Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia
<p>Chromosomal distribution of unique variants found on DE lncRNAs in asthenozoospermic men. The <span class="html-italic">x</span>-axis represents the chromosomes, while the <span class="html-italic">y</span>-axis shows the number of variants.</p> "> Figure 2
<p>Statistically significant (<b>a</b>) GO biological process, (<b>b</b>) GO molecular function, (<b>c</b>) GO cellular component, (<b>d</b>) KEGG pathway terms associated with the gene targets of the miRNAs that are affected by variants in DE lncRNAs (miRNA–lncRNA interaction disruption). The size and color of the dots represent the number of genes and the range of statistical significance, respectively. The <span class="html-italic">y</span>-axis represents biological terms, and the <span class="html-italic">x</span>-axis, the fold enrichment. The <span class="html-italic">p</span>-values were corrected for multiple tests using the false discovery rate (FDR).</p> "> Figure 3
<p>Flow chart of the study methodology and findings.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Whole-Genome Sequencing—RNA Sequencing and Combination of Datasets
2.2. Prioritized Variants with Functional Significance
2.3. Prioritized Variants with an Impact on lncRNA Structure
2.4. Prioritized Variants Disrupting lncRNA–miRNA Interactions and Affected Molecular Mechanisms and Pathways
3. Discussion
3.1. Variants Affecting lncRNA Structure
3.2. Variants Affecting lncRNA–miRNA Interactions
3.3. Common Variants and lncRNAs
3.4. Male Infertility and Cancer—A Potential Association
3.5. Noncoding Regions as Biomarkers
3.6. Limitations
3.7. Future Directions
4. Materials and Methods
4.1. Whole-Genome Sequencing (WGS): Biological Samples and Analysis—Identification of Exclusive Variants
4.2. RNA Sequencing—Identification of Differentially Expressed (DE) lncRNAs Between Asthenozoospermic and Normozoospermic Men
4.3. Prioritization of Variants Based on Their Impact on lncRNA Functionality, Structure, and miRNA–lncRNA Interactions
4.3.1. Prioritizing Variants Based on Functionality
4.3.2. Prioritizing Variants Based on Structural Impact
4.3.3. Prioritizing Variants Based on miRNA–lncRNA Interaction Disruption and Investigation of Mechanisms and Pathways Affected
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A Unique View on Male Infertility around the Globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Fainberg, J.; Kashanian, J.A. Recent Advances in Understanding and Managing Male Infertility. F1000Research 2019, 8, 670. [Google Scholar] [CrossRef] [PubMed]
- Pathak, U.I.; Gabrielsen, J.S.; Lipshultz, L.I. Cutting-Edge Evaluation of Male Infertility. Urol. Clin. N. Am. 2020, 47, 129–138. [Google Scholar] [CrossRef]
- Kothandaraman, N.; Agarwal, A.; Abu-Elmagd, M.; Al-Qahtani, M.H. Pathogenic Landscape of Idiopathic Male Infertility: New Insight towards Its Regulatory Networks. NPJ Genom. Med. 2016, 1, 16023. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Baskaran, S.; Parekh, N.; Cho, C.L.; Henkel, R.; Vij, S.; Arafa, M.; Panner Selvam, M.K.; Shah, R. Male Infertility. Lancet 2021, 397, 319–333. [Google Scholar] [CrossRef]
- Cytowanie Świerczyńska-Ciepłucha, A.; Marchlewska, K.; Walczak-Jędrzejowska, R.; Filipiak, E.; Słowikowska-Hilczer, J. Relationship between Asthenozoospermia and Selected Macroscopic, Microscopic and Biochemical Semen Parameters. Diagnomics Lab 2017, 53, 71–78. [Google Scholar] [CrossRef]
- Krausz, C.; Farnetani, G. Clinical Interpretation of Semen Analysis. In Practical Clinical Andrology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 173–184. [Google Scholar] [CrossRef]
- Robles, V.; Valcarce, D.G.; Riesco, M.F. Non-Coding RNA Regulation in Reproduction: Their Potential Use as Biomarkers. Non-Coding RNA Res. 2019, 4, 54. [Google Scholar] [CrossRef]
