Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting
<p>The number of works in the literature on energy prediction in the past 10 years.</p> "> Figure 2
<p>Construction of the NOFGHW model.</p> "> Figure 3
<p>Flow chart of NOFGHW model.</p> "> Figure 4
<p>Simulation and forecast graphs of six models for monthly crude oil production cases (Unit: 10,000 tons).</p> "> Figure 5
<p>APE values of monthly crude oil production in the out-of-sample prediction stage of the six models.</p> "> Figure 6
<p>Simulation and forecast of six models of industrial electricity consumption in the quarter (unit: billion KWH).</p> "> Figure 7
<p>APE values of the quarterly industrial electricity consumption in the out-of-sample prediction stage of the six models.</p> ">
Abstract
:1. Introduction
1.1. Energy Forecasting Model
1.2. The Motivation of This Work
2. Methods
2.1. A New Optimized Fractional Grey Holt-Winters Model (NOFGHW)
2.2. Parameter Optimization of NOFGHW Model
2.2.1. Parameter Optimization Calculation Process
2.2.2. Parameter Optimization Process
2.3. Evaluation Criteria
3. Application
3.1. The Experiment Design
3.2. Parameter Solution
3.3. Result Analysis
3.3.1. Monthly Crude Oil Production
3.3.2. Quarterly Industrial Electricity Consumption
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Models | Parameters |
---|---|
NOFGHW | = 0.004, = 0.1573, = 0.3689, = 0.0145. |
OGHW | = 0, = 0.021, = 0.3407. |
SNGBM | fs(1) = 0.8883, fs(2) = 0.9893, fs(3) = 1.0302, fs(4) = 1.0923, A = [−0.0080,6658.21], r = 0.0246. |
SARIMA | SARIMA(1,0,0)(0,1,0)4, AR(1) = −0.5519 ***, AIC = −3.2929, Log L = 46.4537. |
LSSVR | Embedding dimensions = 4, time lag = 1, linear kernel, γ∈[0.0047,15257.1676], the optimalγ= 0.6927, α1= −0.0612, α2= −0.0242, …, α28= 0.7417, b = −1.8317. |
BPNN | Optimal embedding dimensions = 4, optimal time lag = 1, number of neurons = 7, learning rate = 0.01, iterative number = 1000, error goal = 0.05. |
Symbols, Constraints and Variables | Meanings |
---|---|
The primitive sequence | |
The primitive data | |
Number of the primitive data (sample size) | |
The fractional periodic accumulation sequence | |
The fractional periodic accumulation sequence | |
The gamma function | |
Different data points in a sequence | |
Level | |
Trend | |
Seasonal | |
Data smoothing factor | |
Trend smoothing factor | |
The seasonal change smoothing factor | |
Fractional order | |
Optimized parameters | |
Optimized parameters | |
Optimized parameters | |
Optimized parameters | |
Predictive values | |
The number of recursions | |
The initial vector | |
Memory size | |
The number of iterations | |
The first step degree of the function | |
Search direction of the function | |
The step size | |
The inverse of the Hessian matrix | |
The forecasted horizon |
References
- Chen, H.; Li, L.; Lei, Y.L.; Wu, S.; Yan, D.; Dong, Z. Public health effect and its economics loss of PM2.5 pollution from coal consumption in China. Sci. Total Environ. 2020, 732, 138973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Wang, H.K.; Liang, S.; Xu, M.; Zhang, Q.; Zhao, H.; Bi, J. A dual strategy for controlling energy consumption and air pollution in China’s metropolis of Beijing. Energy 2015, 81, 294–303. [Google Scholar] [CrossRef]
