Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications
<p>(<b>a</b>) The typical cross section of a retaining wall. (<b>b</b>) The stress distribution around the retaining wall.</p> "> Figure 2
<p>The change of total cost and CO<sub>2</sub> emission values against the change of unit cost of concrete and the excavation depth for the optimum values according to F1.</p> "> Figure 3
<p>The change of total cost and CO<sub>2</sub> emission values against the change of wall dimensions and excavation depth (<b>a</b>) γ = 18 kN/m<sup>3</sup> (<b>b</b>) γ = 20 kN/m<sup>3</sup> (<b>c</b>) γ = 22 kN/m<sup>3</sup>.</p> "> Figure 4
<p>The change of total cost and CO<sub>2</sub> emission values against the change of wall dimensions and the amount of surcharge load (<b>a</b>) H = 3 m, (<b>b</b>) H = 6 m, (<b>c</b>) H = 9 m.</p> "> Figure 5
<p>The change of total cost and CO<sub>2</sub> emission against the change in unit cost of structural materials. (<b>a</b>) The change of C<sub>c</sub> at H = 6 m, (<b>b</b>) The change of C<sub>s</sub> at H = 6 m, (<b>c</b>) The change of C<sub>c</sub> at H = 9 m, (<b>d</b>) The change of C<sub>s</sub> at H = 9 m.</p> "> Figure 5 Cont.
<p>The change of total cost and CO<sub>2</sub> emission against the change in unit cost of structural materials. (<b>a</b>) The change of C<sub>c</sub> at H = 6 m, (<b>b</b>) The change of C<sub>s</sub> at H = 6 m, (<b>c</b>) The change of C<sub>c</sub> at H = 9 m, (<b>d</b>) The change of C<sub>s</sub> at H = 9 m.</p> "> Figure 6
<p>The change in CO<sub>2</sub> emissions and total cost against wall dimensions and the excavation depth (C<sub>c</sub> = 50<span>$</span>, C<sub>s</sub> = 700<span>$</span>, q = 0 kPa) (<b>a</b>) Analysis 1, (<b>b</b>) Analysis 2, (<b>c</b>) Analysis 3.</p> "> Figure 7
<p>The change of CO<sub>2</sub> emission and total cost against wall dimensions and the excavation depth (C<sub>c</sub> = 150<span>$</span>, C<sub>s</sub> = 1100<span>$</span>, q = 0 kPa) (<b>a</b>) Analysis 1, (<b>b</b>) Analysis 2, (<b>c</b>) Analysis 3.</p> "> Figure 8
<p>The change of CO<sub>2</sub> emission and total cost against wall dimensions and the excavation depth (C<sub>c</sub> = 150<span>$</span>, C<sub>s</sub> = 1100<span>$</span>, q = 20 kPa) (<b>a</b>) Analysis 1, (<b>b</b>) Analysis 2, (<b>c</b>) Analysis 3.</p> "> Figure 8 Cont.
<p>The change of CO<sub>2</sub> emission and total cost against wall dimensions and the excavation depth (C<sub>c</sub> = 150<span>$</span>, C<sub>s</sub> = 1100<span>$</span>, q = 20 kPa) (<b>a</b>) Analysis 1, (<b>b</b>) Analysis 2, (<b>c</b>) Analysis 3.</p> "> Figure 9
<p>The effects of objective function logic: (<b>a</b>) change of total cost, (<b>b</b>) change of CO<sub>2</sub> emission, (<b>c</b>) change of the width of the base, (<b>d</b>) change of the height of the wall.</p> "> Figure 10
<p>The change of total cost and CO2 emission against the width and height of the wall: (<b>a</b>) F3(1)-A1, (<b>b</b>) F3(1)-A2, (<b>c</b>) F3(1)-A3, (<b>d</b>) F3(2)-A1, (<b>e</b>) F3(2)-A2, (<b>f</b>) F3(2)-A3.</p> "> Figure 10 Cont.