- Khawar, M.B.; Mehmood, R.; Roohi, N. MicroRNAs: Recent Insights towards Their Role in Male Infertility and Reproductive Cancers. Bosn. J. Basic Med. Sci. 2019, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiafini, M.A.; Mamuris, Z. Circular RNAs and Their Role in Male Infertility: A Systematic Review. Biomolecules 2023, 13, 1046. [Google Scholar] [CrossRef] [PubMed]
- Manfrevola, F.; Chioccarelli, T.; Cobellis, G.; Fasano, S.; Ferraro, B.; Sellitto, C.; Marella, G.; Pierantoni, R.; Chianese, R. CircRNA Role and CircRNA-Dependent Network (CeRNET) in Asthenozoospermia. Front. Endocrinol. 2020, 11, 395. [Google Scholar] [CrossRef]
- Qu, S.; Yang, X.; Li, X.; Wang, J.; Gao, Y.; Shang, R.; Sun, W.; Dou, K.; Li, H. Circular RNA: A New Star of Noncoding RNAs. Cancer Lett. 2015, 365, 141–148. [Google Scholar] [CrossRef]
- Verduci, L.; Tarcitano, E.; Strano, S.; Yarden, Y.; Blandino, G. CircRNAs: Role in Human Diseases and Potential Use as Biomarkers. Cell Death Dis. 2021, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Heng, N.; Sahlu, B.W.; Wang, H.; Zhu, H. Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int. J. Mol. Sci. 2021, 22, 13579. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiafini, M.A.; Sarafidou, T.; Mamuris, Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. Biology 2022, 11, 1510. [Google Scholar] [CrossRef]
- Tzur, Y.B. LncRNAs in Fertility: Redefining the Gene Expression Paradigm? Trends Genet. 2022, 38, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Bhartiya, D.; Scaria, V. Genomic Variations in Non-Coding RNAs: Structure, Function and Regulation. Genomics 2016, 107, 59–68. [Google Scholar] [CrossRef]
- Khan, M.R.; Avino, M.; Wellinger, R.J.; Laurent, B. Distinct Regulatory Functions and Biological Roles of LncRNA Splice Variants. Mol. Ther. Nucleic Acids 2023, 32, 127–143. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, S. Effect of Single Nucleotide Polymorphisms on the Structure of Long Noncoding RNAs and Their Interaction with RNA Binding Proteins. Biosystems 2023, 233, 105021. [Google Scholar] [CrossRef]
- Wang, H.; Lu, X.; Chen, F.; Ding, Y.; Zheng, H.; Wang, L.; Zhang, G.; Yang, J.; Bai, Y.; Li, J.; et al. Landscape of SNPs-Mediated LncRNA Structural Variations and Their Implication in Human Complex Diseases. Brief. Bioinform. 2020, 21, 85–95. [Google Scholar] [CrossRef]
- Luo, J.; Chen, R. Genetic Variations Associated with Long Noncoding RNAs. Essays Biochem. 2020, 64, 867–873. [Google Scholar] [CrossRef]
- Lu, H.; Xu, D.; Wang, P.; Sun, W.; Xue, X.; Hu, Y.; Xie, C.; Ma, Y. RNA-Sequencing and Bioinformatics Analysis of Long Noncoding RNAs and MRNAs in the Asthenozoospermia. Biosci. Rep. 2020, 40, BSR20194041. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Giannoulis, T.; Chatziparasidou, A.; Mamuris, Z. Elucidating the Role of OXPHOS Variants in Asthenozoospermia: Insights from Whole Genome Sequencing and an In Silico Analysis. Int. J. Mol. Sci. 2024, 25, 4121. [Google Scholar] [CrossRef] [PubMed]
- Aliakbari, F.; Eshghifar, N.; Mirfakhraie, R.; Pourghorban, P.; Azizi, F. Coding and Non-Coding RNAs, as Male Fertility and Infertility Biomarkers. Int. J. Fertil. Steril. 2021, 15, 158. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of Functional Variation in Personal Genomes Using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Quan, C.; Ping, J.; Lu, H.; Zhou, G.; Lu, Y. 3DSNP 2.0: Update and Expansion of the Noncoding Genomic Variant Annotation Database. Nucleic Acids Res. 2022, 50, D950–D955. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, D.; Miao, Y.R.; Wu, X.; Luo, H.; Cao, W.; Yang, W.; Yang, J.; Guo, A.Y.; Gong, J. LncRNASNP v3: An Updated Database for Functional Variants in Long Non-Coding RNAs. Nucleic Acids Res. 2023, 51, D192–D198. [Google Scholar] [CrossRef]
- Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; et al. MiRTargetLink 2.0—Interactive MiRNA Target Gene and Target Pathway Networks. Nucleic Acids Res. 2021, 49, W409–W416. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.G.O.; Aleksander, S.A.; Balhoff, J.; Carbon, S.; Cherry, J.M.; Drabkin, H.J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N.L.; et al. The Gene Ontology Knowledgebase in 2023. Genetics 2023, 224, iyad031. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.; Rajender, S. Long Non-Coding RNAs (LncRNAs) in Spermatogenesis and Male Infertility. Reprod. Biol. Endocrinol. 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Koli, S.; Reddy, K.V.R. Regulatory Non-Coding Transcripts in Spermatogenesis: Shedding Light on “Dark Matter”. Andrology 2014, 2, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Marchese, F.P.; Raimondi, I.; Huarte, M. The Multidimensional Mechanisms of Long Noncoding RNA Function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef]
- Martens, L.; Rühle, F.; Witten, A.; Meder, B.; Katus, H.A.; Arbustini, E.; Hasenfuß, G.; Sinner, M.F.; Kääb, S.; Pankuweit, S.; et al. A Genetic Variant Alters the Secondary Structure of the LncRNA H19 and Is Associated with Dilated Cardiomyopathy. RNA Biol. 2021, 18, 409. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Zhang, J.X.; Chen, Y.; Shen, X.D.; Su, C.; Guo, Y.J.; Wang, P.H.; Shi, C.C.; Lei, M.; Cao, Y.O.; et al. LncRNA NKX2-1-AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR-2 Signaling Pathway in Gastric Cancer. Mol. Oncol. 2021, 15, 1234–1255. [Google Scholar] [CrossRef]
- Tao, T.; Chen, H.; Xu, Q.; Li, Z.; Chen, X.; Zhou, X.; Luo, W. NKX2-1-AS1 Promotes the Lymphangiogenesis of Lung Adenocarcinoma through Regulation of ERG-Mediated FABP4. Tissue Cell 2024, 87, 102314. [Google Scholar] [CrossRef]
- Kathuria, H.; Millien, G.; McNally, L.; Gower, A.C.; Tagne, J.B.; Cao, Y.; Ramirez, M.I. NKX2-1-AS1 Negatively Regulates CD274/PD-L1, Cell-Cell Interaction Genes, and Limits Human Lung Carcinoma Cell Migration. Sci. Rep. 2018, 8, 14418. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Song, Y.; Li, Z.; Tang, A.; Fei, Y.; He, W. The Implication of LncRNA Expression Pattern and Potential Function of LncRNA RP4-576H24.2 in Acute Myeloid Leukemia. Cancer Med. 2019, 8, 7143–7160. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.W.; Guo, F.X.; Xu, Y.J.; Li, P.; Lu, Z.F.; McVey, D.G.; Zheng, L.; Wang, Q.; Ye, J.H.; Kang, C.M.; et al. Long Noncoding RNA NEXN-AS1 Mitigates Atherosclerosis by Regulating the Actin-Binding Protein NEXN. J. Clin. Investig. 2019, 129, 1115–1128. [Google Scholar] [CrossRef]
- Josefs, T.; Boon, R.A. The Long Non-Coding Road to Atherosclerosis. Curr. Atheroscler. Rep. 2020, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Abdelmohsen, K.; Gorospe, M. Functional Interactions among MicroRNAs and Long Noncoding RNAs. Semin. Cell Dev. Biol. 2014, 34, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Wang, S.; Wu, W.; Shan, P.; Chen, Y.; Meng, J.; Xing, L.; Yun, J.; Hao, L.; Wang, X.; et al. Mechanisms of CircRNA/LncRNA-MiRNA Interactions and Applications in Disease and Drug Research. Biomed. Pharmacother. 2023, 162, 114672. [Google Scholar] [CrossRef] [PubMed]
- Karagkouni, D.; Karavangeli, A.; Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Characterizing MiRNA-LncRNA Interplay. Methods Mol. Biol. 2021, 2372, 243–262. [Google Scholar] [CrossRef]
- Finotti, A.; Fabbri, E.; Lampronti, I.; Gasparello, J.; Borgatti, M.; Gambari, R. MicroRNAs and Long Non-Coding RNAs in Genetic Diseases. Mol. Diagn. Ther. 2019, 23, 155. [Google Scholar] [CrossRef]