- Xiao, Q.Z.; Gao, M.Y.; Xiao, X.P.; Goh, M. A novel grey Riccati–Bernoulli model and its application for the clean energy consumption prediction. Eng. Appl. Artif. Intell. 2020, 95, 103863. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, R.; Ma, X.; Liu, Z.; Chi, P.; Wu, W.; Guo, B.; Yang, X.; Zhang, L. A novel Hausdorff fractional NGMC(p,n) grey prediction model with Grey Wolf Optimizer and its applications in forecasting energy production and conversion of China. Appl. Math. Model. 2021, 97, 381–397. [Google Scholar] [CrossRef]
- Wang, B.J.; Zhu, C.Q. Research on Trend and Forecast of Coal Prices under Capacity Reduction Based on ARIMA Model. Price Theory Pract. 2017, 5, 73–76. [Google Scholar]
- Liu, K.; Zhang, X. Coal consumption forecast based on fractional ARIMA model. J. Min. Sci. Technol. 2017, 2, 489–496. [Google Scholar]
- Dabral, P.P.; Murry, M.Z. Modelling and Forecasting of Rainfall Time Series Using SARIMA. Environ. Processes 2017, 4, 399–419. [Google Scholar] [CrossRef]
- Sigauke, C.; Chikobvu, D. Prediction of daily peak electricity demand in South Africa using volatility forecasting models. Energy Econ. 2011, 33, 882–888. [Google Scholar] [CrossRef]
- Aasim Singh, S.N.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar] [CrossRef]
- Duan, Y.G.; Wang, H.; Wei, M.Q.; Tan, L.; Tao, Y. Application of ARIMA-RTS Optimal Smoothing Algorithm in Gas Well Production Prediction. Petroleum 2021. Available online: https://www.sciencedirect.com/science/article/pii/S240565612100064X#:~:text=ARIMA%2DRTS%20optimal%20smooth%20algorithm%20improves%20the%20prediction%20accuracy%20of,well%20as%20other%20fuels%20output (accessed on 4 February 2022).
- Abbasi, A.; Khalili, K.; Behmanesh, J.; Shirzad, A. Estimation of ARIMA model parameters for drought prediction using the genetic algorithm. Arab. J. Geosci. 2021, 14, 841. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Lin, Z.; Liu, X.L. Short-term offshore wind power forecasting-A hybrid model based on Discrete Wavelet Transform (DWT), Seasonal Autoregressive Integrated Moving Average (SARIMA), and deep-learning-based Long Short-Term Memory (LSTM). Renew. Energy 2022, 185, 611–628. [Google Scholar] [CrossRef]
- Ding, W.; Meng, F.Y. Point and interval forecasting for wind speed based on linear component extraction. Appl. Soft Comput. 2020, 93, 106350. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Su, S. Solar Irradiance Short-Term Prediction Model Based on BP Neural Network. Energy Procedia 2011, 12, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Yuan, X.Y. Forecasting the annual household electricity consumption of Chinese residents using the DPSO-BP prediction model. Environ. Sci. Pollut. Res. 2020, 27, 22014–22032. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Zhou, W.W. Research on coal price prediction model using the ε-SVR method based on sliding time window. Coal Econ. Res. 2020, 40, 12–18. [Google Scholar]
