Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study
<p>miRNA expression in plasma and exosomes. The expression of miR-21 Panels (<b>A</b>) and (<b>B</b>) and miR-103 Panels (<b>C</b>) and (<b>D</b>) was evaluated in plasma and exosomes. mRNA levels were normalized to U6snRNA. The data are presented as the mean ± SD relative to the control (* <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.01, and **** <span class="html-italic">p</span> ≤ 0.0001).</p> "> Figure 2
<p>Lnc-RNA GAS5 expression in plasma (<b>A</b>) and (<b>B</b>). Expression levels were normalized to Glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH). The data are presented as the mean ± SD relative to the control (**** <span class="html-italic">p</span> ≤ 0.0001).</p> "> Figure 3
<p>Humanin levels in plasma were determined by ELISA. Data are presented as mean ± SD relative to control (**** <span class="html-italic">p</span> ≤ 0.0001).</p> "> Figure 4
<p>ROC curve analysis for Humanin’s predictive value for ED.</p> "> Figure 5
<p>Kaplan–Meier survival analysis to evaluate the prognostic value of Humanin levels for survival outcomes. 0 = patients with serum Humanin concentration < 124.44pg/mL; 1 = patients with serum Humanin concentration ≥ 124.44pg/mL.</p> "> Figure 6
<p>The Kaplan–Meier survival curve showing the survival probabilities for the two groups based on the ROC-determined Humanin levels. Group 0 (blue): Higher survival probability. Group 1 (red dashed): Lower survival probability. The number at risk at different time points is detailed in <a href="#ncrna-11-00005-t005" class="html-table">Table 5</a>.</p> ">
Abstract
:1. Introduction
2. Results
2.1. miRNA Expression
2.2. Lnc-RNA GAS5 Expression
2.3. Humanin Levels in Plasma Samples
2.4. Peripheral Endothelial Dysfunction
2.5. Multivariate Logistic Analysis
2.6. ROC Curve Analysis
2.7. Kaplan-Meier Survival Analysis
2.8. Hazard Ratio for Mortality
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Quantification of miR-21 and miR-103 in Plasma and Exosomes
4.3. Gene Expression Analysis
4.4. ELISA
4.5. Flow-Mediated Pulse Amplitude Tonometry (PAT)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Luo, Y.; Li, T.; Zhao, X.; Lv, T.; Fang, G.; Ou, P.; Li, H.; Luo, X.; Huang, A. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front. Immunol. 2022, 13, 1051082. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Liu, X. Rheumatoid arthritis: Pathogenesis and therapeutic advances. MedComm 2024, 5, e509. [Google Scholar] [CrossRef]
- Kim, J.-W.; Suh, C.-H. Systemic manifestations and complications in patients with rheumatoid arthritis. J. Clin. Med. 2020, 9, 2008. [Google Scholar] [CrossRef]
- Arida, A.; Protogerou, A.D.; Kitas, G.D.; Sfikakis, P.P. Systemic inflammatory response and atherosclerosis: The paradigm of chronic inflammatory rheumatic diseases. Int. J. Mol. Sci. 2018, 19, 1890. [Google Scholar] [CrossRef]
- Özkan, U.; Kakilli, N.; Gürdoğan, M.; Taştekin, N.; Birtane, M. Rheumatoid arthritis and cardiovascular comorbidities. Explor. Musculoskelet. Dis. 2023, 1, 264–288. [Google Scholar] [CrossRef]
