Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays
<p>Clay, wool and banana fiber materials.</p> "> Figure 2
<p>Clay material particle size distribution.</p> "> Figure 3
<p>The clay (C) and clay with wool (W), banana (B) and wool-banana (WB).</p> "> Figure 4
<p>UCS curves for optimal blends of clay, clay-wool (W), clay-banana (B) and clay-wool-banana (WB) blends.</p> "> Figure 5
<p>Failure patterns in clay and clay-fiber composite samples.</p> "> Figure 6
<p>Fibers in a portion of C + WB sample after failure.</p> "> Figure 7
<p>Cost of clay-fiber blends compared with M<sub>R</sub>, S<sub>p</sub> and CBR.</p> ">
Abstract
:1. Introduction
- i.
- Evaluation of the optimal doses of agro-biogenic fibers, i.e., wool, banana and wool-banana composite for amelioration of expansive clay.
- ii.
- Optimum quantification of free swell, ԐEPT, Sp, MR, and CBR parameters for individual fibers (wool and banana) and composite fibers (wool plus banana).
- iii.
- Evaluation of impact of increase in moisture content on the strength and resilience of optimum blend.
- iv.
- Statistical analysis of datasets for the evaluation of data health.
2. Materials and Methods
3. Results and Discussion
- Elastic phase:
- Elasto-plastic phase:
- Plastic strain:
4. Conclusions
- (1)
- The optimal composite blend of subgrade clay and waste fibers were observed as clay plus 0.6% wool fibers, 1.2% banana fibers. The outcome of this study clearly demonstrates that elastoplastic transition strain (ԐEP), peak strength (Sp), resilient modulus (MR) and CBR parameters were enhanced by 3.5, 2.7, 3.0 and 4.5-times, respectively for the optimal blend as compared with nontreated clay. This novel achievement of the enhancement of most significant geotechnical parameters up to 270% to 450% is a valuable addition to the existing literature for geotechnical and pavement engineers.
- (2)
- The optimal blend (clay + 0.6% wool + 1.2% banana fibers) evaluated showed the ratio of strain relating to the peak strength (ԐPS) to the strain relating to the residual strength (ԐRS), i.e., ԐPS/ԐRS as 2.99, which is highest among all fiber-clay blend depicting the ductile clay-fiber mixture.
- (3)
- The moisture content (MC) of optimal blend (i.e., clay + 0.6% wool + 1.2% banana fibers) was increased from 16.3% (OMC) to 26% (wet condition) which caused a decrease in peak strength from 128 kPa (at OMC) to 50 kPa (at 26% moisture). This aspect showed that the optimal blend works well in wet seasons. Hence, the “Moisture-Efficient Blend” was achieved in this research.
- (4)
- The study of the swell behavior shows the reduction of free swell potential up to 58%, depicting the feasibility of using optimal composite fibers dose in subgrades in response to wet season.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Soltani, A.; Taheri, A.; Khatibi, M.; Estabragh, A.R. Swelling potential of a stabilized expansive soil: A comparative experimental study. Geotech. Geol. Eng. 2017, 35, 1717–1744. [Google Scholar] [CrossRef]
- Onyelowe, K.; Van, D.B.; Eberemu, A.; Xuan, M.N.; Salahudeen, A.B.; Ezugwu, C.; Van, M.N.; Orji, F.; Sosa, F.; Duc, T.T.; et al. Sorptivity, swelling, shrinkage, compression and durability of quarry dust treated soft soils for moisture bound pavement geotechnics. J. Mater. Res. Technol. 2019, 8, 3529–3538. [Google Scholar] [CrossRef]
- Ghorbani, A.; Hasanzadehshooiili, H.; Mohammadi, M.; Sianati, F.; Salimi, M.; Sadowski, L.; Szymanowski, J. Effect of selected nanospheres on the mechanical strength of lime-stabilized high-plasticity clay soils. Adv. Civ. Eng. 2019, 2019, 4257530. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Karimiazar, J.; Sharifi Teshnizi, E.; Arjmandzadeh, R.; Bahmani, S.H. Effect of Nano-Additives on the Strength and Durability Characteristics of Marl. Minerals 2021, 11, 1119. [Google Scholar] [CrossRef]