- Hasanipanah, M.; Shahnazar, A.; Amnieh, H.B.; Armaghani, D.J. Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Eng. Comput. 2017, 33, 23–31. [Google Scholar] [CrossRef]
- Guo, J.; Wang, B.; He, Z.X.; Pan, B.; Du, D.-X.; Huang, W.; Kang, R.-K. A novel method for workpiece deformation prediction by amending initial residual stress based on SVR-GA. Adv. Manuf. 2021, 9, 483–495. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Souag-Gamane, D.; Kisi, O. A new intelligent method for monthly streamflow prediction: Hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO). Arab. J. Geosci. 2019, 12, 540. [Google Scholar] [CrossRef]
- Hong, W.C. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm. Energy 2011, 36, 5568–5578. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Pandey, K.; Sammen, S.S.; Souag-Gamane, D.; Heddam, S.; Kisi, O. Monthly evapotranspiration estimation using optimal climatic parameters: Efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environ. Monit. Assess. 2020, 192, 696. [Google Scholar] [CrossRef]
- Wei, M.K.; Ye, W.; Shen, J.; Zhou, H.; Cai, S.R.; Wang, Y.H.; Shen, L. Short-Term Load Forecasting Method Based on Self-Organizing Feature Mapping Neural Network and GA-Least Square SVC Model. Mod. Electr. Power 2021, 38, 17–23. [Google Scholar]
- Khwaja, A.S.; Anpalagan, A.; Naeem, M.; Venkatesh, B. Joint bagged-boosted artificial neural networks: Using ensemble machine learning to improve short-term electricity load forecasting. Electr. Power Syst. Res. 2020, 179, 106080. [Google Scholar] [CrossRef]
- Liu, S.F. Grey System Theory and Its Applications, 5th ed.; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2010. [Google Scholar]
- Wu, L.F.; Liu, S.F.; Liu, J. GM(1,1) model based on fractional order accumulating method and its stability. Control Decis. 2014, 29, 919–924. [Google Scholar]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Yao, L.G.; Xu, R.; Lei, X. Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model. Soft Comput. 2015, 19, 483–488. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.-L.; Yao, T.-X. Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 2014, 25, 1215–1221. [Google Scholar] [CrossRef]
- Zeng, L.; Luo, S.G. A Discrete GM(2,1) Model with Fractional-Order Accumulation and Application. J. Chongqing Norm. Univ. (Nat. Sci.) 2021, 38, 73–80+2. [Google Scholar]
- Jiang, J.M.; Wu, W.Z. Nonlinear grey Bernoulli Model with Fractional-order Opposite-direction Accumulation and Its Application. Math. Pract. Theory 2021, 51, 48–53. [Google Scholar]
- Zhang, A.L.; Bai, L.N.; Han, Y.; Zhao, N. Prediction of Air Quality in Zhengzhou Based On multivariable Fractional Grey Model. J. Saf. Environ. 2021, 1–14. Available online: https://le.cnki.net/kcms/detail/detail.aspx?filename=AQHJ20210728003&dbcode=YJGJ&dbname=YJGJTEMP&v= (accessed on 4 February 2022).
- Wang, Y.; He, X.B.; Zhang, L.; Ma, X.; Wu, W.; Nie, R.; Chi, P.; Zhan, Y. A novel fractional time-delayed grey Bernoulli forecasting model and its application for the energy production and consumption prediction. Eng. Appl. Artif. Intell. 2022, 110, 104683. [Google Scholar] [CrossRef]