<p>The change of total cost and CO2 emission against the width and height of the wall: (<b>a</b>) F3(1)-A1, (<b>b</b>) F3(1)-A2, (<b>c</b>) F3(1)-A3, (<b>d</b>) F3(2)-A1, (<b>e</b>) F3(2)-A2, (<b>f</b>) F3(2)-A3.</p> "> Figure 11
<p>The change in: (<b>a</b>) total cost, (<b>b</b>) CO<sub>2</sub> emission, (<b>c</b>) width of foundation base, (<b>d</b>) total height of <a href="#sustainability-12-06087-t003" class="html-table">Table 3</a>. The evaluations of the analyses have formed depending on the 9 m excavation depth. The results in both <a href="#sustainability-12-06087-f010" class="html-fig">Figure 10</a> and <a href="#sustainability-12-06087-f011" class="html-fig">Figure 11</a> demonstrate that the utmost values of the changes which occurred were attained for the 9 m excavation depth. In <a href="#sustainability-12-06087-f012" class="html-fig">Figure 12</a>, the change in wall design, cost, and CO<sub>2</sub> emission values against the change of unit weight of soil is given for the envisaged two different conditions F3 (1)-A1 and F3 (2)-A1.</p> "> Figure 11 Cont.
<p>The change in: (<b>a</b>) total cost, (<b>b</b>) CO<sub>2</sub> emission, (<b>c</b>) width of foundation base, (<b>d</b>) total height of <a href="#sustainability-12-06087-t003" class="html-table">Table 3</a>. The evaluations of the analyses have formed depending on the 9 m excavation depth. The results in both <a href="#sustainability-12-06087-f010" class="html-fig">Figure 10</a> and <a href="#sustainability-12-06087-f011" class="html-fig">Figure 11</a> demonstrate that the utmost values of the changes which occurred were attained for the 9 m excavation depth. In <a href="#sustainability-12-06087-f012" class="html-fig">Figure 12</a>, the change in wall design, cost, and CO<sub>2</sub> emission values against the change of unit weight of soil is given for the envisaged two different conditions F3 (1)-A1 and F3 (2)-A1.</p> "> Figure 12
<p>The change in C<sub>t</sub>, CO<sub>2</sub> emission, B, H against the unit weight of soil (<b>a</b>) F3 (1)-A1, (<b>b</b>) F3 (2)-A1.</p> "> Figure 13
<p>The effects of the surcharge loading amount: (<b>a</b>) h = 3 m- F3 (1)-A1, (<b>b</b>) h = 3 m- F3 (2)-A1, (<b>c</b>) h = 6 m- F3 (1)-A1, (<b>d</b>) h = 6 m- F3 (2)-A1, (<b>e</b>) h = 9 m- F3 (1)-A1, (<b>f</b>) h = 9 m- F3 (2)-A1.</p> "> Figure 13 Cont.
<p>The effects of the surcharge loading amount: (<b>a</b>) h = 3 m- F3 (1)-A1, (<b>b</b>) h = 3 m- F3 (2)-A1, (<b>c</b>) h = 6 m- F3 (1)-A1, (<b>d</b>) h = 6 m- F3 (2)-A1, (<b>e</b>) h = 9 m- F3 (1)-A1, (<b>f</b>) h = 9 m- F3 (2)-A1.</p> "> Figure 14
<p>The effects of unit cost of structural materials: (<b>a</b>) C<sub>s</sub> = 700<span>$</span>, (<b>b</b>) C<sub>s</sub> = 800<span>$</span>, (<b>c</b>) C<sub>s</sub> = 1000<span>$</span>, (<b>d</b>) C<sub>s</sub> = 1100<span>$</span>.</p> "> Figure 15
<p>The change in total cost and CO<sub>2</sub> emission values against the objective function and the unit cost of the structural materials: (<b>a</b>) C<sub>s</sub> = 50 <span>$</span> and C<sub>s</sub> = 700<span>$</span>, (<b>b</b>) C<sub>s</sub> = 50 <span>$</span> and C<sub>s</sub> = 1100<span>$</span>, (<b>c</b>) C<sub>s</sub> = 150 <span>$</span> and C<sub>s</sub> = 700<span>$</span>, (<b>d</b>) C<sub>s</sub> = 150 <span>$</span> and C<sub>s</sub> = 1100<span>$</span>.</p> "> Figure 15 Cont.
