Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges
<p>Different configurations of MEs: water-in-oil, bicontinuous, and oil-in-water.</p> "> Figure 2
<p>An overview of surfactants: Their structures and classifications. Reproduced with permission [<a href="#B67-nanomaterials-13-01688" class="html-bibr">67</a>]. Copyright 2023, Elsevier.</p> "> Figure 3
<p>Commonly used co-surfactants with examples employed for formulating microemulsions.</p> "> Figure 4
<p>Illustration of the phase diagram indicating the microemulsion formation regions.</p> "> Figure 5
<p>Versatile applications of microemulsions in drug and gene delivery. Reproduced with permission from [<a href="#B11-nanomaterials-13-01688" class="html-bibr">11</a>]. Copyright 2023, Elsevier.</p> "> Figure 6
<p>Representation of different routes of penetration of microemulsions through the skin: (1) by the appendageal route, (2) by the intracellular route, or (3) by the intercellular route. The appendageal route involves particles entering sweat glands, hair follicles, or skin furrows for either penetration into the dermis or retention for increased release of the drug. The intracellular route comprises a direct path via cell membranes containing multiple epidermal layers. The intercellular route comprises a more tortuous path between epidermal cells. The path taken by particles depends on dimensions, charge, shape, and material. Reproduced with permission from [<a href="#B135-nanomaterials-13-01688" class="html-bibr">135</a>]. Copyright 2023, Multidisciplinary Digital Publishing Institute.</p> ">
Abstract
:1. Introduction
2. Background and Definition of Microemulsions
3. Formulation of Microemulsions
3.1. Surfactants
3.2. Co-Surfactants
3.3. Oil Phase
3.4. Aqueous Phase
3.5. Active Pharmaceutical Ingredients (API)
4. Characterization of Microemulsions
5. Ternary Phase Diagrams of Microemulsions
6. Life Science Applications of Microemulsions
7. Advantages of Microemulsions as a Drug Delivery System
8. Challenges and Future Directions
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid Nanocarriers as Skin Drug Delivery Systems: Properties, Mechanisms of Skin Interactions and Medical Applications. Int. J. Pharm. 2018, 535, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-Based Topical Drug Delivery for the Treatment of Skin Diseases. Expert Opin. Drug Deliv. 2012, 9, 783–804. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-C.; Xu, X.-L.; Lou, X.-F.; Du, Y.-Z. Recent Progress and Future Directions: The Nano-Drug Delivery System for the Treatment of Vitiligo. Int. J. Nanomed. 2020, 15, 3267–3279. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wiraja, C.; Chew, S.W.T.; Xu, C. Nanodelivery Systems for Topical Management of Skin Disorders. Mol. Pharm. 2021, 18, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Tanner, T.; Marks, R. Delivering Drugs by the Transdermal Route: Review and Comment. Ski. Res. Technol. 2008, 14, 249–260. [Google Scholar] [CrossRef]
- Güng, S.; Erdal, M.S.; Aksu, B. New Formulation Strategies in Topical Antifungal Therapy. J. Cosmet. Dermatol. Sci. Appl. 2013, 3, 56–65. [Google Scholar] [CrossRef]
- Patil, P.B.; Datir, S.K.; Saudagar, R.B. A Review on Topical Gels as Drug Delivery System. J. Drug Deliv. Ther. 2019, 9, 989–994. [Google Scholar] [CrossRef]
- Kathe, K.; Kathpalia, H. Film Forming Systems for Topical and Transdermal Drug Delivery. Asian J. Pharm. Sci. 2017, 12, 487–497. [Google Scholar] [CrossRef]
- Yan, L.; Alba, M.; Tabassum, N.; Voelcker, N.H. Micro- and Nanosystems for Advanced Transdermal Delivery. Adv. Ther. 2019, 2, 1900141. [Google Scholar] [CrossRef]
- Üstündağ Okur, N.; Çağlar, E.Ş.; Siafaka, P.I. Novel Ocular Drug Delivery Systems: An Update on Microemulsions. J. Ocul. Pharmacol. Ther. 2020, 36, 342–354. [Google Scholar] [CrossRef]
- Rajpoot, K.; Tekade, R.K. Chapter 10—Microemulsion as Drug and Gene Delivery Vehicle: An inside Story. In Drug Delivery Systems; Tekade, R.K., Ed.; Advances in Pharmaceutical Product Development and Research; Academic Press: Cambridge, MA, USA, 2019; pp. 455–520. ISBN 978-0-12-814487-9. [Google Scholar]
- Lu, B.; Bo, Y.; Yi, M.; Wang, Z.; Zhang, J.; Zhu, Z.; Zhao, Y.; Zhang, J. Enhancing the Solubility and Transdermal Delivery of Drugs Using Ionic Liquid-In-Oil Microemulsions. Adv. Funct. Mater. 2021, 31, 2102794. [Google Scholar] [CrossRef]
