in Tertiary Education |
13 | Kulshreshtha et al. [29] | 2022 | Explores automatically generated questions as personalized feedback in an ITS |
14 | Long et al. [30] | 2022 | Explores Collaborative Knowledge Tracing to predict students’ correctness in answering questions |
15 | Mishkin et al. [31] | 2022 | Presents risks and limitations for DALL-E 2 |
16 | Nguyen et al. [32] | 2022 | Discusses ethical principles for AI in Education |
17 | Oxford Insights Government AI Readiness Index [33] | 2022 | Compares how 160 governments are prepared to use AI in public services |
18 | Qadir et al. [34] | 2022 | Discusses advantages and drawbacks on Generative AI in education |
19 | St-Hilaire et al. [35] | 2022 | Presents the results of a comparative study on learning outcomes for two popular online learning platforms |
20 | Swiecki et al. [36] | 2022 | Discusses Generative AI and assessment practices |
21 | Wahle et al. [37] | 2022 | Explores detection of machine-paraphrased plagiarism |
22 | AlAfnan et al. [38] | 2023 | Explores advancements in Artificial Intelligence and its applications |
23 | Bouschery et al. [39] | 2023 | Focuses on product innovation management research and strategies |
24 | Chan et al. [40] | 2023 | Presents a preprint discussing specific topics related to teachers, AI and Higher Education |
25 | Chen et al. [41] | 2023 | Investigates the use of chatbots in classrooms |
26 | Chetouani et al. [42] | 2023 | Examines human-centered AI, human-centered machine learning, ethics, law, and the societal aspects of AI |
27 | Cotton et al. [43] | 2023 | Examines innovations in Education and Teaching |
28 | Dai et al. [44] | 2023 | Presents a preprint discussing specific research topics related to education and technology |
29 | Dwivedi et al. [45] | 2023 | Discusses opportunities as well as ethical and legal challenges of Generative AI |
30 | Elkins et al. [46] | 2023 | Explores useability of educational questions generated by LLMs |
31 | European Schoolnet [47] | 2023 | Explores ethical use of digitally processed data for student learning |
32 | Hu et al. [48] | 2023 | Explores adaptive assessments with Intelligent Tutors |
33 | Liu et al. [49] | 2023 | Discusses AI and its applications in Education |
34 | Lodge et al. [50] | 2023 | Discusses the use of Generative AI in tertiary education |
35 | Liu et al. [51] | 2023 | Presents initial results of a survey on the use if Generative AI at university |
36 | Malmström et al. [52] | 2023 | Discusses the use of ChatGPT in HE |
37 | Perkins et al. [53] | 2023 | Discusses academic integrity of LLMs |
38 | Rasul et al. [54] | 2023 | Presents benefits and challenges of ChatGPT in HE |
39 | Rudolph et al. [9] | 2023 | Discusses ChatGPT and assessment |
40 | Sabzalieva et al. [55] | 2023 | Provides an overview of how ChatGPT works and explains how it can be used in HE |
41 | Sullivan et al. [56] | 2023 | Discusses ChatGPT, academic integrity and student learning |
42 | UAE [57] | 2023 | Provides a comprehensive guide on the utilization of Generative AI applications |
43 | Walton Family Foundation [58] | 2023 | Discusses teachers and students’ adoption of Generative AI |
44 | Wylie et al. [59] | 2023 | Explores the uses of Generative AI in Business Schools |
Benefits | Challenges |
---|---|
|
|
Benefits | Challenges |
---|---|
|
|
Benefits | Challenges |
---|---|
|
|
Benefits | Challenges |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamalov, F.; Santandreu Calonge, D.; Gurrib, I. New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability 2023, 15, 12451. https://doi.org/10.3390/su151612451
Kamalov F, Santandreu Calonge D, Gurrib I. New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability. 2023; 15(16):12451. https://doi.org/10.3390/su151612451
Chicago/Turabian StyleKamalov, Firuz, David Santandreu Calonge, and Ikhlaas Gurrib. 2023. "New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution" Sustainability 15, no. 16: 12451. https://doi.org/10.3390/su151612451
APA StyleKamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451