Dietary Cadmium Intake and Sources in the US
<p>Cd contribution (µg/day/person) from major food groups among the US population aged ≥2 years in NHANES 2007–2012.</p> "> Figure 2
<p>Cd contribution (µg/day/person) of top sources of dietary Cd intake among racial/ethnic groups in the US population aged ≥2 years in NHANES 2007–2012: (<b>a</b>) White; (<b>b</b>) Black; (<b>c</b>) Hispanic; (<b>d</b>) others including Asians.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of Dietary Cd and Sources
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department Of Health and Human Services: Atlanta, GA, USA, 2012; pp. 1–487.
- Vance, T.M.; Chun, O.K. Zinc Intake Is Associated with Lower Cadmium Burden in US Adults. J. Nutr. 2015, 145, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Koifman, R.J.; Fujimoto, D.; de Oliveira Souza, V.C.; Barbosa, F.; Koifman, S. Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil. Chemosphere 2015, 128, 70–78. [Google Scholar] [CrossRef]
- Kim, K.; Melough, M.; Kim, D.; Vance, T.M.; Noh, H.; Koo, S.; Chun, O.K. The Impact of Zinc Intake on Cadmium Burden Is Differently Influenced by Smoking Status. In Current Developments in Nutrition; Oxford University Press: Oxford, UK, 2018; Volume 2, pp. 20–089. [Google Scholar]
- Pappas, R.S.; Polzin, G.M.; Zhang, L.; Watson, C.H.; Paschal, D.C.; Ashley, D.L. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem. Toxicol. 2006, 44, 714–723. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F.; Lei, Y. Dietary intake and urinary level of cadmium and breast cancer risk: A meta-analysis. Cancer Epidemiol. 2016, 42, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef]
- USDA. Food and Nutrient Database for Dietary Studies, 2013–2014; USDA: Beltsville, MD, USA, 2016.
- Friberg, L. Cadmium and the Kidney. Environ. Health Perspect. 1984, 54, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.E.; Wong, L.Y.; Osterloh, J.D. Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease. Int. J. Hyg. Environ. Health 2011, 214, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; Perlstein, T.S.; Perry, M.J.; McNeely, E.; Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 2010, 110, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, Y.; Bo, Q.L.; Ji, Y.L.; Liu, L.; Hu, Y.F.; Chen, Y.H.; Zhang, J.; Zhao, L.L.; Xu, D.X. Maternal cadmium exposure reduces placental zinc transport and induces fetal growth restriction in mice. Reprod. Toxicol. 2016, 63, 174–182. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Gao, Y.; Zhang, Y.; Wang, C.; Zhou, Y.; Hu, Y.; Shi, R.; Tian, Y. Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China. Environ. Pollut. 2016, 211, 67–73. [Google Scholar] [CrossRef]
- Bernhoft, R.A. Cadmium Toxicity and Treatment. Sci. World J. 2013, 2013, 394652. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.M.; Kovach, J.S.; Meliker, J.R. Urinary cadmium and osteoporosis in U.S. women ≥ 50 years of age: NHANES 1988–1994 and 1999–2004. Environ. Health Perspect. 2008, 116, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Vromman, V.; Waegeneers, N.; Cornelis, C.; de Boosere, I.; van Holderbeke, M.; Vinkxd, C.; Smolders, E.; Huyghebaert, A.; Pussemier, L. Dietary cadmium intake by the Belgian adult population. Food Addit. Contam. Part A 2010, 27, 1665–1673. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, M.A.; Lindtner, O.; Blume, K.; Heinemeyer, G.; Schneider, K. Cadmium exposure from food: The German LExUKon project. Food Addit. Contam. Part A 2014, 31, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, O.; Bastias, J.M.; Araya, M.; Morales, A.; Orellana, C.; Rebolledo, R.; Velez, D. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol. 2005, 43, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef]
- Quraishi, S.M.; Adams, S.V.; Shafer, M.; Meliker, J.R.; Li, W.; Luo, J.; Neuhouser, M.L.; Newcomb, P.A. Urinary cadmium and estimated dietary cadmium in the Women’s Health Initiative. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 303–308. [Google Scholar] [CrossRef]
- US Food and Drug Administration Total Diet Study. Available online: https://www.fda.gov/food/foodscienceresearch/totaldietstudy/default.htm (accessed on 5 November 2018).