- Alkrad, J.A.; Assaf, S.M.; Hussein-Al-Ali, S.H.; Alrousan, R. Microemulsions as Nanocarriers for Oral and Transdermal Administration of Enoxaparin. J. Drug Deliv. Sci. Technol. 2022, 70, 103248. [Google Scholar] [CrossRef]
- Dianzani, C.; Zara, G.P.; Maina, G.; Pettazzoni, P.; Pizzimenti, S.; Rossi, F.; Gigliotti, C.L.; Ciamporcero, E.S.; Daga, M.; Barrera, G. Drug Delivery Nanoparticles in Skin Cancers. BioMed Res. Int. 2014, 2014, e895986. [Google Scholar] [CrossRef]
- Kamble, P.; Sadarani, B.; Majumdar, A.; Bhullar, S. Nanofiber Based Drug Delivery Systems for Skin: A Promising Therapeutic Approach. J. Drug Deliv. Sci. Technol. 2017, 41, 124–133. [Google Scholar] [CrossRef]
- Shingade, G.M. Review on: Recent trend on transdermal drug delivery system. J. Drug Deliv. Ther. 2012, 2. [Google Scholar] [CrossRef]
- Paliwal, H.; Solanki, R.S.; Chauhan, C.S.; Dwivedi, J. Pharmaceutical Considerations of Microemulsion as a Drug Delivery System. J. Drug Deliv. Ther. 2019, 9, 661–665. [Google Scholar] [CrossRef]
- Al-Adham, I.S.I.; Jaber, N.; Al-Remawi, M.; Al-Akayleh, F.; Al-Kaissi, E.; Ali Agha, A.S.A.; Fitzsimmons, L.B.; Collier, P.J. A Review of the Antimicrobial Activity of Thermodynamically Stable Microemulsions. Lett. Appl. Microbiol. 2022, 75, 537–547. [Google Scholar] [CrossRef]
- Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique Properties, Pharmacological Applications, and Targeted Drug Delivery. Front. Nanotechnol. 2021, 3, 754889. [Google Scholar] [CrossRef]
- Ande, S.N.; Sonone, K.B.; Bakal, R.L.; Ajmire, P.V.; Sawarkar, H.S. Role of Surfactant and Co-Surfactant in Microemulsion: A Review. Res. J. Pharm. Technol. 2022, 15, 4829–4834. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Anuar, N.; Sabri, A.H.; Bustami Effendi, T.J.; Abdul Hamid, K. Development and Characterisation of Ibuprofen-Loaded Nanoemulsion with Enhanced Oral Bioavailability. Heliyon 2020, 6, e04570. [Google Scholar] [CrossRef]
- Moghadam, S.H.; Saliaj, E.; Wettig, S.D.; Dong, C.; Ivanova, M.V.; Huzil, J.T.; Foldvari, M. Effect of Chemical Permeation Enhancers on Stratum Corneum Barrier Lipid Organizational Structure and Interferon Alpha Permeability. Mol. Pharm. 2013, 10, 2248–2260. [Google Scholar] [CrossRef] [PubMed]
- Kogan, A.; Garti, N. Microemulsions as Transdermal Drug Delivery Vehicles. Adv. Colloid Interface Sci. 2006, 123–126, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Talegaonkar, S.; Azeem, A.; Ahmad, F.J.; Khar, R.K.; Pathan, S.A.; Khan, Z.I. Microemulsions: A Novel Approach to Enhanced Drug Delivery. Recent Pat. Drug Deliv. Formul. 2008, 2, 238–257. [Google Scholar] [CrossRef]
- Gharbavi, M.; Manjili, H.K.; Amani, J.; Sharafi, A.; Danafar, H. In Vivo and in Vitro Biocompatibility Study of Novel Microemulsion Hybridized with Bovine Serum Albumin as Nanocarrier for Drug Delivery. Heliyon 2019, 5, e01858. [Google Scholar] [CrossRef]
- Sahoo, C.K.; Rao, S.R.M.; Sudhakar, M. Hema Challenges of Micro-Emulsion as a Novel Carrier for Drug Delivery. Res. J. Pharm. Dos. Form. Technol. 2019, 11, 227. [Google Scholar] [CrossRef]
- Patil, P.; Nene, S.; Shah, S.; Singh, S.B.; Srivastava, S. Exploration of Novel Drug Delivery Systems in Topical Management of Osteoarthritis. Drug Deliv. Transl. Res. 2023, 13, 531–546. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Maria, D.N.; Wang, X.; Simpson, R.N.; Hollingsworth, T.J.; Jablonski, M.M. Enhanced Corneal Penetration of a Poorly Permeable Drug Using Bioadhesive Multiple Microemulsion Technology. Pharmaceutics 2020, 12, 704. [Google Scholar] [CrossRef]
- Galindo-Rosales, F.J.; Campo-Deaño, L.; Afonso, A.M.; Alves, M.A.; Pinho, F.T. Proceedings of the Iberian Meeting on Rheology (IBEREO 2019); Springer Nature: Cham, Switzerland, 2019; ISBN 978-3-030-27701-7. [Google Scholar]
- Rakshit, A.K.; Naskar, B.; Moulik, S.P. Commemorating 75 Years of Microemulsion. Curr. Sci. 2019, 116, 898–912. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, R.; Rondón, M.; Bullón, J.; Graciaa, A. Review on Some Confusion Produced by the Bicontinuous Microemulsion Terminology and Its Domains Microcurvature: A Simple Spatiotemporal Model at Optimum Formulation of Surfactant-Oil-Water Systems. ACS Omega 2023, 8, 9040–9057. [Google Scholar] [CrossRef]