- Liu, C.; Lao, T.F.; Wu, W.Z.; Xie, W.; Zhu, H. An optimized nonlinear grey Bernoulli prediction model and its application in natural gas production. Expert Syst. Appl. 2022, 194, 116448. [Google Scholar] [CrossRef]
- Liu, C.; Wu, W.Z.; Xie, W.L.; Zhang, J. Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China. Chaos Solitons Fractals 2020, 141, 110429. [Google Scholar] [CrossRef]
- Ding, S.; Li, R.J. Forecasting the sales and stock of electric vehicles using a novel self-adaptive optimized grey model. Eng. Appl. Artif. Intell. 2021, 100, 104148. [Google Scholar] [CrossRef]
- Wu, W.Z.; Pang, H.D.; Zheng, C.L.; Xie, W.; Liu, C. Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China. Energy 2021, 229, 120714. [Google Scholar] [CrossRef]
- Wang, Z.X.; Wang, Z.W.; Li, Q. Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors. Energy 2020, 200, 117460. [Google Scholar] [CrossRef]
- Zhou, W.J.; Ding, S. A novel discrete grey seasonal model and its applications. Commun. Nonlinear Sci. Numer. Simul. 2021, 93, 105493. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, Q.; Pei, L.L. Grey forecasting method of quarterly hydropower production in China based on a data grouping approach. Appl. Math. Model. 2017, 51, 302–316. [Google Scholar] [CrossRef]
- Xia, M.; Wong, W.K. A seasonal discrete grey forecasting model for fashion retailing. Knowl.-Based Syst. 2014, 57, 119–126. [Google Scholar] [CrossRef]
- Zhou, W.J.; Pan, J.; Tao, H.H.; Ding, S.; Chen, L.; Zhao, X. A novel grey seasonal model based on cycle accumulation generation for forecasting energy consumption in China. Comput. Ind. Eng. 2021, 163, 107725. [Google Scholar] [CrossRef]
- Wu, L.F.; Gao, X.H.; Xiao, Y.L.; Liu, S.; Yang, Y. Using grey Holt–Winters model to predict the air quality index for cities in China. Nat. Hazards 2017, 88, 1003–1012. [Google Scholar] [CrossRef]
- Zheng, C.L.; Wu, W.Z.; Xie, W.L.; Li, Q.; Zhang, T. Forecasting the hydroelectricity consumption of China by using a novel unbiased nonlinear grey Bernoulli model. J. Clean. Prod. 2021, 278, 123903. [Google Scholar] [CrossRef]
- Ding, S.; Xu, N.; Ye, J.; Zhou, W.; Zhang, X. Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model. J. Clean. Prod. 2020, 259, 120793. [Google Scholar] [CrossRef]
- Qian, W.Y.; Sui, A.D. A novel structural adaptive discrete grey prediction model and its application in forecasting renewable energy generation. Expert Syst. Appl. 2021, 186, 115761. [Google Scholar] [CrossRef]
- Ding, S.; Li, R.J.; Wu, S.; Zhou, W. Application of a novel structure-adaptative grey model with adjustable time power item for nuclear energy consumption forecasting. Appl. Energy 2021, 298, 117114. [Google Scholar] [CrossRef]
- Ding, S.; Tao, Z.; Zhang, H.H.; Li, Y. Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy 2022, 239, 121928. [Google Scholar] [CrossRef]
- Zhou, W.J.; Wu, X.L.; Ding, S.; Chen, Y. Predictive analysis of the air quality indicators in the Yangtze River Delta in China: An application of a novel seasonal grey model. Sci. Total Environ. 2020, 748, 141428. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Cheng, Y.K.; Ding, S.; Chen, L.; Li, R. A grey seasonal least square support vector regression model for time series forecasting. ISA Trans. 2021, 114, 82–98. [Google Scholar] [CrossRef]