- US Food and Drug Administration Total Diet Study Elements Results Summary Statistics—Market Baskets 2006 through 2013. Available online: https://www.fda.gov/downloads/food...totaldietstudy/ucm184301.pdf (accessed on 3 November 2018).
- USDA. Food and Nutrient Database for Dietary Studies, 4.1; USDA: Beltsville, MD, USA, 2010.
- USDA. Food and Nutrient Database for Dietary Studies, 5.0; USDA: Beltsville, MD, USA, 2012.
- USDA. Food and Nutrient Database for Dietary Studies, 2011–2012; USDA: Beltsville, MD, USA, 2014.
- Krauss, R.M.; Eckel, R.H.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; Lichtenstein, A.H.; et al. AHA Scientific Statement: AHA Dietary Guidelines: Revision 2000: A Statement for Healthcare Professionals From the Nutrition Committee of the American Heart Association. J. Nutr. 2001, 131, 132–146. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) Panel on Contaminants in the Food Chain. Scientific Opinion: Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1–19. [Google Scholar] [CrossRef]
- Adams, S.V.; Newcomb, P.A.; White, E. Dietary Cadmium and Risk of Invasive Postmenopausal Breast Cancer in the VITAL Cohort. Cancer Causes Control 2012, 23, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Vacchi-Suzzi, C.; Kruse, D.; Harrington, J.; Levine, K.; Meliker, J.R. Is Urinary Cadmium a Biomarker of Long-term Exposure in Humans? A Review. Curr. Environ. Health Rep. 2016, 3, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellez-Plaza, M.; Navas-Acien, A.; Caldwell, K.L.; Menke, A.; Muntner, P.; Guallar, E. Reduction in cadmium exposure in the United States population, 1988-2008: The contribution of declining smoking rates. Environ. Health Perspect. 2012, 120, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Robertsa, T.L. Cadmium and phosphorous fertilizers: The issues and the science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef]
- Choudhury, H.; Harvey, T.; Thayer, W.C.; Lockwood, T.F.; Stiteler, W.M.; Goodrum, P.E.; Hassett, J.M.; Diamond, G.L. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure—Biokinetics model. J. Toxicol. Environ. Health Part A 2001, 63, 321–350. [Google Scholar] [CrossRef] [PubMed]
- Duggan, R.E.; Lipscomb, G.Q. Dietary intake of pesticide chicals in the United States (II), June 1966–April 1968. Pestic. Monit. J. 1969, 2, 153–162. [Google Scholar]
- Jelinek, C.F.; Braude, G.L. Management of Sludge Use on Land. J. Food Prot. 1978, 41, 476–480. [Google Scholar] [CrossRef]
- Adams, S.V.; Quraishi, S.M.; Shafer, M.M.; Passarelli, M.N.; Freney, E.P.; Chlebowski, R.T.; Luo, J.; Meliker, J.R.; Mu, L.; Neuhouser, M.L.; et al. Dietary Cadmium Exposure and Risk of Breast, Endometrial, and Ovarian Cancer in the Women’s Health Initiative. Environ. Health Perspect. 2014, 122, 594–600. [Google Scholar] [CrossRef]