- Danielsson, I.; Lindman, B. The Definition of Microemulsion. Colloids Surf. 1981, 3, 391–392. [Google Scholar] [CrossRef]
- Burguera, J.L.; Burguera, M. Analytical Applications of Emulsions and Microemulsions. Talanta 2012, 96, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; McClements, D.J. Food-Grade Microemulsions, Nanoemulsions and Emulsions: Fabrication from Sucrose Monopalmitate & Lemon Oil. Food Hydrocoll. 2011, 25, 1413–1423. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Rao, J.; McClements, D.J. Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. J. Agric. Food Chem. 2011, 59, 5026–5035. [Google Scholar] [CrossRef] [PubMed]
- Kale, S.N.; Deore, S.L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017, 8, 39. [Google Scholar] [CrossRef]
- Schork, F.J.; Luo, Y.; Smulders, W.; Russum, J.P.; Butté, A.; Fontenot, K. Miniemulsion Polymerization. In Polymer Particles; Okubo, M., Ed.; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 129–255. ISBN 978-3-540-31565-0. [Google Scholar]
- Han, X.; Lu, M.; Fan, Y.; Li, Y.; Holmberg, K. Recent Developments on Surfactants for Enhanced Oil Recovery. Tenside Surfactants Deterg. 2021, 58, 164–176. [Google Scholar] [CrossRef]
- Naoui, W.; Bolzinger, M.-A.; Fenet, B.; Pelletier, J.; Valour, J.-P.; Kalfat, R.; Chevalier, Y. Microemulsion Microstructure Influences the Skin Delivery of an Hydrophilic Drug. Pharm. Res. 2011, 28, 1683–1695. [Google Scholar] [CrossRef]
- Junyaprasert, V.B.; Boonme, P.; Songkro, S.; Krauel, K.; Rades, T. Transdermal Delivery of Hydrophobic and Hydrophilic Local Anesthetics from o/w and w/o Brij 97-Based Microemulsions. J. Pharm. Pharm. Sci. 2007, 10, 288–298. [Google Scholar]
- Peng, K.; Sottmann, T.; Stubenrauch, C. Gelled Non-Toxic Bicontinuous Microemulsions as Promising Transdermal Drug Carriers. Mol. Phys. 2021, 119, e1886363. [Google Scholar] [CrossRef]
- Soliman, S.M.; Malak, N.A.; El-Gazayerly, O.N.; Rehim, A.A. Formulation of Microemulsion Gel Systems for Transdermal Delivery of Celecoxib: In Vitro Permeation, Anti-Inflammatory Activity and Skin Irritation Tests. Drug Discov. Ther. 2010, 4, 459–471. [Google Scholar]
- Bourrel, M.; Schechter, R.S. Microemulsions and Related Systems: Formulation, Solvency, and Physical Properties; Editions TECHNIP: Paris, France, 2010; ISBN 978-2-7108-0956-2. [Google Scholar]
- Yuan, Y.; Li, S.; Mo, F.; Zhong, D. Investigation of Microemulsion System for Transdermal Delivery of Meloxicam. Int. J. Pharm. 2006, 321, 117–123. [Google Scholar] [CrossRef]
- Jeirani, Z.; Mohamed Jan, B.; Si Ali, B.; Noor, I.M.; Chun Hwa, S.; Saphanuchart, W. The Optimal Mixture Design of Experiments: Alternative Method in Optimizing the Aqueous Phase Composition of a Microemulsion. Chemom. Intell. Lab. Syst. 2012, 112, 1–7. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, F.-Y. Development and Characterization of Eucalyptol Microemulsions for Topic Delivery of Curcumin. Chem. Pharm. Bull. 2011, 59, 172–178. [Google Scholar] [CrossRef]
- Kreilgaard, M. Influence of Microemulsions on Cutaneous Drug Delivery. Adv. Drug Deliv. Rev. 2002, 54, S77–S98. [Google Scholar] [CrossRef]
- Karasulu, H.Y. Microemulsions as Novel Drug Carriers: The Formation, Stability, Applications and Toxicity. Expert Opin. Drug Deliv. 2008, 5, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Sapra, B.; Thatai, P.; Bhandari, S.; Sood, J.; Jindal, M.; Tiwary, A. A Critical Appraisal of Microemulsions for Drug Delivery: Part I. Ther. Deliv. 2013, 4, 1547–1564. [Google Scholar] [CrossRef]
- Vandamme, T.F. Microemulsions as Ocular Drug Delivery Systems: Recent Developments and Future Challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Sripriya, R.; Muthu Raja, K.; Santhosh, G.; Chandrasekaran, M.; Noel, M. The Effect of Structure of Oil Phase, Surfactant and Co-Surfactant on the Physicochemical and Electrochemical Properties of Bicontinuous Microemulsion. J. Colloid Interface Sci. 2007, 314, 712–717. [Google Scholar] [CrossRef]
- Karamustafa, F.; Çelebi, N. Development of an Oral Microemulsion Formulation of Alendronate: Effects of Oil and Co-Surfactant Type on Phase Behaviour. J. Microencapsul. 2008, 25, 315–323. [Google Scholar] [CrossRef]