- Kyrgiafini, M.A.; Giannoulis, T.; Chatziparasidou, A.; Christoforidis, N.; Mamuris, Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into LncRNAs’ Role in Male Infertility. Int. J. Mol. Sci. 2023, 24, 15002. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, L.; Zhang, X.; Xue, Y.; Gao, J.; Zhao, J.; Chi, N.; Zhu, Y. THUMPD3-AS1 Is Correlated with Gastric Cancer and Regulates Cell Function through MiR-1252-3p and CXCL17. Crit. Rev. Eukaryot. Gene Expr. 2022, 32, 69–80. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Y.; Li, X.; Miao, H.; Li, R.; Chen, D.; Wen, Z. THUMPD3-AS1 Is Correlated With Non-Small Cell Lung Cancer And Regulates Self-Renewal Through MiR-543 And ONECUT2. Onco. Targets Ther. 2019, 12, 9849–9860. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Guo, C.; Fang, H.; Xu, Z.; Hu, Y.; Luo, Y. Autophagy-Related Long Non-Coding RNA Is a Prognostic Indicator for Bladder Cancer. Front. Oncol. 2021, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Yang, K.; Kuang, Q.; Peng, M.; Li, L.; Luo, P. A Novel Risk Model for LncRNAs Associated with Oxidative Stress Predicts Prognosis of Bladder Cancer. J. Oncol. 2022, 2022, 8408328. [Google Scholar] [CrossRef]
- Liu, M.; Chen, M.Y.; Huang, J.M.; Liu, Q.; Wang, L.; Liu, R.; Yang, N.; Huang, W.H.; Zhang, W. LncRNA Weighted Gene Co-Expression Network Analysis Reveals Novel Biomarkers Related to Prostate Cancer Metastasis. BMC Med. Genom. 2022, 15, 256. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, L.; Zhu, J. LncRNA PSMA3-AS1 Promotes Lung Cancer Growth and Invasion via Sponging MiR-4504. Cancer Manag. Res. 2020, 12, 5277–5283. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Wang, Y.; Wang, B.L.; Song, Y.H.; Fang, Y.; Ji, H.; Huangfu, C.N.; Wang, K.M.; Zheng, Q. LncRNA PSMA3-AS1 Promotes Colorectal Cancer Cell Migration and Invasion via Regulating MiR-4429. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11594–11601. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Lin, X.; Chen, R.; Wu, Y.; Yan, J. LncRNA PSMA3-AS1 Promotes Preterm Delivery by Inducing Ferroptosis via MiR-224-3p/Nrf2 Axis. Cell. Mol. Biol. 2023, 69, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Chan, E.C.; Barker, D.; McElduff, P.; Taylor, K.A.; Riveros, C.; Singh, E.; Smith, R. Transcriptomic Analysis Reveals Myometrial Topologically Associated Domains Linked to the Onset of Human Term Labour. Mol. Hum. Reprod. 2022, 28, gaac003. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Huang, X.; Ling, L.; Tang, S.; Zhou, H.; Cai, X.; Wang, Y. Long Noncoding RNA ZBED5-AS1 Facilitates Tumor Progression and Metastasis in Lung Adenocarcinoma via ZNF146/ATR/Chk1 Axis. Int. J. Mol. Sci. 2023, 24, 13925. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wu, Y.; Zhuo, Q.; Zuo, Y.; Lin, J.; Shi, H.; Zhou, H.; Xu, Z. Comprehensive Analysis of Oxidative Stress-Related LncRNA Signatures in Glioma Reveals the Discrepancy of Prognostic and Immune Infiltration. Sci. Rep. 2023, 13, 7731. [Google Scholar] [CrossRef]
- Huang, X.; Chi, H.; Gou, S.; Guo, X.; Li, L.; Peng, G.; Zhang, J.; Xu, J.; Nian, S.; Yuan, Q. An Aggrephagy-Related LncRNA Signature for the Prognosis of Pancreatic Adenocarcinoma. Genes 2023, 14, 124. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Z.; Zhang, S.; Wu, L.; Jie, Y.; Liao, Y.; Huang, Y.; Chen, J.; Shi, B. Analysis of Differentially Expressed Long Non-Coding RNAs and the Associated TF-MRNA Network in Tongue Squamous Cell Carcinoma. Front. Oncol. 2020, 10, 1421. [Google Scholar] [CrossRef]
- Norouzi, R.; Mohamadzade, Z.; Norouzi, R.; Norouzi, R.; Esmaeili, R.; Soltani, B.M. In-Silico and in-Vitro Evidence Suggest LINC01405 as a Sponge for MiR-29b and MiR-497-5p, and a Potential Regulator of Wnt, PI3K, and TGFB Signaling Pathways in Breast Carcinoma. Cancer Rep. 2024, 7, e1972. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, Y.; Wang, S.; Wang, R.; Yuan, Q.; Zhu, L.; Xia, F.; Xue, M.; Wang, Y.; Li, Y.; et al. LINC00667: A Novel Vital Oncogenic LincRNA. Curr. Med. Chem. 2023, 31, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Zhao, D.; Yao, S. Identification of a Genome Instability-Associated LncRNA Signature for Prognosis Prediction in Colon Cancer. Front. Genet. 2021, 12, 679150. [Google Scholar] [CrossRef]