<p>The change in total cost and CO<sub>2</sub> emission values against the objective function and the unit cost of the structural materials: (<b>a</b>) C<sub>s</sub> = 50 <span>$</span> and C<sub>s</sub> = 700<span>$</span>, (<b>b</b>) C<sub>s</sub> = 50 <span>$</span> and C<sub>s</sub> = 1100<span>$</span>, (<b>c</b>) C<sub>s</sub> = 150 <span>$</span> and C<sub>s</sub> = 700<span>$</span>, (<b>d</b>) C<sub>s</sub> = 150 <span>$</span> and C<sub>s</sub> = 1100<span>$</span>.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Reinforced Concrete Retaining Walls
2.2. Optimization Methodology Using HS
- The optimum design of reinforced concrete retaining walls with the minimization of cost according to Equation (11) (F1);
- The optimum design of reinforced concrete retaining walls with the minimization of CO2 emission according to Equation (12) (F2);
- The optimum design of reinforced concrete retaining walls with the minimization relationship of both cost and CO2 emission according to Equation (13) (F3 (1));
- The optimum design of reinforced concrete retaining walls with the minimization relationship of both cost and CO2 emission according to Equation (14) (F3 (2))
Algorithm 1. The pseudo-code of HS. |
Define HMS, design constants, algorithm parameters, ranges for design variables; X = (X1, X2, … X8) Initialize initial harmony memory matrix with random numbers for design variables Find the best solution of the initial harmonies Define a random number to compare with HMCR while (t < Number of iterations) if rand < HMCR Global optimization using Equation (8) else Local optimization using Equation (9) end if Evaluate new solutions Update the better solution in the harmony memory matrix end for Find the current best solution end while |
3. Parametric Analyses
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frangopol, D.M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: Accomplishments and challenges. Struct. Infrast. Eng. 2011, 7, 389–413. [Google Scholar] [CrossRef]
- Yepes, V.; Martí, J.V.; García, J. Black Hole Algorithm for Sustainable Design of Counterfort RetainingWalls. Sustainability 2020, 12, 2767. [Google Scholar] [CrossRef] [Green Version]
- Baglivo, C.; Congedo, P.M. Design method of high performance precast external walls for warm climate by multi-objective optimization analysis. Energy 2015, 90, 1645–1661. [Google Scholar] [CrossRef]
- Dombaycı, O.A.; Golcü, M.; Pancar, Y. Optimization of insulation thickness for external walls using different energy-sources. Appl. Energy 2006, 83, 921–928. [Google Scholar] [CrossRef]
- Aydogdu, I.; Akin, A. Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls, World Academy of Science, Engineering and Technology. Int. J. Civ. Environ. Eng. 2015, 2. Available online: https://www.semanticscholar.org/paper/Biogeography-Based-CO2-and-Cost-Optimization-of-RC-Aydogdu-Ak%C4%B1n/176b1134b768ee30091e4c415e69632050248abd#paper-header (accessed on 28 July 2020).