- Cao, X.; Gu, Y.; Tian, H.; Fang, Y.; Johnson, D.; Ren, Z.; Chen, C.; Huang, Y. Microemulsion Synthesis of Ms/Tz-BiVO4 Composites: The Effect of PH on Crystal Structure and Photocatalytic Performance. Ceram. Int. 2020, 46, 20788–20797. [Google Scholar] [CrossRef]
- Sun, M.; Si, L.; Zhai, X.; Fan, Z.; Ma, Y.; Zhang, R.; Yang, X. The Influence of Co-Solvents on the Stability and Bioavailability of Rapamycin Formulated in Self-Microemulsifying Drug Delivery Systems. Drug Dev. Ind. Pharm. 2011, 37, 986–994. [Google Scholar] [CrossRef]
- He, C.-X.; He, Z.-G.; Gao, J.-Q. Microemulsions as Drug Delivery Systems to Improve the Solubility and the Bioavailability of Poorly Water-Soluble Drugs. Expert Opin. Drug Deliv. 2010, 7, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Calligaris, S.; Valoppi, F.; Barba, L.; Pizzale, L.; Anese, M.; Conte, L.; Nicoli, M.C. Development of Transparent Curcumin Loaded Microemulsions by Phase Inversion Temperature (PIT) Method: Effect of Lipid Type and Physical State on Curcumin Stability. Food Biophys. 2017, 12, 45–51. [Google Scholar] [CrossRef]
- Kara, D.; Fisher, A.; Hill, S. Extraction of Trace Elements by Ultrasound-Assisted Emulsification from Edible Oils Producing Detergentless Microemulsions. Food Chem. 2015, 188, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Jintapattanakit, A. Preparation of Nanoemulsions by Phase Inversion Temperature (PIT). Pharm. Sci. Asia 2018, 42, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Xu, D.; Yuan, Y.; Wu, H.; Hou, J.; Kang, W.; Bai, B. Advances of Spontaneous Emulsification and Its Important Applications in Enhanced Oil Recovery Process. Adv. Colloid Interface Sci. 2020, 277, 102119. [Google Scholar] [CrossRef] [PubMed]
- Valasques, G.S.; dos Santos, A.M.P.; Teixeira, L.S.G.; da Mata Cerqueira, U.M.F.; de Souza, V.S.; Bezerra, M.A. Applications of Emulsified Systems in Elemental Analysis by Spectroanalytical Techniques. Appl. Spectrosc. Rev. 2017, 52, 729–753. [Google Scholar] [CrossRef]
- Patel, R.B.; Patel, M.R.; Bhatt, K.K.; Patel, B.G. Formulation Consideration and Characterization of Microemulsion Drug Delivery System for Transnasal Administration of Carbamazepine. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 243–253. [Google Scholar] [CrossRef]
- Hu, L.; Jia, Y.; Niu, F.; Jia, Z.; Yang, X.; Jiao, K. Preparation and Enhancement of Oral Bioavailability of Curcumin Using Microemulsions Vehicle. J. Agric. Food Chem. 2012, 60, 7137–7141. [Google Scholar] [CrossRef]
- Mao, S.; Wang, Y.; Ji, H.; Bi, D. Preparation of solid lipid nanoparticles by microemulsion technique. Yao Xue Xue Bao 2003, 38, 624–626. [Google Scholar] [PubMed]
- Santos, P.; Watkinson, A.C.; Hadgraft, J.; Lane, M.E. Application of Microemulsions in Dermal and Transdermal Drug Delivery. Ski. Pharmacol. Physiol. 2008, 21, 246–259. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Lochhead, R.Y.; Maibach, H.I.; Yamashita, Y. Cosmetic Science and Technology: Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-802054-8. [Google Scholar]
- Alves, J.L.; Rosa, P. de T.V. e; Morales, A.R. Evaluation of Organic Modification of Montmorillonite with Ionic and Nonionic Surfactants. Appl. Clay Sci. 2017, 150, 23–33. [Google Scholar] [CrossRef]
- Goto, Y.; Nema, Y.; Matsuoka, K. Foam Separation of Dyes Using Anionic, Cationic, and Amphoteric Surfactants. J. Oleo Sci. 2020, 69, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.M.; Matsumoto, S.; Gong, J.P.; Osada, Y. Effect of Hydrophobic Side Chain on Poly(Carboxyl Acid) Dissociation and Surfactant Binding. Macromolecules 2003, 36, 8830–8835. [Google Scholar] [CrossRef]
- Chai, J.; Wu, Y.; Li, X.; Yang, B.; Chen, L.; Shang, S.; Lu, J. Phase Behavior of the Microemulsion Systems Containing Alkyl Polyglucoside and Hexadecyl-Trimethyl-Ammonium Bromide. J. Chem. Eng. Data 2011, 56, 48–52. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, Y.; Guo, F.; Sun, W.; Cheng, H.; Xing, Y.; Gui, X. Effect of Microemulsion on Low-Rank Coal Flotation by Mixing DTAB and Diesel Oil. Fuel 2020, 260, 116321. [Google Scholar] [CrossRef]
