Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees
<p>Acid neutralization capacity (ANC) test results for the CONSO.</p> "> Figure 2
<p>(<b>a</b>) Thermogravimetric analysis (TGA) experiment in N<sub>2</sub> atmosphere and (<b>b</b>) the corresponding derivative of weight of MCB100 (black line in online version) and PC8 (blue line in online version).</p> "> Figure 3
<p>LG-MgO ANC results.</p> "> Figure 4
<p>ANC results for the remediated soil (REMSO) with 0, 5, 10, and 15 wt.% of MCB100M and PC8.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Contaminated Soil
2.1.2. Low-Grade Magnesium Oxides
2.2. Methods
3. Results and Discussion
3.1. Contaminated Soil Characterization
3.2. LG-MgO Characterization
3.3. Remediation of the Contaminated Soil
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Heavy Metals in Soils. Trace Metals and Metalloids in Soils and their Bioavailability; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4469-1. [Google Scholar]
- Lanza, G.R.; Ye, X.; Randhir, T.; Ries, J.B. Mechanisms and effects of acid rain on environment. J. Earth Sci. Clim. Chang. 2014, 5, 1. [Google Scholar]
- De Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Cui, M.; Lee, Y.; Choi, J.; Kim, J.; Han, Z.; Son, Y.; Khim, J. Evaluation of stabilizing materials for immobilization of toxic heavy metals in contaminated agricultural soils in China. J. Clean. Prod. 2018, 193, 748–758. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Hou, D. Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128179826. [Google Scholar]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Derakhshan-Nejad, Z.; Jung, M.C.; Kim, K.H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ. Geochem. Health 2018, 40, 927–953. [Google Scholar] [CrossRef]
- Calvet, S.R.; Bourgeois, J.J.M. Some experiments on extraction of heavy metals present in soil. Int. J. Environ. Anal. Chem. 1990, 39, 31–45. [Google Scholar] [CrossRef]
- Sastre, J.; Sahuquillo, A.; Vidal, M.; Rauret, G. Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta 2002, 462, 59–72. [Google Scholar] [CrossRef]
- Sastre, J.; Rauret, G.; Vidal, M. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils. Environ. Pollut. 2006, 140, 322–339. [Google Scholar] [CrossRef]
- Sastre, J.; Vidal, M.; Rauret, G.; Sauras, T. A soil sampling strategy for mapping trace element concentrations in a test area. Sci. Total Environ. 2001, 264, 141–152. [Google Scholar] [CrossRef]
- Vidal, M.; Santos, M.J.; Abrão, T.; Rodríguez, J.; Rigol, A. Modeling competitive metal sorption in a mineral soil. Geoderma 2009, 149, 189–198. [Google Scholar] [CrossRef]