- He, H.; Wu, S.; Ai, K.; Xu, R.; Zhong, Z.; Wang, Y.; Zhang, L.; Zhao, X.; Zhu, X. LncRNA ZNF503-AS1 Acts as a Tumor Suppressor in Bladder Cancer by up-Regulating Ca2+ Concentration via Transcription Factor GATA6. Cell. Oncol. 2021, 44, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, X.; Zhang, M.; Zheng, Q.; Sun, Z.; He, Y.; Guo, W. Promising Advances in LINC01116 Related to Cancer. Front. Cell Dev. Biol. 2021, 9, 736927. [Google Scholar] [CrossRef]
- Najafi, A.; Ghazvini, K.; Sankian, M.; Gholami, L.; Zare, S.; Arvand, A.Y.; Tafaghodi, M. Evaluation of the Expression Profile of MRNAs and LncRNAs in Cumulus Cells Associated with Polycystic Ovary Syndrome and Pregnancy. Iran. J. Basic Med. Sci. 2023, 26, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Q.; Zhao, J.; Wang, T.; Wang, J. Long Noncoding RNA AATBC Promotes the Proliferation and Migration of Prostate Cancer Cell Through MiR-1245b-5p/CASK Axis. Cancer Manag. Res. 2021, 13, 5091–5100. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, T.; He, W.; Han, J.; Zhu, D.; Hu, K.; Li, W.; Zheng, Z.; Huang, J.; Xie, W. Knockdown of a Novel LincRNA AATBC Suppresses Proliferation and Induces Apoptosis in Bladder Cancer. Oncotarget 2015, 6, 1064–1078. [Google Scholar] [CrossRef] [PubMed]
- Giroud, M.; Kotschi, S.; Kwon, Y.; Le Thuc, O.; Hoffmann, A.; Gil-Lozano, M.; Karbiener, M.; Higareda-Almaraz, J.C.; Khani, S.; Tews, D.; et al. The Obesity-Linked Human LncRNA AATBC Stimulates Mitochondrial Function in Adipocytes. EMBO Rep. 2023, 24, e57600. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Hwang, I.S.; Park, M.R.; Hwang, S.; Cho, I.C.; Lee, K. The AIRN LncRNA Is Imprinted and Paternally Expressed in Pigs. J. Anim. Sci. 2023, 101, skad367. [Google Scholar] [CrossRef]
- Braceros, A.K.; Schertzer, M.D.; Omer, A.; Trotman, J.B.; Davis, E.S.; Dowen, J.M.; Phanstiel, D.H.; Aiden, E.L.; Calabrese, J.M. Proximity-Dependent Recruitment of Polycomb Repressive Complexes by the LncRNA Airn. Cell Rep. 2023, 42, 112803. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, D.; Shi, H.; Li, J.; Meng, L. Reduced LncRNA Aim Enhances the Malignant Invasion of Triple-Negative Breast Cancer Cells Mainly by Activating Wnt/β-Catenin/MTOR/PI3K Signaling. Pharmazie 2017, 72, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Garcia-Marin, L.J.; Bragado, M.J. Sperm Phosphoproteome: Unraveling Male Infertility. Biology 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Porambo, J.R.; Salicioni, A.M.; Visconti, P.E.; Platt, M.D. Sperm Phosphoproteomics: Historical Perspectives and Current Methodologies. Expert Rev. Proteom. 2012, 9, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Fardilha, M.; Esteves, S.L.C.; Korrodi-Gregório, L.; Pelech, S.; da Cruz e Silva, O.A.B.; da Cruz e Silva, E. Protein Phosphatase 1 Complexes Modulate Sperm Motility and Present Novel Targets for Male Infertility. Mol. Hum. Reprod. 2011, 17, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Walker, W.H. The Regulation of Male Fertility by the PTPN11 Tyrosine Phosphatase. Semin. Cell Dev. Biol. 2016, 59, 27–34. [Google Scholar] [CrossRef]
- Shemshaki, G.; Najafi, M.; Niranjana Murthy, A.S.; Malini, S.S. Novel Association of PhosphoSerine PHosphatase (PSPH) Gene Mutations with Male Infertility Identified through Whole Exome Sequencing of South Indians. Meta Gene 2021, 29, 100897. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Li, S.; Brooks, J.D.; Cullen, M.R.; Baker, L.C. Increased Risk of Cancer in Infertile Men: Analysis of U.S. Claims Data. J. Urol. 2015, 193, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.E.; Hanson, H.A.; Lowrance, W.T.; Redshaw, J.; Oottamasathien, S.; Schaeffer, A.; Johnstone, E.; Aston, K.I.; Carrell, D.T.; Cartwright, P.; et al. Childhood Cancer Risk in the Siblings and Cousins of Men with Poor Semen Quality. J. Urol. 2017, 197, 898–905. [Google Scholar] [CrossRef]