- Rahdar, A.; Almasi-Kashi, M. Dynamic and Spectroscopic Studies of Nano-Micelles Comprising Dye in Water/ Dioctyl Sodium Sulfosuccinate /Decane Droplet Microemulsion at Constant Water Content. J. Mol. Struct. 2017, 1128, 257–262. [Google Scholar] [CrossRef]
- Hassan, R.R.A. Sodium Dodecyl Sulfate Micro-Emulsion as a Smart Cleaning Agent for Archeological Manuscripts: Surface Investigations. Eur. Phys. J. Plus 2021, 136, 37. [Google Scholar] [CrossRef]
- Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion Utility in Pharmaceuticals: Implications for Multi-Drug Delivery. Int. J. Pharm. 2017, 526, 425–442. [Google Scholar] [CrossRef]
- Kaur, G.; Mehta, S.K. Developments of Polysorbate (Tween) Based Microemulsions: Preclinical Drug Delivery, Toxicity and Antimicrobial Applications. Int. J. Pharm. 2017, 529, 134–160. [Google Scholar] [CrossRef]
- Djekic, L.; Primorac, M. The Influence of Cosurfactants and Oils on the Formation of Pharmaceutical Microemulsions Based on PEG-8 Caprylic/Capric Glycerides. Int. J. Pharm. 2008, 352, 231–239. [Google Scholar] [CrossRef]
- Ashok, P.; Meyyanathan, S.N.; Jawahar, N.; Vadivelan, R. Irbesartan Formulation and Evaluation of Loaded Solid Lipid Nanoparticles by Microemulsion Techinque. Asian J. Pharm. Technol. 2020, 10, 228–230. [Google Scholar] [CrossRef]
- Subongkot, T. Development and Mechanistic Study of a Microemulsion Containing Vitamin E TPGS for the Enhancement of Oral Absorption of Celecoxib. Int. J. Nanomed. 2019, 14, 3087–3102. [Google Scholar] [CrossRef] [PubMed]
- Grant, L.M.; Ederth, T.; Tiberg, F. Influence of Surface Hydrophobicity on the Layer Properties of Adsorbed Nonionic Surfactants. Langmuir 2000, 16, 2285–2291. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Gutiérrez-Muro, S.; Guzmán, E.; Lucia, A.; Ortega, F.; Rubio, R.G. Oil-In-Water Microemulsions for Thymol Solubilization. Colloids Interfaces 2019, 3, 64. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Murthy, R.S.R. Microemulsions: A Potential Drug Delivery System. Curr. Drug Deliv. 2006, 3, 167–180. [Google Scholar] [CrossRef]
- Fanun, M. Microemulsions: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-8960-8. [Google Scholar]
- Moiseev, R.V.; Morrison, P.W.J.; Steele, F.; Khutoryanskiy, V.V. Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics 2019, 11, 321. [Google Scholar] [CrossRef]
- Yeom, D.W.; Chae, B.R.; Son, H.Y.; Kim, J.H.; Chae, J.S.; Song, S.H.; Oh, D.; Choi, Y.W. Enhanced Oral Bioavailability of Valsartan Using a Polymer-Based Supersaturable Self-Microemulsifying Drug Delivery System. Int. J. Nanomed. 2017, 12, 3533–3545. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, F.-Y.; Hung, D.-K. Terpene Microemulsions for Transdermal Curcumin Delivery: Effects of Terpenes and Cosurfactants. Colloids Surf. B Biointerfaces 2011, 82, 63–70. [Google Scholar] [CrossRef]
- Špaglová, M.; Papadakos, M.; Čuchorová, M.; Matušová, D. Release of Tretinoin Solubilized in Microemulsion from Carbopol and Xanthan Gel: In Vitro versus Ex Vivo Permeation Study. Polymers 2023, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Karasulu, H.Y.; Oruç, N.; Üstündağ-Okur, N.; İlem Özdemir, D.; Ay Şenyiğit, Z.; Barbet Yılmaz, F.; Aşıkoğlu, M.; Özkılıç, H.; Akçiçek, E.; Güneri, T.; et al. Aprotinin Revisited: Formulation, Characterization, Biodistribution and Therapeutic Potential of New Aprotinin Microemulsion in Acute Pancreatitis. J. Drug Target. 2015, 23, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Peira, E.; Carlotti, M.E.; Trotta, C.; Cavalli, R.; Trotta, M. Positively Charged Microemulsions for Topical Application. Int. J. Pharm. 2008, 346, 119–123. [Google Scholar] [CrossRef]
- Changez, M.; Chander, J.; Dinda, A.K. Transdermal Permeation of Tetracaine Hydrochloride by Lecithin Microemulsion: In Vivo. Colloids Surf. B Biointerfaces 2006, 48, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Cano-Cebrian, M.J.; Zornoza, T.; Granero, L.; Polache, A. Intestinal Absorption Enhancement Via the Paracellular Route by Fatty Acids, Chitosans and Others: A Target for Drug Delivery. Curr. Drug Deliv. 2005, 2, 9–22. [Google Scholar] [CrossRef]
- Patil, N.H.; Devarajan, P.V. Enhanced Insulin Absorption from Sublingual Microemulsions: Effect of Permeation Enhancers. Drug Deliv. Transl. Res. 2014, 4, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Patravale, V.B. Microemulsions: Applications in Transdermal and Dermal Delivery. Crit. Rev. Ther. Drug Carr. Syst. 2007, 24, 547–596. [Google Scholar] [CrossRef]