- Karimiazar, J.; Sharifi Teshnizi, E.; Mirzababaei, M.; Mahdad, M.; Arjmandzadeh, R. California bearing ratio of a reactive clay treated with nano-additives and cement. J. Mater. Civ. Eng. 2022, 34, 04021431. [Google Scholar] [CrossRef]
- Galan-Marin, C.; Rivera-Gomez, C.; Petric, J. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 2010, 24, 1462–1468. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A. A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build. Mater. 2012, 30, 100–116. [Google Scholar] [CrossRef]
- Marino, C.; Nucara, A.; Nucera, G.; Pietrafesa, M. Economic, energetic and environmental analysis of the waste management system of Reggio Calabria. Int. J. Heat Technol. 2017, 35, S108–S116. [Google Scholar] [CrossRef]
- Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees. Sustainability 2020, 12, 7340. [Google Scholar] [CrossRef]
- Türköz, M.; Umu, S.U.; Öztürk, O. Effect of Silica Fume as a Waste Material for Sustainable Environment on the Stabilization and Dynamic Behavior of Dispersive Soil. Sustainability 2021, 13, 4321. [Google Scholar] [CrossRef]
- Cristelo, N.; Rivera, J.; Miranda, T.; Fernández-Jiménez, A. Stabilisation of a Plastic Soil with Alkali Activated Cements Developed from Industrial Wastes. Sustainability 2021, 13, 4501. [Google Scholar] [CrossRef]
- Seco, A.; del Castillo, J.M.; Espuelas, S.; Marcelino-Sadaba, S.; Garcia, B. Stabilization of a Clay Soil Using Cementing Material from Spent Refractories and Ground-Granulated Blast Furnace Slag. Sustainability 2021, 13, 3015. [Google Scholar] [CrossRef]
- Seco, A.; del Castillo, J.M.; Perlot, C.; Marcelino-Sádaba, S.; Prieto, E.; Espuelas, S. Experimental Study of the Valorization of Sulfate Soils for Use as Construction Material. Sustainability 2022, 14, 6609. [Google Scholar] [CrossRef]
- Cuisinier, O.; Auriol, J.C.; le Borgne, T.; Deneele, D. Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng. Geol. 2011, 123, 187–193. [Google Scholar] [CrossRef]
- Fatahi, B.; Le, T.M.; Fatahi, B.; Khabbaz, H. Shrinkage properties of soft clay treated with cement and geofibers. Geotech. Geol. Eng. 2013, 31, 1421–1435. [Google Scholar] [CrossRef]
- Kazmi, S.M.S.; Abbas, S.; Munir, M.J.; Khitab, A. Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks. Build. Eng. 2016, 7, 372–378. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, P.; Li, X.; Lin, H.; Liu, Y.; Yuan, H. Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Appl. Sci. 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Lemos, S.G.F.P.; Almeida, M.D.S.S.; Consoli, N.C.; Nascimento, T.Z.; Polido, U.F. Field and Laboratory Investigation of Highly Organic Clay Stabilized with Portland Cement. J. Mater. Civ. Eng. 2020, 32, 04020063. [Google Scholar] [CrossRef]
- Nasiri, H.; Khayat, N.; Mirzababaei, M. Simple yet quick stabilization of clay using a waste by-product. Transp. Geotech. 2021, 28, 100531. [Google Scholar] [CrossRef]
- Aygormez, Y.; Canpolat, O.; Al-mashhadani, M.M.; Uysal, M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr. Build. Mater. 2020, 235, 117502. [Google Scholar] [CrossRef]
- Mejia Osorio, J.C.; Rodríguez Baracaldo, R.; Olaya Florez, J.J. The influence of alkali treatment on banana fibre’s mechanical properties. Ing. Investig. 2012, 32, 83–87. [Google Scholar]
- Mirzababaei, M.; Miraftab, M.; Mohamed, M.; McMahon, P. Unconfined compression strength of reinforced clays with carpet waste fibers. J. Geotech. Geoenvironmental Eng. 2013, 139, 483–493. [Google Scholar] [CrossRef]
- Arabani, M.; Haghsheno, H. The effect of water content on shear and compressive behavior of polymeric fiber-reinforced clay. SN Appl. Sci. 2020, 2, 1759. [Google Scholar] [CrossRef]
- Silveira, M.R.; Rocha, S.A.; Correia, N.D.; Rodrigues, R.A.; Giacheti, H.L.; Lodi, P.C. Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils. Sustainability 2021, 13, 12603. [Google Scholar] [CrossRef]