- Shen, Z.; Pan, S.; Hou, D.; O’Connor, D.; Jin, F.; Mo, L.; Xu, D.; Zhang, Z.; Alessi, S.D. Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environ. Int. 2019, 131, 104990. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, C.W.D.; Ok, Y.S.; Alessi, S.D. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Jin, F.; O’Connor, D.; Hou, D. Solidification/stabilization for soil remediation: An old technology with new vitality. Environ. Sci. Technol. 2019, 53, 11615–11617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, F.; Wang, F.; Al-Tabbaa, A. Three-year performance of in-situ solidified/stabilised soil using novel MgO-bearing binders. Chemosphere 2016, 144, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 2003-2004, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003; Volume 53, ISBN 0849304849. [Google Scholar]
- Carter, C.M.; Van Der Sloot, H.A.; Cooling, D. pH-dependent extraction of soil and soil amendments to understand the factors controlling element mobility. Eur. J. Soil Sci. 2009, 60, 622–637. [Google Scholar] [CrossRef]
- González-Núñez, R.; Alba, M.D.; Orta, M.M.; Vidal, M.; Rigol, A. Remediation of metal-contaminated soils with the addition of materials-Part II: Leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils. Chemosphere 2012, 87, 829–837. [Google Scholar] [CrossRef]
- García, M.A.; Chimenos, J.M.; Fernández, A.I.; Miralles, L.; Segarra, M.; Espiell, F. Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere 2004, 56, 481–491. [Google Scholar] [CrossRef]
- Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 2006, 142, 530–539. [Google Scholar] [CrossRef]
- Islam, M.N.; Taki, G.; Nguyen, X.P.; Jo, Y.T.; Kim, J.; Park, J.H. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environ. Sci. Pollut. Res. 2017, 24, 7177–7183. [Google Scholar] [CrossRef] [PubMed]
- Del Valle-Zermeño, R.; Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Low-grade magnesium oxide by-products for environmental solutions: Characterization and geochemical performance. J. Geochem. Explor. 2015, 152, 134–144. [Google Scholar] [CrossRef] [Green Version]
- Demir, F.; Laçin, O.; Dönmez, B. Leaching kinetics of calcined magnesite in citric acid solutions. Ind. Eng. Chem. Res. 2006, 45, 1307–1311. [Google Scholar] [CrossRef]
- Strydom, C.A.; Van Der Merwe, E.M.; Aphane, M.E. The effect of calcining conditions on the rehydration of dead burnt magnesium oxide using magnesium acetate as a hydrating agent. J. Anal. Calorim. 2005, 80, 659–662. [Google Scholar] [CrossRef]
- UNE-CEN/TS 15364 Caracterización De Residuos. Ensayos Del Comportamiento Durante La Lixiviación. Ensayo De Capacidad De Neutralización Ácida Y Basica. 2008. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0040926 (accessed on 6 July 2020).
- CEN/TS 16637-3 Construction Products-Assessment of Release of Dangerous Substances-Part 3: Horizontal Up-Flow Percolation Test. 2016. Available online: https://standards.iteh.ai/catalog/standards/cen/a8c5bddb-392c-40fa-9fd5-26cde8a5b177/cen-ts-16637-3-2016 (accessed on 6 July 2020).
- Van Grinsven, J.J.M.; van Riemsdijk, W.H. Evaluation of batch and column techniques to measure weathering rates in soils. Geoderma 1992, 52, 41–57. [Google Scholar] [CrossRef]