- Nagirnaja, L.; Aston, K.I.; Conrad, D.F. The Genetic Intersection of Male Infertility and Cancer. Fertil. Steril. 2018, 109, 20. [Google Scholar] [CrossRef] [PubMed]
- Tvrda, E.; Agarwal, A.; Alkuhaimi, N. Male Reproductive Cancers and Infertility: A Mutual Relationship. Int. J. Mol. Sci. 2015, 16, 7230–7260. [Google Scholar] [CrossRef]
- Rehfeld, A.; Nylander, M.; Karnov, K. The Male Reproductive System. Compend. Histol. 2017, 569–592. [Google Scholar] [CrossRef]
- Gunes, S.; Sengupta, P.; Henkel, R.; Alguraigari, A.; Sinigaglia, M.M.; Kayal, M.; Joumah, A.; Agarwal, A. Microtubular Dysfunction and Male Infertility. World J. Men’s Health 2018, 38, 9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Minhas, S.; Dhillo, W.S.; Jayasena, C.N. Male Infertility Due to Testicular Disorders. J. Clin. Endocrinol. Metab. 2020, 106, e442. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Atkins, J.; Cairns, M.; Ali, A.; Tanwar, P.S. Germ Cell-Specific Sustained Activation of Wnt Signalling Perturbs Spermatogenesis in Aged Mice, Possibly through Non-Coding RNAs. Oncotarget 2016, 7, 85709–85727. [Google Scholar] [CrossRef] [PubMed]
- Agajanian, M.J.; Walker, M.P.; Axtman, A.D.; Ruela-de-Sousa, R.R.; Serafin, D.S.; Rabinowitz, A.D.; Graham, D.M.; Ryan, M.B.; Tamir, T.; Nakamichi, Y.; et al. WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Rep. 2019, 26, 79. [Google Scholar] [CrossRef]
- Chang, Y.F.; Lee-Chang, J.S.; Harris, K.Y.; Sinha-Hikim, A.P.; Rao, M.K. Role of β-Catenin in Post-Meiotic Male Germ Cell Differentiation. PLoS ONE 2011, 6, e28039. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Najih, M.; Martin, L.J. The AP-1 Family of Transcription Factors Are Important Regulators of Gene Expression within Leydig Cells. Endocrine 2021, 74, 498–507. [Google Scholar] [CrossRef]
- Suomalainen, L.; Dunkel, L.; Ketola, I.; Eriksson, M.; Erkkilä, K.; Oksjoki, R.; Taari, K.; Heikinheimo, M.; Pentikäinen, V. Activator Protein-1 in Human Male Germ Cell Apoptosis. Mol. Hum. Reprod. 2004, 10, 743–753. [Google Scholar] [CrossRef]
- Li, W.; Li, H.; Zha, C.; Che, B.; Yu, Y.; Yang, J.; Li, T. Lipids, Lipid-Modified Drug Target Genes, and the Risk of Male Infertility: A Mendelian Randomization Study. Front. Endocrinol. 2024, 15, 1392533. [Google Scholar] [CrossRef] [PubMed]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK Signalings: Interplay and Implication in Targeted Cancer Therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- Almalki, S.G. The Pathophysiology of the Cell Cycle in Cancer and Treatment Strategies Using Various Cell Cycle Checkpoint Inhibitors. Pathol.—Res. Pract. 2023, 251, 154854. [Google Scholar] [CrossRef] [PubMed]
- Wolgemuth, D.J.; Roberts, S.S. Regulating Mitosis and Meiosis in the Male Germ Line: Critical Functions for Cyclins. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1653. [Google Scholar] [CrossRef] [PubMed]
- Wolgemuth, D.J.; Laurion, E.; Lele, K.M. Regulation of the Mitotic and Meiotic Cell Cycles in the Male Germ Line. Recent Prog. Horm. Res. 2002, 57, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Li, M.W.M.; Mruk, D.D.; Cheng, C.Y. Mitogen-Activated Protein Kinases in Male Reproductive Function. Trends Mol. Med. 2009, 15, 159–168. [Google Scholar] [CrossRef]
- Deng, C.-Y.; Lv, M.; Luo, B.-H.; Zhao, S.-Z.; Mo, Z.-C.; Xie, Y.-J. The Role of the PI3K/AKT/MTOR Signalling Pathway in Male Reproduction. Curr. Mol. Med. 2021, 21, 539–548. [Google Scholar] [CrossRef]
- Singh, V.; Joshi, M.; Singh, K.; Singh, R. Wnt Signaling in Spermatogenesis and Male Infertility. In Molecular Signaling in Spermatogenesis and Male Infertility; CRC Press: Boca Raton, FL, USA, 2019; pp. 85–94. [Google Scholar] [CrossRef]