- Chen, M.Y.Y.; Chan, B.T.P.; Lam, C.H.; Chung, S.W.C.; Ho, Y.Y.; Xiao, Y. Dietary exposures to eight metallic contaminants of the Hong Kong adult population from a total diet study. Food Addit. Contam. A 2014, 31, 1539–1549. [Google Scholar] [CrossRef]
- Chunhabundit, R. Cadmium Exposure and Potential Health Risk from Foods in Contaminated Area, Thailand. Toxicol. Res. 2016, 32, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Perelló, G.; Llobet, J.M.; Gómez-Catalán, J.; Castell, V.; Centrich, F.; Nadal, M.; Domingo, J.L. Human Health Risks Derived from Dietary Exposure to Toxic Metals in Catalonia, Spain: Temporal Trend. Biol. Trace Elem. Res. 2014, 162, 26–37. [Google Scholar] [CrossRef]
- Puerto-Parejo, L.M.; Aliaga, I.; Canal-Macias, M.L.; Leal-Hernandez, O.; Roncero-Martín, R.; Rico-Martín, S.; Moran, J.M. Evaluation of the dietary intake of cadmium, lead and mercury and its relationship with bone health among postmenopausal women in Spain. Int. J. Environ. Res. Public Health 2017, 14, 564. [Google Scholar] [CrossRef] [PubMed]
- Under, S.; Mitchell, L.E.; Delclos, G.L.; Awata, H. Association of Dietary Intake and Biomarker Levels of Arsenic, Cadmium, Lead, and Mercury among Asian Populations in the United States: NHANES 2011–2012. Environ. Health Perspect. 2017, 125, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Grimm, K.A.; Foltz, J.L.; Blanck, H.M.; Scanlon, K.S. Household Income Disparities in Fruit and Vegetable Consumption by State and Territory: Results of the 2009 Behavioral Risk Factor Surveillance System. J. Acad. Nutr. Diet. 2012, 112, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Heimendinger, J.; Patterson, B.H.; Krebs-Smith, S.M.; Pivonka, E.; Kessler, R. Fruit and Vegetable Intake in the United States: The Baseline Survey of the Five A Day for Better Health Program. Am. J. Health Promot. 1995, 9, 352–360. [Google Scholar] [CrossRef]
- Storey, M.; Anderson, P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr. Res. 2014, 34, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Vahter, M.; Berglund, M.; Nermell, B.; Åkesson, A. Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol. Appl. Pharmacol. 1996, 136, 332–341. [Google Scholar] [CrossRef]
- Flanagan, P.R.; McLellan, J.S.; Cherian, M.G.; Chamberlain, M.H.; Valberg, L.S. Increased Dietary Cadmium Absorption in Mice and Human Subjects with Iron Deficiency. Gastroenterology 1978, 74, 841–846. [Google Scholar] [CrossRef]
Daily Cd Intake (µg/Day/Person) | Weekly Cd Intake Per kg Body Weight (µg/kg Body Weight/Week) | |||||