- Formosa, J.; Chimenos, J.M.; Lacasta, A.M.; Haurie, L. Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochim. Acta 2011, 515, 43–50. [Google Scholar] [CrossRef]
- Fernández, A.I.; Chimenos, J.M.; Segarra, M.; Fernández, M.A.; Espiell, F. Procedure to obtain hydromagnesite from a MgO-containing residue. Kinetic study. Ind. Eng. Chem. Res. 2000, 39, 3653–3658. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Taskinen, P.; He, J.; Chen, Y.; Tang, C.; Wang, Y.; Jokilaakso, A. Spent lead-acid battery recycling via reductive sulfur-fixing smelting and its reaction mechanism in the PbSO4-Fe3O4-Na2CO3-C system. JOM 2019, 71, 2368–2379. [Google Scholar] [CrossRef] [Green Version]
Metal(loid)s (mg·kg–1) | CONSO | Landfill Thresholds | ||
---|---|---|---|---|
Inert | Non-Hazardous | Hazardous | ||
As | 3.12 | 0.5 | 2 | 25 |
Ba | 0.14 | 20 | 100 | 300 |
Bi | 0.01 | - | - | - |
Cd | 2.78 | 0.04 | 1 | 5 |
Co | <0.03 | - | - | - |
total Cr | <0.10 | 0.5 | 10 | 70 |
Cr6+ | <0.20 | - | - | - |
Cu | 0.36 | 2 | 50 | 100 |
Hg | <0.01 | 0.01 | 0.2 | 2 |
Mo | <0.01 | 0.5 | 10 | 30 |
Ni | 0.28 | 0.4 | 10 | 40 |
Pb | 137.7 | 0.5 | 10 | 50 |
Sb | 2.10 | 0.06 | 0.7 | 5 |
Sn | 0.05 | - | - | - |
V | <0.05 | - | - | - |
Zn | 2.37 | 4 | 50 | 200 |
LG-MgO | μm | ||||
---|---|---|---|---|---|
d10 | d25 | d50 | d75 | d90 | |
PC8 | 1.68 | 6.99 | 21.09 | 41.55 | 87.57 |
MCB100 | 102.10 | 168.00 | 279.80 | 445.60 | 764.70 |
MCB100M | 1.18 | 5.41 | 14.42 | 28.09 | 103.20 |
Oxides (%) | PC8 | MCB100 | MCB100M |
---|---|---|---|
MgO | 61.72 | 83.63 | 84.31 |
CaO | 9.32 | 3.25 | 3.03 |
SiO2 | 2.70 | 3.04 | 2.72 |
Fe2O3 | 2.43 | 2.94 | 2.88 |
Al2O3 | 0.55 | 0.71 | 0.62 |
SO3 | 6.55 | 0.29 | 0.17 |
LOI | Loss on Ignition (1050 °C) | ||
16.73 | 6.14 | 6.27 |
Compound | MCB100 | PC8 | ||
---|---|---|---|---|
Tmax (°C) | Weight Loss (%) | Tmax (°C) | Weight Loss (%) | |
Humidity (H2O) | 59.8 | 0.9 | 103.4 | 2.6 |
CaSO4·2H2O | 167.1 | 1.0 | - | - |
Mg(OH)2 | 312.4 | 1.1 | 368.8 | 2.3 |
MgCO3 | 608.5 | 1.7 | 587.5 | 7.7 |
CaMg(CO3)2 | 706.9 | 2.5 | 698.0 | 3.9 |
CaCO3 | - | - | 932.0 | 4.2 |
CaSO4 | 1106.3 | 0.7 | above 1200.0 | > 1.9 |
Compound | Weight (%) | |
---|---|---|
MCB100 | PC8 | |
MgO | 78.5 | 47.7 |
MgCO3 | 3.3 | 14.8 |
CaCO3 | 0.0 | 9.6 |
CaMg(CO3)2 | 5.2 | 8.2 |
Mg(OH)2 | 3.6 | 7.5 |
CaSO4 | 1.2 | 3.2 |
H2O (humidity) | 0.9 | 2.6 |
CaO | 1.2 | 0.2 |
Others | 6.1 | 6.2 |
LG-MgO | BET (m2·g–1) | Bulk Density (g·cm–3) | CAT Time at pH = 9 (s) |
---|---|---|---|
PC8 | 5.25 ± 0.04 | 2,8621 ± 0.0005 | 1320 |
MCB100 | 14.81 ± 0.08 | 3,0984 ± 0.0005 | 460 |
MCB100M | 49.69 ± 0.09 | 3,2467 ± 0.0003 | 60 |
Heavy Metals (mg·kg−1) | MCB100M | PC8 | Threshold Landfill Legislation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CONSO | 5 wt.% | 10 wt.% | 15 wt.% | 5 wt.% | 10 wt.% | 15 wt.% | Inert | Non-hazardous | Hazardous | |
pH | 6.95 | 8.70 | 10.40 | 10.52 | 8.54 | 9.40 | 9.91 | |||