- Roy, B.K.; Moulik, S.P. Functions of Hydrotropes (Sodium Salicylate, Proline, Pyrogallol, Resorcinol and Urea) in Solution with Special Reference to Amphiphile Behaviors. Colloids Surf. A Physicochem. Eng. Asp. 2002, 203, 155–166. [Google Scholar] [CrossRef]
- Malcolmson, C.; Satra, C.; Kantaria, S.; Sidhu, A.; Jayne Lawrence, M. Effect of Oil on the Level of Solubilization of Testosterone Propionate into Nonionic Oil-in-Water Microemulsions. J. Pharm. Sci. 1998, 87, 109–116. [Google Scholar] [CrossRef]
- Gautam, N.; Kesavan, K. Development of Microemulsions for Ocular Delivery. Ther. Deliv. 2017, 8, 313–330. [Google Scholar] [CrossRef]
- Szűts, A.; Szabó-Révész, P. Sucrose Esters as Natural Surfactants in Drug Delivery Systems—A Mini-Review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef]
- Amiri-Rigi, A.; Abbasi, S. Microemulsion-Based Lycopene Extraction: Effect of Surfactants, Co-Surfactants and Pretreatments. Food Chem. 2016, 197, 1002–1007. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yao, G.; Zhang, W.; Zhao, Y. Microemulsion-Based Anthocyanin Systems: Effect of Surfactants, Cosurfactants, and Its Stability. Int. J. Food Prop. 2018, 21, 1152–1165. [Google Scholar] [CrossRef]
- Boonme, P. Applications of Microemulsions in Cosmetics. J. Cosmet. Dermatol. 2007, 6, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.P.; Hartley, P.G. Progress in Microemulsion Characterization. Curr. Opin. Colloid Interface Sci. 2012, 17, 274–280. [Google Scholar] [CrossRef]
- Blochowicz, T.; Gögelein, C.; Spehr, T.; Müller, M.; Stühn, B. Polymer-Induced Transient Networks in Water-in-Oil Microemulsions Studied by Small-Angle x-Ray and Dynamic Light Scattering. Phys. Rev. E 2007, 76, 041505. [Google Scholar] [CrossRef]
- Ansari, A.A.; Singh, I.B.; Tobschall, H.J. Role of Monsoon Rain on Concentrations and Dispersion Patterns of Metal Pollutants in Sediments and Soils of the Ganga Plain, India. Environ. Geol. 2000, 39, 221–237. [Google Scholar] [CrossRef]
- Marchand, K.E.; Tarret, M.; Lechaire, J.P.; Normand, L.; Kasztelan, S.; Cseri, T. Investigation of AOT-Based Microemulsions for the Controlled Synthesis of MoSx Nanoparticles: An Electron Microscopy Study. Colloids Surf. A Physicochem. Eng. Asp. 2003, 214, 239–248. [Google Scholar] [CrossRef]
- Lee, H.S.; Morrison, E.D.; Zhang, Q.; Mccormick, A.V. Cryogenic transmission electron microscopy study: Preparation of vesicular dispersions by quenching microemulsions. J. Microsc. 2016, 263, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Maleki, N.; Farjami, F. Phase Behavior and Characterization of Ionic Liquids Based Microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 355, 61–66. [Google Scholar] [CrossRef]
- Batra, G.; Gortzi, O.; Lalas, S.I.; Galidi, A.; Alibade, A.; Nanos, G.D. Enhanced Antioxidant Activity of Capsicum annuum L. and Moringa oleifera L. Extracts after Encapsulation in Microemulsions. ChemEngineering 2017, 1, 15. [Google Scholar] [CrossRef]
- Shaaban, H.A.; Edris, A.E. Factors Affecting the Phase Behavior and Antimicrobial Activity of Carvacrol Microemulsions. J. Oleo Sci. 2015, 64, 393–404. [Google Scholar] [CrossRef]
- Lu, G.W.; Gao, P. CHAPTER 3—Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems; Kulkarni, V.S., Ed.; Personal Care & Cosmetic Technology; William Andrew Publishing: Boston, MA, USA, 2010; pp. 59–94. ISBN 978-0-8155-2025-2. [Google Scholar]
- Kohane, D.S.; Langer, R. Biocompatibility and Drug Delivery Systems. Chem. Sci. 2010, 1, 441–446. [Google Scholar] [CrossRef]
- Vicentini, F.T.M.C.; Fonseca, Y.M.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.L.B.; Fonseca, M.J.V. Evaluation of Protective Effect of a Water-In-Oil Microemulsion Incorporating Quercetin Against UVB-Induced Damage in Hairless Mice Skin. J. Pharm. Pharm. Sci. 2010, 13, 274–285. [Google Scholar] [CrossRef]