---|---|---|---|---|---|---|
n | Mean (95% CI) | p-Value | n | Mean (95% CI) | p-Value | |
All | 12,523 | 4.63 (4.50, 4.75) | 12,411 | 0.54 (0.52, 0.55) | ||
Age (year) | <0.0001 | <0.0001 | ||||
2–10 | 3024 | 2.96 (2.83, 3.10) | 3007 | 0.94 (0.89, 0.99) | ||
11–19 | 1882 | 4.06 (3.85, 4.27) | 1857 | 0.49 (0.47, 0.51) | ||
20–30 | 1319 | 5.04 (4.68, 5.40) | 1314 | 0.49 (0.45, 0.52) | ||
31–50 | 2521 | 5.34 (5.07, 5.61) | 2504 | 0.48 (0.45, 0.51) | ||
51–70 | 2395 | 5.01 (4.77, 5.26) | 2378 | 0.44 (0.42, 0.47) | ||
70+ | 1382 | 4.39 (4.22, 4.57) | 1351 | 0.43 (0.41, 0.44) | ||
Gender | <0.0001 | <0.05 | ||||
Male | 6463 | 5.09 (4.92, 5.26) | 6415 | 0.55 (0.53, 0.57) | ||
Female | 6060 | 4.15 (3.99, 4.31) | 5996 | 0.52 (0.50, 0.54) | ||
Body Mass Index (kg/m2) | <0.0001 | <0.0001 | ||||
BMI < 18.5 | 2980 | 3.24 (3.04, 3.45) | 2868 | 0.95 (0.90, 1.00) | ||
18.5 ≤ BMI < 25 | 3744 | 4.92 (4.69, 5.15) | 3744 | 0.57 (0.55, 0.60) | ||
25 ≤ BMI < 30 | 2987 | 4.98 (4.75, 5.20) | 2987 | 0.44 (0.42, 0.46) | ||
BMI ≥ 30 | 2812 | 4.78 (4.55, 5.00) | 2812 | 0.34 (0.32, 0.35) | ||
Ethnicity | 0.078 | <0.001 | ||||
White | 5564 | 4.73 (4.58, 4.89) | 5509 | 0.52 (0.51, 0.54) | ||
Black | 2416 | 4.13 (3.91, 4.36) | 2386 | 0.50 (0.47, 0.53) | ||
Hispanic | 2221 | 4.33 (3.98, 4.68) | 2207 | 0.55 (0.52, 0.58) | ||
Others | 2322 | 4.65 (4.36, 4.95) | 2309 | 0.64 (0.58, 0.70) | ||
Poverty income ratio | <0.0001 | 0.29 | ||||
(PIR) < 1.3 | 4098 | 4.00 (3.85, 4.16) | 4048 | 0.54 (0.52, 0.56) | ||
1.3 ≤ PIR < 1.85 | 1492 | 4.22 (3.90, 4.53) | 1475 | 0.51 (0.47, 0.54) | ||
1.85 ≤ PIR < 3.5 | 2689 | 4.44 (4.24, 4.64) | 2671 | 0.53 (0.50, 0.56) | ||
PIR ≥ 3.5 | 3261 | 5.18 (4.95, 5.42) | 3243 | 0.55 (0.52, 0.58) | ||
Alcohol consumption | <0.0001 | <0.0001 | ||||
None | 7670 | 3.92 (3.81, 4.02) | 7584 | 0.60 (0.58, 0.62) | ||
Moderate | 2494 | 5.50 (5.24, 5.77) | 2481 | 0.50 (0.47, 0.52) | ||
Heavy | 2359 | 5.14 (4.90, 5.39) | 2346 | 0.47 (0.44, 0.50) | ||
Education level | <0.0001 | 0.57 | ||||
Less than high school | 5048 | 3.89 (3.75, 4.04) | 5004 | 0.53 (0.51, 0.55) | ||
High school equivalent | 1838 | 4.63 (4.40, 4.86) | 1815 | 0.41 (0.39, 0.43) | ||
College | 2210 | 4.94 (4.70, 5.18) | 2192 | 0.45 (0.43, 0.48) | ||
Graduate | 1863 | 5.95 (5.56, 6.33) | 1846 | 0.55 (0.51, 0.59) | ||
Smoking status | <0.05 | 0.28 | ||||
Current smokers | 1489 | 4.67 (4.43, 4.91) | 1477 | 0.43 (0.41, 0.46) | ||
Non-smokers | 4087 | 5.21 (4.96, 5.45) | 4049 | 0.48 (0.45, 0.51) | ||
Passive smokers | 1758 | 4.98 (4.68, 5.27) | 1738 | 0.44 (0.40, 0.48) | ||
Tap water source | 0.18 | 0.70 | ||||