k (mS·cm−1) | 2.49 | 6.20 | 7.96 | 7.91 | 5.12 | 9.40 | 8.28 | |||
As | 3.120 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | 0.5 | 2 | 25 |
Ba | 0.142 | 0.100 | 0.040 | 0.198 | 0.429 | 0.269 | 0.133 | 20 | 100 | 300 |
Bi | 0.010 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | - | - | - |
Cd | 2.778 | 0.100 | <0.003 | <0.003 | 0.056 | 0.005 | <0.003 | 0.04 | 1 | 5 |
Co | <0.030 | <0.010 | <0.010 | <0.015 | <0.018 | <0.018 | <0.015 | - | - | - |
total Cr | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | 0.5 | 10 | 70 |
Cr6+ | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | <0.200 | - | - | - |
Cu | 0.364 | 0.100 | 0.155 | 0.156 | 0.080 | 0.106 | 0.136 | 2 | 50 | 100 |
Hg | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | 0.01 | 0.2 | 2 |
Mo | <0.005 | <0.005 | 0.013 | 0.010 | <0.005 | <0.005 | 0.021 | 0.5 | 10 | 30 |
Ni | 0.278 | 0.380 | <0.353 | <0.353 | <0.378 | <0.412 | <0.353 | 0.4 | 10 | 40 |
Pb | 137.7 | 42.7 | 78.0 | 141.3 | 56.4 | 62.6 | 142.6 | 0.5 | 10 | 50 |
Sb | 2.101 | 0.010 | 0.029 | 0.040 | 0.006 | 0.009 | 0.009 | 0.060 | 0.7 | 5 |
Sn | 0.050 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | - | - | - |
V | <0.050 | <0.050 | <0.050 | <0.050 | <0.050 | <0.050 | <0.050 | - | - | - |
Zn | 2.370 | <0.100 | <0.100 | 0.116 | <0.100 | <0.100 | 0.241 | 4 | 50 | 200 |
PC8 | Fraction Number L/S | pH | k (mS·cm−1) | mg·kg−1 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Ba | Bi | Cd | Co | total Cr | Cr6+ | Cu | Hg | Mn | Mo | Ni | Pb | Sb | Se | Sn | Zn | ||||
5 wt.% | E1: 0.1 | 9.60 | 29.30 | <0.05 | 1.02 | <0.05 | 0.110 | <0.05 | <1.50 | <0.20 | 5.83 | <0.10 | <0.05 | 0.06 | 0.27 | 998.9 | <0.05 | 12.52 | <0.25 | <2.50 |
E2: 0.2 | 9.50 | 34.00 | <0.05 | 1.32 | <0.05 | 0.070 | <0.05 | <1.50 | <0.20 | 1.66 | <0.10 | <0.05 | 0.05 | 0.24 | 1711.1 | <0.05 | 16.34 | <0.25 | <2.50 | |
E3: 0.5 | 9.41 | 27.30 | <0.05 | <0.05 | <0.05 | 0.050 | <0.05 | <1.50 | <0.20 | 1.24 | <0.10 | <0.05 | <0.05 | 0.26 | 36.4 | <0.05 | 11.14 | <0.25 | <2.50 | |
E4: 1 | 9.21 | 19.34 | <0.05 | 0.06 | <0.05 | 0.040 | <0.05 | <1.50 | <0.20 | 0.72 | <0.10 | <0.05 | <0.05 | 0.30 | 47.9 | <0.05 | 5.95 | <0.25 | <2.50 | |
E5: 2 | 9.12 | 10.26 | 0.01 | 0.07 | <0.01 | 0.037 | 0.006 | <0.30 | <0.20 | 0.80 | <0.02 | <0.01 | <0.01 | 0.30 | 41.9 | 0.03 | 7.19 | <0.05 | 0.37 | |
E6: 5 | 7.63 | 6.70 | <0.01 | 0.02 | <0.01 | 0.028 | 0.006 | <0.30 | <0.20 | 0.35 | <0.02 | <0.01 | <0.01 | 0.27 | 28.9 | 0.02 | 2.92 | <0.05 | <0.50 | |
E7: 10 | 7.60 | 4.93 | <0.01 | 0.29 | <0.01 | 0.024 | 0.005 | <0.30 | <0.20 | 0.16 | <0.02 | <0.01 | <0.01 | 0.25 | 39.2 | <0.01 | 1.55 | <0.05 | <0.50 | |
10 wt.% | E1: 0.1 | 9.80 | 34.30 | 0.07 | 0.78 | <0.05 | 0.070 | <0.05 | <1.50 | <0.20 | 1.27 | <0.10 | <0.05 | 0.07 | 0.48 | 2500.2 | 0.07 | 15.87 | <0.25 | <2.50 |
E2: 0.2 | 9.88 | 35.00 | 0.06 | <0.05 | <0.05 | 0.060 | <0.05 | <1.50 | <0.20 | 0.95 | <0.10 | <0.05 | 0.07 | 0.49 | 71.2 | 0.09 | 16.64 | <0.25 | <2.50 | |