- Hosmer, J.; Reed, R.; Bentley, M.V.L.B.; Nornoo, A.; Lopes, L.B. Microemulsions Containing Medium-Chain Glycerides as Transdermal Delivery Systems for Hydrophilic and Hydrophobic Drugs. AAPS PharmSciTech 2009, 10, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Cespi, M.; Quassinti, L.; Perinelli, D.R.; Bramucci, M.; Iannarelli, R.; Papa, F.; Ricciutelli, M.; Bonacucina, G.; Palmieri, G.F.; Maggi, F. Microemulsions Enhance the Shelf-Life and Processability of Smyrnium olusatrum L. Essential Oil. Flavour Fragr. J. 2017, 32, 159–164. [Google Scholar] [CrossRef]
- Khunt, D.; Shrivas, M.; Polaka, S.; Gondaliya, P.; Misra, M. Role of Omega-3 Fatty Acids and Butter Oil in Targeting Delivery of Donepezil Hydrochloride Microemulsion to Brain via the Intranasal Route: A Comparative Study. AAPS PharmSciTech 2020, 21, 45. [Google Scholar] [CrossRef]
- Sargazi, S.; Hajinezhad, M.R.; Barani, M.; Rahdar, A.; Shahraki, S.; Karimi, P.; Cucchiarini, M.; Khatami, M.; Pandey, S. Synthesis, Characterization, Toxicity and Morphology Assessments of Newly Prepared Microemulsion Systems for Delivery of Valproic Acid. J. Mol. Liq. 2021, 338, 116625. [Google Scholar] [CrossRef]
- Rhyaf, A.; Naji, H.; Al-Karagoly, H.; Albukhaty, S.; Sulaiman, G.M.; Alshammari, A.A.A.; Mohammed, H.A.; Jabir, M.; Khan, R.A. In Vitro and In Vivo Functional Viability, and Biocompatibility Evaluation of Bovine Serum Albumin-Ingrained Microemulsion: A Model Based on Sesame Oil as the Payload for Developing an Efficient Drug Delivery Platform. Pharmaceuticals 2023, 16, 582. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Pol, A.; Kalaria, D.; Date, A.A.; Kalia, Y.; Patravale, V. Microemulsion-Based Gel for the Transdermal Delivery of Rasagiline Mesylate: In Vitro and in Vivo Assessment for Parkinson’s Therapy. Eur. J. Pharm. Biopharm. 2021, 165, 66–74. [Google Scholar] [CrossRef]
- Nigam, P.K. Adverse Reactions to Cosmetics and Methods of Testing. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 10. [Google Scholar] [CrossRef]
- Quiñones, O.G.; Mata dos Santos, H.A.; Kibwila, D.M.; Leitão, Á.; dos Santos Pyrrho, A.; de Pádula, M.; Rosas, E.C.; Lara, M.G.; Pierre, M.B.R. In Vitro and in Vivo Influence of Penetration Enhancers in the Topical Application of Celecoxib. Drug Dev. Ind. Pharm. 2014, 40, 1180–1189. [Google Scholar] [CrossRef]
- Sullivan, D.W.; Gad, S.C.; Julien, M. A Review of the Nonclinical Safety of Transcutol®, a Highly Purified Form of Diethylene Glycol Monoethyl Ether (DEGEE) Used as a Pharmaceutical Excipient. Food Chem. Toxicol. 2014, 72, 40–50. [Google Scholar] [CrossRef]
- Marena, G.D.; Girotto, L.; Saldanha, L.L.; Ramos, M.A.d.S.; Grandis, R.A.D.; da Silva, P.B.; Dokkedal, A.L.; Chorilli, M.; Bauab, T.M.; Pavan, F.R.; et al. Hydroalcoholic Extract of Myrcia Bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential. Planta Med. 2022, 88, 405–415. [Google Scholar] [CrossRef]
- Qin, X.; Yin, J.; Zhang, W.; Li, J.; Wen, J.; Chen, S. Acute and Subchronic Toxicities in Dogs and Genotoxicity of Honokiol Microemulsion. Regul. Toxicol. Pharmacol. 2018, 95, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Natesan, S.; Sugumaran, A.; Ponnusamy, C.; Jeevanesan, V.; Girija, G.; Palanichamy, R. Development and Evaluation of Magnetic Microemulsion: Tool for Targeted Delivery of Camptothecin to BALB/c Mice-Bearing Breast Cancer. J. Drug Target. 2014, 22, 913–926. [Google Scholar] [CrossRef]
- Liu, W.; Zhai, Y.; Heng, X.; Che, F.Y.; Chen, W.; Sun, D.; Zhai, G. Oral Bioavailability of Curcumin: Problems and Advancements. J. Drug Target. 2016, 24, 694–702. [Google Scholar] [CrossRef]
- Ben Yehuda Greenwald, M.; Frušić-Zlotkin, M.; Soroka, Y.; Ben Sasson, S.; Bitton, R.; Bianco-Peled, H.; Kohen, R. Curcumin Protects Skin against UVB-Induced Cytotoxicity via the Keap1-Nrf2 Pathway: The Use of a Microemulsion Delivery System. Oxidative Med. Cell. Longev. 2017, 2017, e5205471. [Google Scholar] [CrossRef] [PubMed]
- Marques, E.F.; Silva, B.F.B. Surfactants, Phase Behavior. In Encyclopedia of Colloid and Interface Science; Tadros, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1290–1333. ISBN 978-3-642-20665-8. [Google Scholar]
- Flores, S.E.; Rial-Hermida, M.I.; Ramirez, J.C.; Pazos, A.; Concheiro, A.; Alvarez-Lorenzo, C.; Peralta, R.D. Microemulsions for Colorectal Cancer Treatments. General Considerations and Formulation of Methotrexate. Mini-Rev. Med. Chem. 2016, 16, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sinha, V.R. Preparation and Optimization of Voriconazole Microemulsion for Ocular Delivery. Colloids Surf. B Biointerfaces 2014, 117, 82–88. [Google Scholar] [CrossRef]