- Taleb, T.; Unsever, Y.S. Study on Strength and Swell Behavioral Change and Properties of the Clay–Fiber Mixtures. Sustainability 2022, 14, 6767. [Google Scholar] [CrossRef]
- Yue, J.; Chen, Y.; Zhao, L.; Wang, S.; Su, H.; Yang, X.; Gao, H.; Zhang, Y.; Li, W. Effects of Aging on the Dry Shrinkage Cracking of Lime Soils with Different Proportions. Appl. Sci. 2021, 12, 145. [Google Scholar] [CrossRef]
- Abdi, M.R.; Ghalandarzadeh, A.; Chafi, L.S. An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. J. Rock Mech. Geotech. Eng. 2021, 13, 885–898. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Zhao, L.Z. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembr. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Guo, P.-P.; Ren, W.-X.; Yuan, B.-X.; Yuan, H.-P.; Zhao, Y.-L.; Shan, S.-B.; Cao, P. Laboratory investigation on strength characteristics of expansive soil treated with jute fiber reinforcement. Int. J. Geomech. 2017, 17, 04017101. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.A.; Li, G.; Zhang, J. Investigation of the Mechanical Behavior of Polypropylene Fiber-Reinforced Red Clay. Appl. Sci. 2021, 11, 10521. [Google Scholar] [CrossRef]
- Lang, L.; Chen, B.; Li, N. Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization. Mar. Georesources Geotechnol. 2020, 39, 659–669. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B. Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement. J. Clean. Prod. 2020, 271, 122497. [Google Scholar] [CrossRef]
- Lang, L.; Chen, B.; Duan, H. Modification of nanoparticles for the strength enhancing of cement-stabilized dredged sludge. J. Rock Mech. Geotech. Eng. 2021, 13, 694–704. [Google Scholar] [CrossRef]
- Rahman, S.S.; Siddiqua, S.; Cherian, C. Sustainable applications of textile waste fiber in the construction and geotechnical industries: A retrospect. Clean. Eng. Technol. 2022, 6, 100420. [Google Scholar] [CrossRef]
- Galan-Marín, C.; Rivera-Gómez, C.; Petric-Gray, J. Effect of animal fibres reinforcement on stabilized earth mechanical properties. J. Biobased Mater. Bioenergy 2010, 4, 121–128. [Google Scholar] [CrossRef]
- Herrera-Franco, P.J.; Valadez-González, A. Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Part A 2004, 35, 339–345. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.H.; Hu, H.X. The tensile and swelling behavior of cement-stabilized marine clay reinforced with short waste fibers. Mar. Georesources Geotechnol. 2019, 37, 1236–1246. [Google Scholar] [CrossRef]
- Mamunur Rashid, M.; Samad, S.A.; Gafur, M.A.; Qadir, R.; Chowdhury, A.M. Effect of reinforcement of hydrophobic grade banana (musa ornata) bark fiber on the physicomechanical properties of isotactic polypropylene. Int. J. Polym. Sci. 2016, 2016, 9017956. [Google Scholar] [CrossRef] [Green Version]
- Motaleb, K.Z.M.; Mizan, R.A.; Milašius, R. Development and characterization of eco-sustainable banana fiber nonwoven material: Surface treatment, water absorbency and mechanical properties. Cellulose 2020, 27, 7889–7900. [Google Scholar] [CrossRef]
- Wang, B.; Panigrahi, S.; Tabil, L.; Crerar, W.; Sokansanj, S.; Braun, L. Modification of flax fibers by chemical treatment. In Proceedings of the CSAE/SCGR Meeting, Montreal, QC, Canada, 6–9 July 2003; pp. 3–337. [Google Scholar]
- Yetimoglu, T.; Salbas, O. A study on shear strength of sands reinforced with randomly distributed discrete fibers. J. Geotext. Geomembr. 2003, 21, 103–110. [Google Scholar] [CrossRef]
- Ferreira da Costa, L.; Lucena, L.C.; Lucena, A.E.; Grangeiro de Barros, A. Use of Banana fibers in SMA mixtures. J. Mater. Civ. Eng. 2020, 32, 04019341. [Google Scholar] [CrossRef]
- ASTM D1557-12; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort, Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2021; Volume 4.