- Li, Z. Development and Application of Eco-Friendly Concrete. Adv. Mater. Res. 2011, 250–253, 3827–3836. [Google Scholar] [CrossRef]
- Habert, G.; Roussel, N. Study of two concrete mix design strategies to reach carbon mitigation objectives. Cem. Concr. Compos. 2009, 31, 397–402. [Google Scholar] [CrossRef]
- Aguado, A.; Caño, A.D.; de la Cruz, M.P.; Gomez, D.; Josa, A. Sustainability assessment of concrete structures within the Spanish structural concrete code. J. Constr. Eng. Manag. 2012, 138, 268–276. [Google Scholar] [CrossRef]
- Molina-Moreno, F.; Martí, J.V.; Yepes, V. Optimization of buttressed earth retaining walls using hybrid harmony search algorithms. Eng. Struct. 2017, 134, 205–216. [Google Scholar] [CrossRef]
- Molina-Moreno, F.; Martí, J.V.; Yepes, V. Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. J. Clean. Prod. 2017, 164, 872–884. [Google Scholar] [CrossRef]
- Khajehzadeh, M. A new hybrid algorithm for CO2 emissions optimization of retaining walls. Int. J. Adv. Mech. Civ. Eng. 2016, 3, 7–11. [Google Scholar]
- Villalba, P.; Alcala, J.; Yepes, V.; Gonzales-Vidosa, F. CO2 optimization of reinforced concrete cantilever retaining walls. In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, 6–9 September 2010. [Google Scholar]
- Yepes, V.; Gonzalez-Vidosa, F.; Alcala, J.; Villalba, P. CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy. J. Comput. Civ. Eng. 2012, 26, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, J.V.A.; Mota, T.G.; Andrade, H.M.L.S.; Andrade, L.P.; Vigoderis, R.B. Comparative Study of Retaining Walls Aiming To Optimize Carbon Footprint. Rev. Ibero Am. Ciências Ambient. 2020, 11, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Zastrow, P.; Molina-Moreno, F.; García-Segura, T.; Martí, J.V.; Yepes, V. Life cycle assessment of cost-optimized buttress earth-retaining walls: A parametric study. J. Clean. Prod. 2017, 140, 1037–1048. [Google Scholar] [CrossRef]
- Yeo, D.H.; Potra, F.A. Sustainable design of reinforced concrete structures through CO2 emission optimization. J. Struct. Eng. 2015, 141, 3. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.C.; Kim, K.H.; Lee, S.H.; Yeo, D. Sustainable design for reinforced concrete columns through embodied energy and CO2 emission optimization. Energy Build. 2018, 174, 44–53. [Google Scholar] [CrossRef]
- Sierra, L.A.; Pellicer, E.; Yepes, V. Social sustainability in the life cycle of Chilean public infrastructure. J. Constr. Eng. Manag. 2016, 142, 05015020. [Google Scholar] [CrossRef] [Green Version]
- Sierra, L.A.; Yepes, V.; García-Segura, T.; Pellicer, E. Bayesian network method for decision-making about the social sustainability of infrastructure projects. J. Clean. Prod. 2018, 176, 521–534. [Google Scholar] [CrossRef]
- Pons, J.J.; Penadés-Plà, V.; Yepes, V.; Martí, J.V. Life cycle assessment of earth-retaining walls: An environmental comparison. J. Clean. Prod. 2018, 192, 411–420. [Google Scholar] [CrossRef]
- Lee, D.; Kang, G.; Nam, C.; Cho, H.; Kang, K.I. Stochastic Analysis of Embodied Carbon Dioxide Emissions Considering Variability of Construction Sites. Sustainability 2019, 11, 4215. [Google Scholar] [CrossRef] [Green Version]
- De Medeiros, G.F.; Kripka, M. Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Eng. Struct. 2014, 59, 185–194. [Google Scholar] [CrossRef]
- Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Monarch Butterfly Optimization Based Convolutional Neural Network Design. Mathematics 2020, 8, 936. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Xiong, S.; Jayasena, K.P.N.; Li, L. Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution. Knowl. Based Syst. 2019, 169, 39–52. [Google Scholar] [CrossRef]
- Ghosh, S.; Kaur, M.; Bhullar, S.; Karar, V. Hybrid abc-bat for solving short-term hydrothermal scheduling problems. Energies 2019, 12, 551. [Google Scholar] [CrossRef] [Green Version]
- Coulomb, C.A. Essai sur une Application des Regles des Maximis et Minimis a Quelques Problemes de Statique Relatifs a L’artitecture; De l’Imprimerie Royale: Paris, France, 1776. [Google Scholar]