Community supply | 8338 | 4.67 (4.53, 4.80) | 8265 | 0.54 (0.52, 0.56) | ||
Well or spring | 1372 | 4.68 (4.38, 4.99) | 1359 | 0.52 (0.49, 0.56) | ||
Don’t drink tap water | 2326 | 4.43 (4.11, 4.75) | 2306 | 0.55 (0.52, 0.59) |
2–10 Years Old | 11–19 Years Old | 20+ Years Old | |||
---|---|---|---|---|---|
Food Item | Cd µg/Day (% Total) | Food Item | Cd µg/Day (% Total) | Food Item | Cd µg/Day (% Total) |
Spaghetti | 0.319 (10.8%) | Lettuce | 0.477 (11.8%) | Lettuce | 0.777 (15.3%) |
Bread | 0.267 (9.0%) | Spaghetti | 0.425 (10.5%) | Spaghetti | 0.357 (7.0%) |
Potato chips | 0.179 (6.0%) | Bread | 0.307 (7.6%) | Bread | 0.351 (6.9%) |
Lettuce | 0.163 (5.5%) | Sunflower seeds | 0.274 (6.7%) | Potatoes | 0.328 (6.5%) |
Potatoes | 0.156 (5.3%) | Potato chips | 0.248 (6.1%) | Spinach | 0.297 (5.9%) |
Peanuts | 0.145 (4.9%) | Potatoes | 0.212 (5.2%) | Potato chips | 0.225 (4.4%) |
Noodles | 0.132 (4.5%) | Tortillas | 0.172 (4.2%) | Tortillas | 0.170 (3.4%) |
Cookies | 0.131 (4.4%) | Noodles | 0.171 (4.2%) | Sunflower seeds | 0.163 (3.2%) |
Strawberries | 0.118 (4.0%) | Cookies | 0.122 (3.0%) | Rice | 0.159 (3.1%) |
Tortillas | 0.114 (3.8%) | Rice | 0.117 (2.9%) | Tomatoes | 0.153 (3.0%) |
Milk | 0.105 (3.6%) | Peanuts | 0.113 (2.8%) | Noodles | 0.146 (2.9%) |
Rice | 0.098 (3.3%) | Spinach | 0.109 (2.7%) | Peanuts | 0.143 (2.8%) |
Spinach | 0.086 (2.9%) | Strawberries | 0.090 (2.2%) | Beer | 0.135 (2.7%) |
Apple juice | 0.081 (2.7%) | Milk | 0.078 (1.9%) | Onions | 0.122 (2.4%) |
Cereals | 0.070 (2.4%) | Onions | 0.070 (1.7%) | Celery | 0.113 (2.2%) |
Sunflower seeds | 0.054 (1.8%) | Ketchup | 0.068 (1.7%) | Cereals | 0.100 (2.0%) |
Ketchup | 0.043 (1.5%) | Tomatoes | 0.068 (1.7%) | Strawberries | 0.099 (2.0%) |
Pancakes | 0.042 (1.4%) | Cereals | 0.067 (1.6%) | Salsa | 0.089 (1.8%) |
Onions | 0.039 (1.3%) | Salsa | 0.060 (1.5%) | Cookies | 0.088 (1.7%) |
Tomatoes | 0.038 (1.3%) | Celery | 0.057 (1.4%) | Carrots | 0.045 (0.9%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary Cadmium Intake and Sources in the US. Nutrients 2019, 11, 2. https://doi.org/10.3390/nu11010002
Kim K, Melough MM, Vance TM, Noh H, Koo SI, Chun OK. Dietary Cadmium Intake and Sources in the US. Nutrients. 2019; 11(1):2. https://doi.org/10.3390/nu11010002
Chicago/Turabian StyleKim, Kijoon, Melissa M. Melough, Terrence M. Vance, Hwayoung Noh, Sung I. Koo, and Ock K. Chun. 2019. "Dietary Cadmium Intake and Sources in the US" Nutrients 11, no. 1: 2. https://doi.org/10.3390/nu11010002
APA StyleKim, K., Melough, M. M., Vance, T. M., Noh, H., Koo, S. I., & Chun, O. K. (2019). Dietary Cadmium Intake and Sources in the US. Nutrients, 11(1), 2. https://doi.org/10.3390/nu11010002