- Peyronnel, C.; Totoson, P.; Martin, H.; Demougeot, C. Relevance of circulating markers of endothelial activation for cardiovascular risk assessment in rheumatoid arthritis: A narrative review. Life Sci. 2023, 314, 121264. [Google Scholar] [CrossRef] [PubMed]
- Sandoo, A.; Carroll, D.; Metsios, G.S.; Kitas, G.D.; Veldhuijzen van Zanten, J.J. The association between microvascular and macrovascular endothelial function in patients with rheumatoid arthritis: A cross-sectional study. Arthritis Res. Ther. 2011, 13, R99. [Google Scholar] [CrossRef]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol. 2020, 10, 1568. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef] [PubMed]
- Johri, N.; Varshney, S.; Gandha, S.; Maurya, A.; Mittal, P.; Jangra, S.; Garg, R.; Saraf, A. Association of cardiovascular risks in rheumatoid arthritis patients: Management, treatment and future perspectives. Health Sci. Rev. 2023, 8, 100108. [Google Scholar] [CrossRef]
- Coradduzza, D.; Bo, M.; Congiargiu, A.; Azara, E.; De Miglio, M.R.; Erre, G.L.; Carru, C. Decoding the microbiome’s influence on rheumatoid arthritis. Microorganisms 2023, 11, 2170. [Google Scholar] [CrossRef]
- Oh, Y.K.; Bachar, A.R.; Zacharias, D.G.; Kim, S.G.; Wan, J.; Cobb, L.J.; Lerman, L.O.; Cohen, P.; Lerman, A. Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice. Atherosclerosis 2011, 219, 65–73. [Google Scholar] [CrossRef]
- Widmer, R.J.; Flammer, A.; Herrmann, J.; Rodriguez-Porcel, M.; Wan, J.; Cohen, P.; Lerman, L.O.; Lerman, A. Circulating humanin levels are associated with preserved coronary endothelial function. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H393–H397. [Google Scholar] [CrossRef]
- Coradduzza, D.; Congiargiu, A.; Chen, Z.; Cruciani, S.; Zinellu, A.; Carru, C.; Medici, S. Humanin and its pathophysiological roles in aging: A systematic review. Biology 2023, 12, 558. [Google Scholar] [CrossRef]
- Cai, H.; Liu, Y.; Men, H.; Zheng, Y. Protective mechanism of humanin against oxidative stress in aging-related cardiovascular diseases. Front. Endocrinol. 2021, 12, 683151. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Ji, D.; Jiang, Y. Long Non-Coding RNA GAS5 Suppresses Rheumatoid Arthritis Progression via miR-128-3p/HDAC4 Axis. Mol. Cell. Biochem. 2021, 476, 2491–2501. [Google Scholar] [CrossRef]
- Kirkman, D.L.; Robinson, A.T.; Rossman, M.J.; Seals, D.R.; Edwards, D.G. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am. J. Physiol. -Heart Circ. Physiol. 2021, 320, H2080–H2100. [Google Scholar] [CrossRef]
- Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci. 2018, 75, 467–484. [Google Scholar] [CrossRef]
- Coradduzza, D.; Bellu, E.; Congiargiu, A.; Pashchenko, A.; Amler, E.; Necas, A.; Carru, C.; Medici, S.; Maioli, M. Role of nano-mirnas in diagnostics and therapeutics. Int. J. Mol. Sci. 2022, 23, 6836. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Non–Coding RNA Performs Its Biological Function by Interacting with Macromolecules. Int. J. Mol. Sci. 2023, 24, 16246. [Google Scholar] [CrossRef]
- Huang, H.; Li, L.; Wen, K. Interactions between long non-coding RNAs and RNA-binding proteins in cancer. Oncol. Rep. 2021, 46, 256. [Google Scholar] [CrossRef]