E3: 0.5 | 10.04 | 27.30 | <0.05 | <0.05 | <0.05 | 0.030 | <0.05 | <1.50 | <0.20 | 0.84 | <0.10 | <0.05 | <0.05 | 0.46 | 42.1 | <0.05 | 12.14 | <0.25 | <2.50 | |
E4: 1 | 10.10 | 14.00 | <0.05 | <0.05 | <0.05 | <0.025 | <0.05 | <1.50 | <0.20 | 0.23 | <0.10 | <0.05 | <0.05 | 0.30 | 47.7 | <0.05 | 3.33 | <0.25 | <2.50 | |
E5: 2 | 9.81 | 6.91 | <0.01 | 0.08 | <0.01 | <0.005 | 0.006 | <0.30 | <0.20 | 0.17 | <0.02 | <0.01 | <0.01 | 0.26 | 69.2 | 0.03 | 2.40 | <0.05 | <0.50 | |
E6: 5 | 8.54 | 6.22 | <0.01 | 0.33 | <0.01 | 0.006 | 0.005 | <0.30 | <0.20 | 0.09 | <0.02 | <0.01 | <0.01 | 0.23 | 22.5 | 0.02 | 1.31 | <0.05 | <0.50 | |
E7: 10 | 8.46 | 4.38 | <0.01 | 0.53 | <0.01 | <0.005 | 0.005 | <0.30 | <0.20 | 0.07 | <0.02 | <0.01 | <0.01 | 0.21 | 26.8 | 0.01 | 0.66 | <0.05 | <0.50 | |
15 wt.% | E1: 0.1 | 10.04 | 41.50 | 0.62 | 0.08 | <0.05 | 0.090 | <0.05 | <1.50 | <0.20 | 1.68 | <0.10 | 0.39 | 0.11 | 0.63 | 82.9 | 0.20 | 18.45 | <0.25 | <2.50 |
E2: 0.2 | 10.20 | 38.30 | 0.06 | <0.05 | <0.05 | 0.070 | <0.05 | <1.50 | <0.20 | 0.93 | <0.10 | <0.05 | 0.09 | 0.55 | 225.4 | 0.15 | 16.32 | <0.25 | <2.50 | |
E3: 0.5 | 10.14 | 29.90 | <0.05 | <0.05 | <0.05 | 0.040 | <0.05 | <1.50 | <0.20 | 0.57 | <0.10 | <0.05 | 0.05 | 0.49 | 40.1 | 0.14 | 11.39 | <0.25 | <2.50 | |
E4: 1 | 10.37 | 9.85 | <0.05 | <0.05 | <0.05 | <0.025 | <0.05 | <1.50 | <0.20 | 0.26 | <0.10 | <0.05 | <0.05 | 0.36 | 34.1 | 0.08 | 5.17 | <0.25 | <2.50 | |
E5: 2 | 9.90 | 9.90 | 0.01 | <0.01 | <0.01 | <0.005 | 0.008 | <0.30 | <0.20 | 0.19 | <0.02 | <0.01 | <0.01 | 0.33 | 34.3 | 0.07 | 3.65 | <0.05 | <0.50 | |
E6: 5 | 9.50 | 5.60 | <0.01 | 0.05 | <0.01 | <0.005 | 0.006 | <0.30 | <0.20 | 0.07 | <0.02 | <0.01 | <0.01 | 0.25 | 33.5 | 0.07 | 1.19 | <0.05 | <0.50 | |
E7: 10 | 9.39 | 3.36 | <0.01 | 0.40 | <0.01 | <0.005 | 0.005 | <0.30 | <0.20 | 0.04 | <0.02 | <0.01 | <0.01 | 0.21 | 33.2 | 0.04 | 0.48 | <0.05 | <0.50 | |
Limits | Inert | 0.5 | 20 | - | 0.04 | - | 0.5 | - | 2 | 0.01 | - | 0.5 | 0.4 | 0.5 | 0.06 | - | - | 4 | ||
Non-hazardous | 2 | 100 | - | 1 | - | 10 | - | 50 | 0.2 | - | 10 | 10 | 10 | 0.7 | - | - | 50 | |||
Hazardous | 25 | 300 | - | 5 | - | 70 | - | 100 | 2 | - | 30 | 40 | 50 | 5 | - | - | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees. Sustainability 2020, 12, 7340. https://doi.org/10.3390/su12187340
Giro-Paloma J, Formosa J, Chimenos JM. Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees. Sustainability. 2020; 12(18):7340. https://doi.org/10.3390/su12187340
Chicago/Turabian StyleGiro-Paloma, Jessica, Joan Formosa, and Josep M Chimenos. 2020. "Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees" Sustainability 12, no. 18: 7340. https://doi.org/10.3390/su12187340
APA StyleGiro-Paloma, J., Formosa, J., & Chimenos, J. M. (2020). Stabilization Study of a Contaminated Soil with Metal(loid)s Adding Different Low-Grade MgO Degrees. Sustainability, 12(18), 7340. https://doi.org/10.3390/su12187340