- Rankine, W.J.M. II. On the stability of loose earth. Philos. Trans. R. Soc. Lond. 1857, 147, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Boussinesq. Sur la détermination de l’épaisseur minima que doit avoir un mur vertical d’une hauteur et d’une densité données, pour contenir un massif terreux sans cohésion, dont la surface supérieure est horizontale. Ann. Ponts Chaussées 1882, III, 625. [Google Scholar]
- Terzaghi, K.V. General wedge theory of earth pressure, Transactions. ASCE 1941, 106, 68–97. [Google Scholar]
- Jaky, J. The coefficient of earth pressure at rest. J. Soc. of Hung. Arch. Engrs. 1944, 78, 355–358. [Google Scholar]
- Dembicki, E.; Chi, T. System analysis in calculation of cantilever retaining walls. Int. J. Numerical Anal. Methods Geomech. 1989, 13, 599–610. [Google Scholar] [CrossRef]
- Powrie, W. Limit equilibrium analysis of embedded retaining walls. Geotechnique 1996, 46, 709–723. [Google Scholar] [CrossRef]
- Bowles, J.E. Foundation Analysis and Design; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Yıldırım, S. Zemin Incelemesi ve Temel Tasarımı; Birsen Yayınevi: Fatih/İstanbul, Turkey, 2002. [Google Scholar]
- Sasidhar, T.; Neeraja, D.; Samba, V.; Sudhindra, M. Application of genetic algorithm technique for optimizing design of reinforced concrete retaining wall. Int. J. Civ. Eng. Technol. 2017, 8, 999–1007. [Google Scholar]
- American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary; ACI Committee: Farmington Hills, MI, USA, 2014; ISBN 978-0870317446. [Google Scholar]
- Saribas, A.; Erbatur, F. Optimization and sensitivity of retaining structures. J. Geotech. Eng. 1996, 122, 649–656. [Google Scholar] [CrossRef]
- Rhomberg, E.J.; Street, W.M. Optimal design of retaining walls. J. Struct. Div. 1981, 107, 992–1002. [Google Scholar]
- Alshawi, F.A.N.; Mohammed, A.I.; Farid, B.J. Optimum design of tied-back retaining walls. Struct. Eng. 1988, 66, 97–105. [Google Scholar]
- Keskar, V.; Adidam, S.R. Minimum cost design of a cantilever retaining wall. Indian Concr. J. 1989, 63, 401–405. [Google Scholar]
- Pochtman, Y.M.; Zhmuro, O.V.; Landa, M.S. Design of an optimal retaining wall with anchorage. Soil Mech. Found. Eng. 1988, 25, 508–510. [Google Scholar] [CrossRef]
- Chau, K.W.; Albermani, F. Knowledge-based system on optimum design of liquid retaining structures with genetic algorithms. J. Struct. Eng. 2003, 129, 1312–1321. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar Babu, G.L.; Basha, B.M. Optimum design of cantilever retaining walls using target reliability approach. Int. J. Geomech. 2008, 8, 240–252. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rashedi, E. Harmony Search Algorithm: Basic Concepts and Engineering Applications. In Intelligent Systems: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2018; pp. 1–30. [Google Scholar]
- Ulusoy, S.; Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M. Optimum Design of Reinforced Concrete Multi-Story Multi-Span Frame Structures under Static Loads. Int. J. Eng. Technol. 2019, 10, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Ulusoy, S.; Kayabekir, A.E.; Bekdaş, G.; Nigdeli, S.M. Metaheuristic Algorithms in Optimum Design of Reinforced Concrete Beam by Investigating Strength of Concrete. Chall. J. Concr. Res. Lett. 2020, 11, 33–37. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Bekdaş, G.; Geem, Z.W. Harmony Search Optimisation of Dispersed Laminated Composite Plates. Materials 2020, 13, 2862. [Google Scholar] [CrossRef] [PubMed]
- Cakiroglu, C.; Bekdaş, G.; Kim, S.; Geem, Z.W. Optimisation of Shear and Lateral–Torsional Buckling of Steel Plate Girders Using Meta-Heuristic Algorithms. Appl. Sci. 2020, 10, 3639. [Google Scholar] [CrossRef]
- Kayabekir, A.E.; Toklu, Y.C.; Bekdaş, G.; Nigdeli, S.M.; Yücel, M.; Geem, Z.W. A Novel Hybrid Harmony Search Approach for the Analysis of Plane Stress Systems via Total Potential Optimization. Appl. Sci. 2020, 10, 2301. [Google Scholar] [CrossRef] [Green Version]
- Toklu, Y.C.; Bekdaş, G.; Geem, Z.W. Harmony Search Optimization of Nozzle Movement for Additive Manufacturing of Concrete Structures and Concrete Elements. Appl. Sci. 2020, 10, 4413. [Google Scholar] [CrossRef]
- FHWA-IF-99-015, Geotechnical Engineering Circular No. 4 Ground Anchors and Anchored Systems; Federal Highway Administration: Washington, DC, USA, 1999.