- Scholda, J.; Nguyen, T.T.A.; Kopp, F. Long noncoding RNAs as versatile molecular regulators of cellular stress response and homeostasis. Hum. Genet. 2024, 143, 813–829. [Google Scholar] [CrossRef]
- Fernández-Hernando, C.; Suárez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 2018, 25, 227–236. [Google Scholar] [CrossRef]
- Khalaji, A.; Mehrtabar, S.; Jabraeilipour, A.; Doustar, N.; Rahmani Youshanlouei, H.; Tahavvori, A.; Fattahi, P.; Alavi, S.M.A.; Taha, S.R.; Fazlollahpour-Naghibi, A. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241253134. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y. The novel regulatory role of lnc RNA-mi RNA-mRNA axis in cardiovascular diseases. J. Cell. Mol. Med. 2018, 22, 5768–5775. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, N.; Shen, Z.; Yan, J. Long Non-Coding RNA Growth Arrest-Specific Transcript 5 Regulates Rheumatoid Arthritis via Targeting Homeodomain-Interacting Protein Kinase 2. Clin. Exp. Rheumatol. 2020, 38, 1145–1154. [Google Scholar] [PubMed]
- Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.Á. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef]
- Erre, G.L.; Chessa, I.; Bassu, S.; Cavagna, L.; Carru, C.; Pintus, G.; Giordo, R.; Mangoni, A.A.; Damiano Sanna, G.; Zinellu, A. Association between ischemia-modified albumin (IMA) and peripheral endothelial dysfunction in rheumatoid arthritis patients. Sci. Rep. 2024, 14, 3964. [Google Scholar] [CrossRef] [PubMed]
- Montes, D.; Hulshizer, C.A.; Myasoedova, E.; Davis, J.M.; Hanson, A.C.; Duarte-Garcia, A.; Figueroa-Parra, G.; Chevet, B.; Crowson, C.S. Utilisation of cardiovascular preventive services in a rheumatoid arthritis population-based cohort. RMD Open 2023, 9, e003318. [Google Scholar] [CrossRef]
Variable | RA-LR (n = 24) | RA-MR (n = 25) | RA-HR (n = 25) | RA-D (n = 16) | Tot (n = 71) | p | |
---|---|---|---|---|---|---|---|
Sex = 1, n (%) | 0 (0) | 2 (8) | 9 (36) | 8 (50) | 19 (21.11) | <0.001 | |
Age, mean (SD) | 55.79 (5.52) | 66.16 (5.12) | 73.08 (8.07) | 73.38 (9.80) | 66.96 (10.28) | <0.001 | |
stroke, n (%) | 1 (4.17) | 0 (0) | 2 (9.09) | 0 (0) | 3 (3.49) | 0.31 | |
tia, n (%) | 0 (0) | 1 (4) | 0 (0) | 0 (0) | 1 (1.16) | 1.00 | |
ami, n (%) | 0 (0) | 0 (0) | 0 (0) | 1 (6.67) | 1 (1.16) | 0.17 | |
hf, n (%) | 0 (0) | 0 (0) | 0 (0) | 1 (6.67) | 1 (1.16) | 0.17 | |
cvd_death, n (%) | 0 (0) | 0 (0) | 0 (0) | 1 (6.67) | 2 (13.33) | 0.029 | |
death, n (%) | 0 (0) | 1 (4) | 2 (9.09) | 16 (100) | 19 (21.84) | <0.001 | |
Kg, median (IQR) | 60 (56–69) | 62 (57–60) | 75 (65–80) | 68 (60–75) | 66 (59.5–75) | 0.0034 | |
Cm, mean (SD) | 160.48 (5.19) | 160.68 (8.52) | 163.04 (10.14) | 162.13 (7.85) | 161.55 (8.15) | 0.67 | |
Waist, mean (SD) | 91.35 (10.55) | 92.67 (14.91) | 101.56 (10.65) | 95.6 (9.65) | 93.38 (12.15) | 0.014 | |
Sbp, mean (SD) | 116.04 (12.76) | 127.4 (14.3) | 143.12 (17.11) | 137.87 (18.33) | 130.52 (18.60) | <0.001 | |
Dbp, mean (SD) | 70.29 (11.06) | 76.72 (9.14) | 78.4 (10.27) | 77.73 (9.09) | 75.63 (10.38) | 0.0261 | |
htndrugs, n (%) | 4 (17.39) | 6 (24) | 13 (52) | 9 (60) | 32 (36.36) | 0.01 | |
Chol, mean (SD) | 5.32 (0.81) | 5.47 (0.88) | 5.03 (1.13) | 5.35 (1.21) | 5.29 (1.00) | 0.45 | |
Hdl, median (IQR) | 1.75 (1.46–1.94) | 1.6 (1.4–1.89) | 1.58 (1.19–1.78) | 1.31 (1.1–1.76) | 1.58 (1.34–1.86) | 0.0602 | |