- ASTM D2166-91; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, Designation D 2166-91: Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2017; Volume 4.
- AASHTO T307-03; Determining the Resilient Modulus of Soils and Aggregate Materials, Standard Specifications for Transportation Materials and Methods of Sampling and Testing. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2013.
- ASTM D1883-16; Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils, Annual Book of ASTM Standards. American Society for Testing and Materials: Philadelphia, PA, USA, 2016; Volume 4.
Property/Constituent | Value ^ |
---|---|
Dry density (g/cm3) ASTM 1557 | 1.98 |
OMC (%) ASTM 1557 | 16.3 |
Liquid limit (%) ASTM 4318 | 77 |
Plastic limit (%) ASTM4318 | 36 |
Plasticity index (%) ASTM4318 | 41 |
Free swell potential (%) ASTM 4546 | 31 |
Swell pressure (kPa) ASTM4546 | 237 |
Compression index ASTM4546 | 0.46 |
Cohesion (kPa) ASTM 4767 | 59 |
Friction angle (degree) ASTM4767 | 12 |
Specific gravity (Gs) ASTM D854 | 2.69 |
Clay (%) | 69 |
Silt (%) | 28 |
Sand (%) | 3 |
USCS classification ASTM D2487 | CH |
Property | Value |
---|---|
Breaking strain | |
Dry | 19–38% |
Wet | 32–53% |
Specific gravity | 1.29 |
Length (mm) | 23–31 mm |
Color | white/brown |
Moisture (%) | 21% |
Recovery at strain | |
4% | 56% |
8% | 37% |
Diameter (mm) | 0.136–0.214 |
Constituent/Property | Value |
---|---|
Diameter (mm) | 0.245–0.311 |
Natural moisture content (%) | 67 |
Elongation at break (%) | 1.9–4.7 |
Cellulose content (%) | 64 |
Density (g/cm3) | 1.23 |
Length (mm) | 28–46 |
Ultimate strain (%) | 4.1–5.7 |
Specific gravity | 1.17 |
Color | brown |
Sr No. | Mixtures ID | Swell Potential ^ | UCS ^ | Resilient Modulus ^ | CBR ^ |
---|---|---|---|---|---|
(a) | |||||
1 | C | * | * | * | * |
2 | C + 0.2% W | * | * | ||
3 | C + 0.4% W | * | * | ||
4 | C + 0.6% W | * | * | * | * |
5 | C + 0.8% W | * | * | ||
(b) | |||||
1 | C + 0.4% B | * | * | ||
2 | C + 0.8% B | * | * | ||
3 | C + 1.2% B | * | * | * | * |
4 | C + 1.6% B | * | * | ||
(c) | |||||
1 | C + 0.2% W + 0.4% B | * | * | ||
2 | C + 0.2% W + 0.8% B | * | * | ||
3 | C + 0.2% W + 1.2% B | * | * | * | * |
4 | C + 0.2% W + 1.6% B | * | * | ||
5 | C + 0.4% W + 0.4% B | * | * | ||
6 | C + 0.4% W + 0.8% B | * | * | ||
7 | C + 0.4% W + 1.2% B | * | * | * | * |
8 | C + 0.4% W + 1.6% B | * | * | ||
9 | C + 0.6% W + 0.4% B | * | * | ||
10 | C + 0.6% W + 0.8% B | * | * | ||
11 | C + 0.6% W + 1.2% B | * | * | * | * |
12 | C + 0.6% W + 1.6% B | * | * | ||
13 | C + 0.8% W + 0.4% B | * | * | ||
14 | C + 0.8% W + 0.8% B | * | * | ||
15 | C + 0.8% W + 1.2% B | * | * | * | * |
16 | C + 0.8% W + 1.6% B | * | * |
Sr No. | Mixtures ID | Free Swell Potential (%) | UCS Test Parameters | CBR (%) | Resilient Modulus, (MPa) | |||
---|---|---|---|---|---|---|---|---|