- Kazı Çukurlarının Stabilitesi ve İksa Sistemi Etüt, Proje, Uygulama ve Kontrolleri ile İlgili Uyulacak Esaslar hakkında Kazı Güvenliği ve Alınacak Önlemler; Çevre ve şehircilik Bakanlığı: Ankara, Turkey, 2018.
- British Standards Institution. Eurocode 7: Part 1, General Rules; British Standards Institution: London, UK, 1995. [Google Scholar]
- Camp, C.V.; Akin, A. Design of Retaining Walls Using Big Bang-Big Crunch Optimization. J. Struct. Eng. ASCE 2012, 138, 438–448. [Google Scholar] [CrossRef]
- Paya-Zaforteza, I.; Yepes, V.; Hospitaler, A.; Gonzalez-Vidosa, F. CO2-optimization of reinforced concrete frames by simulated annealing. Eng. Struct. 2009, 31, 1501–1508. [Google Scholar] [CrossRef]
- Yang, X.S. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
Symbol | Description of Parameter | ||
---|---|---|---|
Variables in relation to Cross-section dimension | X1 | Length of the heel | |
X2 | Length of the toe | ||
X3 | Thickness of wall stem at the top | ||
X4 | Thickness of wall stem at the bottom | ||
X5 | Thickness of wall foundation | ||
Variables in relation to reinforced concrete design | X6 | Area of reinforcing bars of the stem | |
X7 | Area of reinforcing bars of foundation heel | ||
X8 | Area of reinforcing bars of the toe |
Description | Constraints |
---|---|
Safety for overturning | g1(X): FoSo,design ≥ FoSo |
Safety for sliding | g2(X): FoSs,design ≥ FoSs |
Safety for bearing capacity | g3(X): FoSbc,design ≥ FoSbc |
Minimum bearing stress (qmin) | g4(X): qmin ≥ 0 |
Flexural strength capacities of critical sections (Md) | g5–7(X): Md ≥ Mu |
Shear strength capacities of critical sections (Vd) | g8–10(X): Vd ≥ Vu |
Minimum reinforcement areas of critical sections (Asmin) | g11–13(X): As ≥ Asmin |
Maximum reinforcement areas of critical sections (Asmax) | g14–16(X): As ≤ Asmax |
Symbol | Definition | Value | Unit |
---|---|---|---|
fy | Yield strength of steel | 420 | MPa |
f′c | Compressive strength of concrete | 30 | MPa |
cc | Concrete cover | 30 | mm |
Esteel | Elasticity modulus of steel | 200 | GPa |
Econcrete | Elasticity modulus of concrete | 23.5 | GPa |
γsteel | Unit weight of steel | 7.85 | t/m3 |
γconcrete | Unit weight of concrete | 25 | kN/m3 |
Cc | Cost of concrete per m3 | 50, 75, 100, 125, 150 | $ |
Cs | Cost of steel per ton | 700, 800, 900, 1000, 1100 | $ |
X1 | Range of the length of the heel | 0–10 | m |
X2 | Range of the length of the toe | 0.2–3 | m |