Trigl, median (IQR) | 76 (59–94) | 82 (59–114) | 95 (69–105) | 115 (82.5–127) | 92 (62–114) | 0.0792 | |
Ldl, mean (SD) | 125.42 (28.27) | 127.36 (31.12) | 115.6 (39.93) | 121.94 (37.74) | 122.61 (34.06) | 0.64 | |
Disldrugs, n (%) | 0 (0) | 5 (20) | 8 (32) | 2 (13.33) | 15 (17.05) | 0.016 | |
Diabetes, n (%) | 0 (0) | 4 (16) | 15 (60) | 0 (0) | 19 (21.11) | <0.001 | |
smoker, n (%) | 1 (4.35) | 1 (4) | 6 (24) | 1 (6.67) | 9 (10.23) | 0.097 | |
acpa, n (%) | 11 (55) | 15 (75) | 12 (66.67) | 6 (54.55) | 44 (63.77) | 0.534 | |
rf, n (%) | 15 (75) | 19 (86.36) | 20 (90.91) | 11 (84.62) | 65 (84.42) | 0.56 | |
Tjc, median (IQR) | 2 (1–6) | 2 (1–10) | 2 (2–6) | 2 (1–3) | 2 (1–6) | 0.76 | |
Esr, median (IQR) | 32 (16–37) | 26.5 (14–44.5) | 26.5 (13.5–48.5) | 44 (20–55.5) | 61 (16–47) | 0.45 | |
Crpdl, median (IQR) | 0.33 (0.1–0.7) | 0.37 (0.2–0.84) | 0.71 (0.22–0.9) | 0.3 (0.19–0.98) | 0.38 (0.2–0.9) | 0.74 | |
Hb, mean (SD) | 12.44 (1.08) | 12.92 (1.65) | 12.68 (1.66) | 13.57 (1.45) | 12.85 (1.5) | 0.14 | |
Gh, mean (SD) | 46.46 (17.35) | 52 (23.04) | 44 (20.21) | 55.71 (26.52) | 48.77 (21.48) | 0.32 | |
Pgacm, mean (SD) | 4.54 (2.30) | 5.25 (2.66) | 4.28 (2.51) | 4.93 (2.73) | 4.72 (2.52) | 0.57 | |
Egacm, median (IQR) | 1.5 (1–2) | 2 (1–4) | 1 (0–3) | 2 (1–5) | 2 (1–3) | 0.28 | |
Haq, median (IQR) | 0.38 (0–1) | 0.88 (0.32–1) | 1 (0.25–1.25) | 1 (0.5–1.87) | 0.94 (0.13–1) | 0.10 | |
Steroid, n (%) | 9 (37.5) | 10 (41.67) | 9 (36) | 6 (42.86) | 34 (39.08) | 0.97 | |
Steroidmgday, median (IQR) | 0 (0–3.5) | 0 (0–5) | 0 (0–3.5) | 0 (0–3) | 0 (0–4) | 0.84 | |
Cumulative, median (IQR) | 0 (0–97.5) | 0 (0–150) | 0 (0–75) | 0 (0–80) | 0 (0–120) | 0.89 | |
Nsaids, n (%) | 4 (16.67) | 6 (25) | 6 (24) | 4 (28.57) | 20 (22.99) | 0.866 | |
Freqnsaids, median (IQR) | 0 (0–0) | 0 (0–1) | 0 (0–0) | 0 (0–1) | 0 (0–0) | 0.87 | |
dmards, n (%) | 16 (66.67) | 14 (58.33) | 22 (88) | 8 (57.14) | 60 (68.97) | 0.072 | |
numberofdmards | 1, n (%) | 11 (45.83) | 9 (37.5) | 18 (72) | 6 (42.86) | 44 (50.57) | 0.197 |
2, n (%) | 5 (20.83) | 5 (20.83) | 4 (16) | 2 (14.29) | 16 (18.39) | ||
Mtx, n (%) | 16 (66.67) | 11 (45.83) | 15 (60) | 7 (50) | 49 (56.32) | 0.479 | |
Mtxdose, median (IQR) | 10 (0–15) | 0 (0–15) | 10 (0–15) | 5 (0–15) | 10 (0–15) | 0.67 | |
hcq, n (%) | 4 (16.67) | 6 (25) | 10 (40) | 2 (14.29) | 22 (25.29) | 0.195 | |
hcqdose, median (IQR) | 0 (0–0) | 0 (0–100) | 0 (0–200) | 0 (0-0) | 0 (0–200) | 0.25 | |
tnfi, n (%) | 9 (37.5) | 5 (20.83) | 3 (12) | 4 (28.57) | 21 (24.14) | 0.2 | |
toci, n (%) | 0 (0) | 1 (4.17) | 1 (4) | 0 (0) | 2 (2.3) | 0.66 | |
aba, n (%) | 1 (4.17) | 1 (4.17) | 1 (4) | 0 (0) | 3 (3.45) | 0.897 | |
Lnrhi, median (IQR) | 0.99 (0.89–1.16) | 1.08 (0.98–1.16) | 1.17 (0.69–1.33 | 0.27 (0.15–0.37) | 0.99 (0.72–1.18) | <0.001 |
Variable | 95% CI | Odds Ratio | p Value |
---|---|---|---|
HUMANIN_pg_ml | 0.96 to 1 | 0.98 | 0.02 |
age | 0.94 to 1.12 | 1.03 | 0.57 |
sex | 0.15 to 2.54 | 0.62 | 0.5 |
SCORE2_EULAR | 0 to 4.29 | 0.02 | 0.15 |
Variable | 95% CI | Odds ratio | p value |
miR_21 | 0.85 to 1.22 | 1.02 | 0.83 |
age | 0.98 to 1.15 | 1.07 | 0.13 |
sex | 0.16 to 2.27 | 0.59 | 0.45 |