Models | Parameters |
---|---|
NOFGHW | = 7263, = 0.0070, = 0.6832, = 0.1679. |
OGHW | = 0.5881, = 0.0000, = 0.6189. |
SNGBM | fs(1) = 1.7815, fs(2) = 0.9333, fs(3) = 0.9015, fs(4) = 0.9333, fs(5) = 0.9179, fs(6) = 0.9262, fs(7) = 0.9307, fs(8) = 0.9023, fs(9) = 0.9332, fs(10) = 0.9081, fs(11) = 0.9319, A = [0.0015, 262.5373], r = 0.1707. |
SARIMA | SARIMA(1,0,10)(0,1,0)11, AR(1) = −0.2940 ***, MA(10) = −0.1331 *, AIC = -4.9214, Log L = 487.7607. |
LSSVR | Embedding dimensions = 11, time lag = 1, linear kernel, γ∈[0.0826, 270,104.1352], the optimalγ= 12.2672, α1= −0.1075, α2= 0.0948, …, α196= 1.0788, b = −4.8779. |
BPNN | Optimal embedding dimensions = 11, optimal time lag = 1, number of neurons = 20, learning rate = 0.01, iterative number = 1000, error goal = 0.05. |
Month | Actual | NOFGHW | APE | OGHW | APE | SNGBM | APE | SARIMA | APE | LSSVR | APE | BPNN | APE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019-M2 | 3069.20 | 3051.23 | 0.59 | 3051.15 | 0.59 | 3207.97 | 4.52 | 3073.44 | 0.14 | 3061.05 | 0.27 | 3099.15 | 0.98 |
2019-M3 | 1654.20 | 1615.10 | 2.36 | 1597.72 | 3.41 | 1679.97 | 1.56 | 1617.73 | 2.20 | 1613.78 | 2.44 | 1655.62 | 0.09 |
2019-M4 | 1571.10 | 1570.24 | 0.05 | 1549.32 | 1.39 | 1622.14 | 3.25 | 1568.09 | 0.19 | 1569.97 | 0.07 | 1597.37 | 1.67 |
2019-M5 | 1623.00 | 1623.01 | 0.00 | 1601.67 | 1.31 | 1678.74 | 3.43 | 1616.62 | 0.39 | 1617.55 | 0.34 | 1635.72 | 0.78 |
2019-M6 | 1610.00 | 1608.55 | 0.09 | 1595.52 | 0.90 | 1650.31 | 2.50 | 1604.09 | 0.37 | 1605.23 | 0.30 | 1697.48 | 5.43 |
2019-M7 | 1628.70 | 1611.09 | 1.08 | 1604.94 | 1.46 | 1664.70 | 2.21 | 1599.27 | 1.81 | 1605.11 | 1.45 | 1674.46 | 2.81 |
2019-M8 | 1618.20 | 1613.10 | 0.32 | 1610.41 | 0.48 | 1672.11 | 3.33 | 1618.24 | 0.00 | 1619.85 | 0.10 | 1678.36 | 3.72 |
2019-M9 | 1564.30 | 1567.22 | 0.19 | 1566.26 | 0.13 | 1620.39 | 3.59 | 1529.98 | 2.19 | 1533.93 | 1.94 | 1523.43 | 2.61 |
2019-M10 | 1611.30 | 1626.84 | 0.96 | 1634.94 | 1.47 | 1675.22 | 3.97 | 1626.14 | 0.92 | 1627.51 | 1.01 | 1643.76 | 2.01 |
2019-M11 | 1570.40 | 1583.07 | 0.81 | 1597.31 | 1.71 | 1629.55 | 3.77 | 1562.84 | 0.48 | 1569.76 | 0.04 | 1533.80 | 2.33 |
2019-M12 | 1606.50 | 1625.73 | 1.20 | 1649.56 | 2.68 | 1671.63 | 4.05 | 1645.45 | 2.42 | 1649.85 | 2.70 | 1550.02 | 3.52 |
2020-M2 | 3200.20 | 3065.48 | 4.21 | 3091.70 | 3.39 | 3194.25 | 0.19 | 3095.06 | 3.29 | 3080.38 | 3.74 | 3058.90 | 4.42 |
2020-M3 | 1656.30 | 1622.20 | 2.06 | 1618.92 | 2.26 | 1672.71 | 0.99 | 1629.31 | 1.63 | 1624.52 | 1.92 | 1611.62 | 2.70 |
2020-M4 | 1587.47 | 1577.21 | 0.65 | 1569.86 | 1.11 | 1615.05 | 1.74 | 1579.26 | 0.52 | 1582.85 | 0.29 | 1574.74 | 0.80 |
2020-M5 | 1645.60 | 1630.30 | 0.93 | 1622.88 | 1.38 | 1671.32 | 1.56 | 1628.15 | 1.06 | 1631.81 | 0.84 | 1633.20 | 0.75 |
2020-M6 | 1624.20 | 1615.80 | 0.52 | 1616.63 | 0.47 | 1642.94 | 1.15 | 1615.52 | 0.53 | 1620.25 | 0.24 | 1650.67 | 1.63 |
2020-M7 | 1646.30 | 1618.39 | 1.70 | 1626.14 | 1.22 | 1657.19 | 0.66 | 1610.67 | 2.16 | 1619.36 | 1.64 | 1689.07 | 2.60 |