- Song, P.; Gao, Z.; Bao, Y.; Chen, L.; Huang, Y.; Liu, Y.; Dong, Q.; Wei, X. Wnt/β-Catenin Signaling Pathway in Carcinogenesis and Cancer Therapy. J. Hematol. Oncol. 2024, 17, 238. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yu, M.; Guo, T.; Sui, Y.; Tian, Z.; Ni, X.; Chen, X.; Jiang, M.; Jiang, J.; Lu, Y.; et al. MicroRNAs in Spermatogenesis Dysfunction and Male Infertility: Clinical Phenotypes, Mechanisms and Potential Diagnostic Biomarkers. Front. Endocrinol. 2024, 15, 1293368. [Google Scholar] [CrossRef]
- Syed, V. TGF-β Signaling in Cancer. J. Cell. Biochem. 2016, 117, 1279–1287. [Google Scholar] [CrossRef]
- Asadi, A.; Ghahremani, R.; Abdolmaleki, A.; Rajaei, F. Role of Sperm Apoptosis and Oxidative Stress in Male Infertility: A Narrative Review. Int. J. Reprod. Biomed. 2021, 19, 493–504. [Google Scholar] [CrossRef]
- Wong, R.S.Y. Apoptosis in Cancer: From Pathogenesis to Treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative Stress-Induced Apoptosis and Autophagy: Balancing the Contrary Forces in Spermatogenesis. Biochim. Biophys. Acta—Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef] [PubMed]
- Coomans De Brachène, A.; Demoulin, J.B. FOXO Transcription Factors in Cancer Development and Therapy. Cell. Mol. Life Sci. 2016, 73, 1159–1172. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Luo, L.; Sun, J.; Guo, Q.; Yang, X.; Zhang, C.; Ni, B. The Role of P53 in Male Infertility. Front. Endocrinol. 2024, 15, 1457985. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. P53 Signaling in Cancer Progression and Therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef] [PubMed]
- Bahramy, A.; Zafari, N.; Rajabi, F.; Aghakhani, A.; Jayedi, A.; Khaboushan, A.S.; Zolbin, M.M.; Yekaninejad, M.S. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front. Mol. Biosci. 2023, 10, 1096524. [Google Scholar] [CrossRef]
- Carter, J.V.; Galbraith, N.J.; Yang, D.; Burton, J.F.; Walker, S.P.; Galandiuk, S. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: A systematic review and meta-analysis. Br. J. Cancer 2017, 116, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kong, D.; Wang, C.; Ding, X.; Zhang, L.; Zhao, M.; Chen, J.; Xu, X.; Hu, X.; Yang, J.; et al. Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: A systematic review and updated meta-analysis. J. Ovarian Res. 2019, 12, 24. [Google Scholar] [CrossRef]
- Zafari, N.; Tarafdari, A.M.; Izadi, P.; Noruzinia, M.; Yekaninejad, M.S.; Bahramy, A.; Mohebalian, A. A Panel of Plasma miRNAs 199b-3p, 224-5p and Let-7d-3p as Non-Invasive Diagnostic Biomarkers for Endometriosis. Reprod. Sci. 2021, 28, 991–999. [Google Scholar] [CrossRef]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mo, Y.; Yang, X.; Zhou, R.; Wu, Z.; He, Y.; Yang, X.; Zhong, Y.; Du, Y.; Zhou, H.; et al. Long non-coding RNA AFAP1-AS1 is a novel biomarker in various cancers: A systematic review and meta-analysis based on the literature and GEO datasets. Oncotarget 2017, 8, 102346. [Google Scholar] [CrossRef]
- Eapen, R.S.; Lonergan, P.E.; Bagguley, D.; Ong, S.; Condon, B.; Lawrentschuck, N.; Meng, M.V. The Clinical Applications of Serum and Urinary Biomarkers in Prostate Cancer. Société Int. D’urologie J. 2020, 1, 30–38. [Google Scholar] [CrossRef]
- Hoogmartens, J.; Cacace, R.; Van Broeckhoven, C. Insight into the genetic etiology of Alzheimer’s disease: A comprehensive review of the role of rare variants. Alzheimer’s Dement. 2021, 13, e12155. [Google Scholar] [CrossRef] [PubMed]
- Frydas, A.; Wauters, E.; van der Zee, J.; Van Broeckhoven, C. Uncovering the impact of noncoding variants in neurodegenerative brain diseases. Trends Genet. 2022, 38, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.C.; Zhang, Y.; Yu, K.; Li, Y.; Yu, H.; Zhou, S.J.; Wang, Y.P.; Deng, S.L.; Tian, L. LncRNAs Induce Oxidative Stress and Spermatogenesis by Regulating Endoplasmic Reticulum Genes and Pathways. Aging 2021, 13, 13764–13787. [Google Scholar] [CrossRef] [PubMed]