SCORE2_EULAR | 0 to 0.48 | 0 | 0.03 |
Variable | 95% CI | Odds ratio | p value |
miR_21_Exosomes | 0.85 to 1.44 | 1.11 | 0.45 |
age | 0.98 to 1.15 | 1.06 | 0.15 |
sex | 0.15 to 2.2 | 0.57 | 0.41 |
SCORE2_EULAR | 0 to 0.51 | 0 | 0.03 |
Variable | 95% CI | Odds ratio | p value |
miR_103 | 0.67 to 1.32 | 0.94 | 0.72 |
age | 0.98 to 1.16 | 1.07 | 0.11 |
sex | 0.16 to 2.4 | 0.62 | 0.49 |
SCORE2_EULAR | 0 to 0.48 | 0 | 0.03 |
Variable | 95% CI | Odds ratio | p value |
miR_103_Exosomes | 0.57 to 2.03 | 1.07 | 0.83 |
age | 0.98 to 1.16 | 1.07 | 0.12 |
sex | 0.15 to 2.26 | 0.59 | 0.44 |
SCORE2_EULAR | 0 to 0.47 | 0 | 0.03 |
Variable | 95% CI | Odds ratio | p value |
GAS5 | 0.91 to 1.32 | 1.1 | 0.33 |
age | 0.99 to 1.17 | 1.07 | 0.09 |
sex | 0.15 to 2.29 | 0.59 | 0.45 |
SCORE2_EULAR | 0 to 0.43 | 0 | 0.02 |
Variable | 95% CI | Odds ratio | p value |
GAS5_Exosomes | 0.92 to 1.38 | 1.13 | 0.24 |
age | 0.99 to 1.16 | 1.07 | 0.09 |
sex | 0.18 to 2.91 | 0.72 | 0.65 |
SCORE2_EULAR | 0 to 1.1 | 0.01 | 0.05 |
Metric | Value |
---|---|
Area under ROC Curve (AUC) | 0.68 |
Standard Error | 0.06 |
95% Confidence Interval | 0.57 to 0.78 |
z Statistic | 3.17 |
Significance Level (p) (Area = 0.5) | 0.0015 |
Youden Index (J) | 0.41 |
Associated Criterion | ≤124.44 pg/mL |
Metric | Value |
---|---|
Endpoint: Observed (n) | 3 (Low Humanin)/16 (High Humanin) |
Expected (n) | 14.8/4.2 |
Chi-square | 42.56 |
Degrees of Freedom (DF) | 1 |
Significance | p < 0.0001 |
Hazard Ratio | 18.66 |
95% Confidence Interval (CI) | 6.33 to 55.02 |
Time | Number at Risk (Group 0) | Number at Risk (Group 1) |
---|---|---|
0 | 71 | 16 |
500 | 71 | 15 |
1000 | 70 | 11 |
1500 | 67 | 11 |
2000 | 42 | 4 |
2500 | 0 | 0 |
Accession ID Number | Symbol | Sequence |
---|---|---|
MI0000077 | hsa-miR 21-5p | UAGCUUAUCAGACUGAUGUUGA |
MI0000109 | hsa-miR-103a-3p | AGCAGCAUUGUACAGGGCUAUGA |
Primer Name | Forward | Reverse |
---|---|---|
hGAPDH | GAGTCAACGGAATTTGGTCGT | GACAAGCTTCCCGTTCTCAG |
GAS5 | 5′-CTTGCCTGGACCAGCTTAAT-3′ | 5′-CAAGCCGACTCTCCATACCT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coradduzza, D.; Cruciani, S.; Di Lorenzo, B.; De Miglio, M.R.; Zinellu, A.; Maioli, M.; Medici, S.; Erre, G.L.; Carru, C. Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study. Non-Coding RNA 2025, 11, 5. https://doi.org/10.3390/ncrna11010005
Coradduzza D, Cruciani S, Di Lorenzo B, De Miglio MR, Zinellu A, Maioli M, Medici S, Erre GL, Carru C. Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study. Non-Coding RNA. 2025; 11(1):5. https://doi.org/10.3390/ncrna11010005
Chicago/Turabian StyleCoradduzza, Donatella, Sara Cruciani, Biagio Di Lorenzo, Maria Rosaria De Miglio, Angelo Zinellu, Margherita Maioli, Serenella Medici, Gian Luca Erre, and Ciriaco Carru. 2025. "Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study" Non-Coding RNA 11, no. 1: 5. https://doi.org/10.3390/ncrna11010005
APA StyleCoradduzza, D., Cruciani, S., Di Lorenzo, B., De Miglio, M. R., Zinellu, A., Maioli, M., Medici, S., Erre, G. L., & Carru, C. (2025). Plasma Humanin and Non-Coding RNAs as Biomarkers of Endothelial Dysfunction in Rheumatoid Arthritis: A Pilot Study. Non-Coding RNA, 11(1), 5. https://doi.org/10.3390/ncrna11010005