2020-M8 | 1665.10 | 1620.44 | 2.68 | 1631.65 | 2.01 | 1664.49 | 0.04 | 1629.78 | 2.12 | 1634.90 | 1.81 | 1738.22 | 4.39 |
2020-M9 | 1609.60 | 1574.34 | 2.19 | 1586.90 | 1.41 | 1612.93 | 0.21 | 1540.89 | 4.27 | 1545.37 | 3.99 | 1553.22 | 3.50 |
2020-M10 | 1641.20 | 1634.29 | 0.42 | 1656.46 | 0.93 | 1667.44 | 1.60 | 1637.73 | 0.21 | 1641.49 | 0.02 | 1742.17 | 6.15 |
2020-M11 | 1596.50 | 1590.32 | 0.39 | 1618.31 | 1.37 | 1621.90 | 1.59 | 1573.98 | 1.41 | 1581.67 | 0.93 | 1566.23 | 1.90 |
2020-M12 | 1626.80 | 1633.20 | 0.39 | 1671.22 | 2.73 | 1663.71 | 2.27 | 1657.17 | 1.87 | 1662.15 | 2.17 | 1620.91 | 0.36 |
MAPES | 1.2490 | 1.3831 | 4.8086 | 1.5667 | 1.5794 | 2.4277 | |||||||
RMSES | 33.6778 | 34.3136 | 103.3027 | 38.6412 | 37.4124 | 51.8965 | |||||||
MAPEP | 1.0808 | 1.5364 | 2.1898 | 1.3725 | 1.2839 | 2.5069 | |||||||
RMSEP | 34.9260 | 35.1592 | 48.3058 | 34.4965 | 35.8055 | 55.1239 |
Quarter | Actual | NOFGHW | APE | OGHW | APE | SNGBM | APE | SARIMA | APE | LSSVR | APE | BPNN | APE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019-Q1 | 10,738.00 | 10,669.57 | 0.64 | 10,483.25 | 2.37 | 10,433.51 | 2.84 | 11,474.12 | 6.86 | 11,208.66 | 4.38 | 11,719.61 | 9.14 |
2019-Q2 | 11,947.00 | 11,902.31 | 0.37 | 11,671.94 | 2.30 | 11,721.35 | 1.89 | 13,182.03 | 10.34 | 12,167.45 | 1.85 | 14,717.78 | 23.19 |
2019-Q3 | 12,528.00 | 12,474.93 | 0.42 | 12,213.86 | 2.51 | 12,312.50 | 1.72 | 13,600.07 | 8.56 | 12,649.03 | 0.97 | 12,930.06 | 3.21 |
2019-Q4 | 13,867.00 | 13,249.82 | 4.45 | 12,960.64 | 6.54 | 13,169.04 | 5.03 | 14,896.65 | 7.43 | 13,695.93 | 1.23 | 14,299.46 | 3.12 |
2020-Q1 | 9671.00 | 11,102.61 | 14.80 | 10,811.17 | 11.79 | 10,801.60 | 11.69 | 12,897.81 | 33.37 | 12,039.49 | 24.49 | 12,741.09 | 31.75 |
2020-Q2 | 12,274.00 | 12,391.42 | 0.96 | 12,034.21 | 1.95 | 12,133.89 | 1.14 | 14,856.86 | 21.04 | 12,803.70 | 4.32 | 15,136.20 | 23.32 |
2020-Q3 | 13,066.00 | 12,990.02 | 0.58 | 12,590.03 | 3.64 | 12,744.86 | 2.46 | 15,305.67 | 17.14 | 13,217.02 | 1.16 | 13,061.18 | 0.04 |
2020-Q4 | 14,917.00 | 13,800.14 | 7.49 | 13,356.76 | 10.46 | 13,630.48 | 8.62 | 16,778.35 | 12.48 | 14,249.21 | 4.48 | 14,567.30 | 2.34 |
MAPES | 2.5874 | 2.6093 | 2.7977 | 3.6339 | 3.1896 | 2.6708 | |||||||
RMSES | 400.1221 | 409.8395 | 358.7538 | 477.2389 | 442.9486 | 374.5778 | |||||||
MAPEP | 3.7143 | 5.1955 | 4.4240 | 14.6505 | 5.3583 | 12.0134 | |||||||
RMSEP | 680.7043 | 796.7976 | 683.1337 | 1931.3505 | 913.3109 | 1827.8879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Tao, H.; Jiang, H. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability 2022, 14, 3118. https://doi.org/10.3390/su14053118
Zhou W, Tao H, Jiang H. Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability. 2022; 14(5):3118. https://doi.org/10.3390/su14053118
Chicago/Turabian StyleZhou, Weijie, Huihui Tao, and Huimin Jiang. 2022. "Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting" Sustainability 14, no. 5: 3118. https://doi.org/10.3390/su14053118
APA StyleZhou, W., Tao, H., & Jiang, H. (2022). Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting. Sustainability, 14(5), 3118. https://doi.org/10.3390/su14053118