X3 | Range of thickness of wall stem at the top | 0.2–3 | m |
X4 | Range of thickness of wall stem at the bottom | 0.2–3 | m |
X5 | Range of foundation base thickness | 0.2–3 | m |
μ | Concrete-soil friction | tan (2/3) ϕ | - |
Material | Class | Analysis 1 (A1) | Analysis 2 (A2) | Analysis 3 (A3) |
---|---|---|---|---|
Concrete | C30 | 376 | 143.48 | 143.48 |
Steel | S420 | 352 | 3010 | 352 |
H(m) | γ(kN/m3) | Φ(°) | q | Cc($) | Cs($) | X1(m) | X2(m) | X3(m) | X4(m) | X5(m) | fcost($) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HS | 3 | 18 | 30 | 0 | 50 | 700 | 1.85 | 0.00 | 0.20 | 0.30 | 0.30 | 91.27 |
4 | 18 | 30 | 0 | 50 | 700 | 2.52 | 0.00 | 0.20 | 0.31 | 0.30 | 149.08 | |
5 | 18 | 30 | 0 | 50 | 700 | 3.13 | 0.00 | 0.20 | 0.42 | 0.30 | 238.51 | |
6 | 18 | 30 | 0 | 50 | 700 | 3.65 | 0.83 | 0.20 | 0.59 | 0.33 | 361.24 | |
7 | 18 | 30 | 0 | 50 | 700 | 4.25 | 0.97 | 0.20 | 0.73 | 0.40 | 517.07 | |
8 | 18 | 30 | 0 | 50 | 700 | 4.85 | 1.11 | 0.20 | 0.89 | 0.48 | 708.39 | |
9 | 18 | 30 | 0 | 50 | 700 | 5.42 | 1.26 | 0.20 | 1.08 | 0.56 | 937.74 | |
FPA | 3 | 18 | 30 | 0 | 50 | 700 | 1.85 | 0.00 | 0.20 | 0.30 | 0.30 | 91.27 |
4 | 18 | 30 | 0 | 50 | 700 | 2.52 | 0.00 | 0.20 | 0.31 | 0.30 | 149.08 | |
5 | 18 | 30 | 0 | 50 | 700 | 3.13 | 0.00 | 0.20 | 0.42 | 0.30 | 238.51 | |
6 | 18 | 30 | 0 | 50 | 700 | 3.76 | 0.00 | 0.20 | 0.54 | 0.38 | 363.10 | |
7 | 18 | 30 | 0 | 50 | 700 | 4.39 | 0.00 | 0.20 | 0.67 | 0.46 | 521.69 | |
8 | 18 | 30 | 0 | 50 | 700 | 4.85 | 1.12 | 0.20 | 0.88 | 0.48 | 708.41 | |
9 | 18 | 30 | 0 | 50 | 700 | 5.42 | 1.25 | 0.20 | 1.07 | 0.56 | 937.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayabekir, A.E.; Arama, Z.A.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability 2020, 12, 6087. https://doi.org/10.3390/su12156087
Kayabekir AE, Arama ZA, Bekdaş G, Nigdeli SM, Geem ZW. Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability. 2020; 12(15):6087. https://doi.org/10.3390/su12156087
Chicago/Turabian StyleKayabekir, Aylin Ece, Zülal Akbay Arama, Gebrail Bekdaş, Sinan Melih Nigdeli, and Zong Woo Geem. 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications" Sustainability 12, no. 15: 6087. https://doi.org/10.3390/su12156087
APA StyleKayabekir, A. E., Arama, Z. A., Bekdaş, G., Nigdeli, S. M., & Geem, Z. W. (2020). Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications. Sustainability, 12(15), 6087. https://doi.org/10.3390/su12156087