- Lü, M.; Tian, H.; Cao, Y.X.; He, X.; Chen, L.; Song, X.; Ping, P.; Huang, H.; Sun, F. Downregulation of MiR-320a/383-Sponge-like Long Non-Coding RNA NLC1-C (Narcolepsy Candidate-Region 1 Genes) Is Associated with Male Infertility and Promotes Testicular Embryonal Carcinoma Cell Proliferation. Cell Death Dis. 2015, 6, E1960. [Google Scholar] [CrossRef]
- Loganathan, T.; Doss, C.G.P. Non-Coding RNAs in Human Health and Disease: Potential Function as Biomarkers and Therapeutic Targets. Funct. Integr. Genom. 2023, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.; Panner Selvam, M.K.; Agarwal, A. Exosomes of Male Reproduction. Adv. Clin. Chem. 2020, 95, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Vickram, A.S.; Srikumar, P.S.; Srinivasan, S.; Jeyanthi, P.; Anbarasu, K.; Thanigaivel, S.; Nibedita, D.; Jenila Rani, D.; Rohini, K. Seminal Exosomes—An Important Biological Marker for Various Disorders and Syndrome in Human Reproduction. Saudi J. Biol. Sci. 2021, 28, 3607. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.W.; Amode, M.R.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2024. Nucleic Acids Res. 2024, 52, D891–D899. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
Variants | Gene | Gene ID (Ensembl) | Transcripts | p-Value |
---|---|---|---|---|
rs35710229 | NKX2-1-AS1 | ENSG00000253563 | NONHSAT036440.2 | 0.0851 |
rs67786346 | RUVBL1-AS1 | ENSG00000239608 | NONHSAT091752.2 | 0.1978 |
NONHSAT194440.1 | 0.0704 | |||
rs113300435 | NEXN-AS1 | ENSG00000235927 | NONHSAT226787.1 | 0.1152 |
NONHSAT004050.2 | 0.1108 | |||
rs2276699 | LINC01914 | ENSG00000234362 | NONHSAT070300.2 | 0.1230 |
rs2951831 | lnc-AGPAT5-1 | ENSG00000245857 | NONHSAT124792.2 | 0.1733 |
NONHSAT254767.1 | 0.1580 | |||
NONHSAT254769.1 | 0.1568 | |||
NONHSAT124793.2 | 0.1584 | |||
NONHSAT254768.1 | 0.1499 | |||
NONHSAT215358.1 | 0.1446 |
Variant | lncRNA | p-Value (Effect on Structure) | miRNA Gain | miRNA Loss |
---|---|---|---|---|
rs35710229 | NKX2-1-AS1 | 0.0851 | 0 | 6 |
rs2951831 | lnc-AGPAT5-1 | 0.1733 0.1580 0.1568 0.1584 0.1499 0.1446 | 6 | 90 |
lncRNAs | Variants | miRNA Gain | miRNA Loss |
PSMA3-AS1 | rs10145437 | 5 | 0 |
rs7153897 | 0 | 14 | |
LINC00667 | rs1201525 | 0 | 3 |
rs35455334 | 3 | 0 | |
AATBC | rs66472331 | 3 | 3 |
rs73367288 | 2 | 2 |
Pathway | Genes | Male Infertility | Cancer |
---|---|---|---|
Wnt signaling pathway | SOX4, MYC | Downregulated [100] | Upregulated [101] |
TGF-beta signaling pathway | SOX4, STAT3 | Dysregulated (both) [102] | Dysregulated (both) [103] |
Apoptosis | TP53, BCL2, MAPK3, MYC | Upregulated [104] | Downregulated [105] |
Cell cycle | TP53, CDK4, MAPK3, MYC | Dysregulated (both) [96,97] | Upregulated [95] |
PI3K-Akt signaling pathway | CDK4, BCL2, AKT1, MYC | Downregulated [99] | Upregulated [93] |
FoxO signaling pathway | BCL2, AKT1 | Upregulated [106] | Downregulated [107] |
MAPK signaling pathway | MAPK3 | Downregulated [98] | Upregulated [94] |
p53 signaling pathway | TP53 | Upregulated [108] | Downregulated [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyrgiafini, M.-A.; Katsigianni, M.; Giannoulis, T.; Sarafidou, T.; Chatziparasidou, A.; Mamuris, Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Non-Coding RNA 2025, 11, 4. https://doi.org/10.3390/ncrna11010004
Kyrgiafini M-A, Katsigianni M, Giannoulis T, Sarafidou T, Chatziparasidou A, Mamuris Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Non-Coding RNA. 2025; 11(1):4. https://doi.org/10.3390/ncrna11010004
Chicago/Turabian StyleKyrgiafini, Maria-Anna, Maria Katsigianni, Themistoklis Giannoulis, Theologia Sarafidou, Alexia Chatziparasidou, and Zissis Mamuris. 2025. "Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia" Non-Coding RNA 11, no. 1: 4. https://doi.org/10.3390/ncrna11010004
APA StyleKyrgiafini, M.-A., Katsigianni, M., Giannoulis, T., Sarafidou, T., Chatziparasidou, A., & Mamuris, Z. (2025). Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Non-Coding RNA, 11(1), 4. https://doi.org/10.3390/ncrna11010004