Elastoplastic Strain (%) | Peak Strength (kPa) | SCF/SC | ԐPS/ԐRS | |||||
(a) | ||||||||
1 | C | 31 | 1.51 | 48 | - | 1.41 | 3.4 | 80 |
2 | C + 0.2% W | 29 | 1.75 | 51 | 1.06 | 1.57 | ||
3 | C + 0.4% W | 27 | 2.16 | 61 | 1.27 | 1.78 | ||
4 | C + 0.6% W | 26 | 3.05 | 66 | 1.38 | 2.02 | 7.5 | 116 |
5 | C + 0.8% W | 23 | 3.16 | 57 | 1.19 | 1.95 | ||
(b) | ||||||||
1 | C + 0.4% B | 30 | 1.62 | 50 | 1.04 | 1.46 | ||
2 | C + 0.8% B | 29 | 1.73 | 55 | 1.15 | 1.59 | ||
3 | C + 1.2% B | 27 | 2.32 | 58 | 1.21 | 1.87 | 5.4 | 101 |
4 | C + 1.6% B | 26 | 2.53 | 53 | 1.10 | 1.75 | ||
(c) | ||||||||
1 | C + 0.2% W + 0.4% B | 27 | 1.82 | 57 | 1.19 | 1.62 | ||
2 | C + 0.2% W + 0.8% B | 25 | 2.61 | 64 | 1.33 | 1.86 | ||
3 | C + 0.2% W + 1.2% B | 23 | 3.32 | 78 | 1.63 | 2.03 | 13.6 | 156 |
4 | C + 0.2% W + 1.6% B | 21 | 4.21 | 72 | 1.50 | 1.94 | ||
5 | C + 0.4% W + 0.4% B | 25 | 1.97 | 63 | 1.31 | 1.71 | ||
6 | C + 0.4% W + 0.8% B | 23 | 2.82 | 79 | 1.65 | 1.93 | ||
7 | C + 0.4% W + 1.2% B | 19 | 3.81 | 94 | 1.96 | 2.09 | 14.6 | 183 |
8 | C + 0.4% W + 1.6% B | 17 | 4.62 | 88 | 1.83 | 1.81 | ||
9 | C + 0.6% W + 0.4% B | 22 | 2.24 | 84 | 1.75 | 1.88 | ||
10 | C + 0.6% W + 0.8% B | 17 | 3.89 | 92 | 1.92 | 2.14 | ||
11 | C + 0.6% W + 1.2% B | 13 | 5.29 | 128 | 2.67 | 2.99 | 15.4 | 236 |
12 | C + 0.6% W + 1.6% B | 12 | 4.78 | 108 | 2.25 | 2.34 | ||
13 | C + 0.8% W + 0.4% B | 23 | 2.18 | 75 | 1.56 | 1.81 | ||
14 | C + 0.8% W + 0.8% B | 21 | 3.02 | 84 | 1.75 | 1.98 | ||
15 | C + 0.8% W + 1.2% B | 20 | 4.14 | 117 | 2.44 | 2.73 | 11.2 | 216 |
16 | C + 0.8% W + 1.6% B | 18 | 3.89 | 97 | 2.02 | 2.13 |
Sr No. | Statistic | Free Swell Potential (%) | UCS Test Parameters | CBR (%) | Resilient Modulus, (MPa) | |||
---|---|---|---|---|---|---|---|---|
Elastoplastic Strain (%) | Peak Strength (kPa) | SCF/SC | ԐPS/ԐRS | |||||
1 | F | 118.846 | 92.112 | 94.542 | 82.596 | 77.058 | 102.070 | 81.697 |
2 | p | 2.913 × 10−20 | 6.652 × 10−19 | 4.836 × 10−19 | 2.525 × 10−18 | 5.891 × 10−18 | 1.865 × 10−6 | 4.009 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qamar, W.; Khan, A.H.; Rehman, Z.u.; Masoud, Z. Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays. Sustainability 2022, 14, 13215. https://doi.org/10.3390/su142013215
Qamar W, Khan AH, Rehman Zu, Masoud Z. Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays. Sustainability. 2022; 14(20):13215. https://doi.org/10.3390/su142013215
Chicago/Turabian StyleQamar, Wajeeha, Ammad Hassan Khan, Zia ur Rehman, and Zubair Masoud. 2022. "Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays" Sustainability 14, no. 20: 13215. https://doi.org/10.3390/su142013215
APA StyleQamar, W., Khan, A. H., Rehman, Z. u., & Masoud, Z. (2022). Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays. Sustainability, 14(20), 13215. https://doi.org/10.3390/su142013215