- Nai, X.; Bao, H.; Liu, M.; Zhang, Q.; Liu, J. Measuring Boundaries in Phase Diagrams of Ternary Systems Using Titration Calorimetry. J. Mol. Liq. 2021, 321, 114451. [Google Scholar] [CrossRef]
- Cannon, J.B.; Shi, Y.; Gupta, P. Emulsions, Microemulsions, and Lipid-Based Drug Delivery Systems for Drug Solubilization and Delivery—Part I: Parenteral Applications. In Water-Insoluble Drug Formulation; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-12049-2. [Google Scholar]
- Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G.d.L. A Review on Developments and Prospects of Anti-Inflammatory in Microemulsions. J. Drug Deliv. Sci. Technol. 2020, 60, 102008. [Google Scholar] [CrossRef]
- Dehghani, F.; Farhadian, N.; Golmohammadzadeh, S.; Biriaee, A.; Ebrahimi, M.; Karimi, M. Preparation, Characterization and in-Vivo Evaluation of Microemulsions Containing Tamoxifen Citrate Anti-Cancer Drug. Eur. J. Pharm. Sci. 2017, 96, 479–489. [Google Scholar] [CrossRef]
- Date, A.A.; Nagarsenker, M.S. Parenteral Microemulsions: An Overview. Int. J. Pharm. 2008, 355, 19–30. [Google Scholar] [CrossRef]
- Szumała, P.; Macierzanka, A. Topical Delivery of Pharmaceutical and Cosmetic Macromolecules Using Microemulsion Systems. Int. J. Pharm. 2022, 615, 121488. [Google Scholar] [CrossRef]
- Palmer, B.C.; DeLouise, L.A. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.; Singh, H. Microemulsions: A Potential Delivery System for Bioactives in Food. Crit. Rev. Food Sci. Nutr. 2006, 46, 221–237. [Google Scholar] [CrossRef] [PubMed]
- Aloisio, C.; Longhi, M.R.; De Oliveira, A.G. Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs. J. Pharm. Sci. 2015, 104, 3535–3543. [Google Scholar] [CrossRef]
- Sintov, A.C. Transdermal Delivery of Curcumin via Microemulsion. Int. J. Pharm. 2015, 481, 97–103. [Google Scholar] [CrossRef]
- Wan, T.; Xu, T.; Pan, J.; Qin, M.; Pan, W.; Zhang, G.; Wu, Z.; Wu, C.; Xu, Y. Microemulsion Based Gel for Topical Dermal Delivery of Pseudolaric Acid B: In Vitro and in Vivo Evaluation. Int. J. Pharm. 2015, 493, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.L.M.; Reis, M.Y.F.A.; Silva, G.C.L.; Ramalho, Í.M.M.; Guimarães, G.P.; Silva, J.A.; Saraiva, K.L.A.; Damasceno, B.P.G.L. Microemulsion for Topical Application of Pentoxifylline: In Vitro Release and in Vivo Evaluation. Int. J. Pharm. 2016, 506, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.K.; Barot, B.S.; Parejiya, P.B.; Shelat, P.K.; Shukla, A. Topical Delivery of Clobetasol Propionate Loaded Microemulsion Based Gel for Effective Treatment of Vitiligo: Ex Vivo Permeation and Skin Irritation Studies. Colloids Surf. B Biointerfaces 2013, 102, 86–94. [Google Scholar] [CrossRef]
- Hathout, R.M.; Nasr, M. Transdermal Delivery of Betahistine Hydrochloride Using Microemulsions: Physical Characterization, Biophysical Assessment, Confocal Imaging and Permeation Studies. Colloids Surf. B Biointerfaces 2013, 110, 254–260. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Zhai, Y.; Wang, Z.; Liu, J.; Zhai, G. Ropivacaine Loaded Microemulsion and Microemulsion-Based Gel for Transdermal Delivery: Preparation, Optimization, and Evaluation. Int. J. Pharm. 2014, 477, 47–56. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, A.; Wang, W.; Dong, R.; Wu, J.; Zhai, G. Formulation Design of Microemulsion for Dermal Delivery of Penciclovir. Int. J. Pharm. 2008, 360, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.L.M.; da Silva, J.A.; Lira, A.A.M.; Conceição, T.M.F.; de Souza Nunes, R.; de Albuquerque Junior, R.L.C.; Sarmento, V.H.V.; Leal, L.B.; de Santana, D.P. Evaluation of Microemulsion and Lamellar Liquid Crystalline Systems for Transdermal Zidovudine Delivery. J. Pharm. Sci. 2016, 105, 2188–2193. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Liao, M.; Li, S.; Feng, Q.; Cao, X. Curcumin-Laden Amphiphilic Chitosan Microemulsion with Enhanced Transdermal Delivery, Skin Compatibility and Anti-Arthritic Activity. J. Drug Deliv. Sci. Technol. 2022, 78, 103997. [Google Scholar] [CrossRef]
- Al Saqr, A.; Annaji, M.; Poudel, I.; Aldawsari, M.F.; Alrbyawi, H.; Mita, N.; Dhanasekaran, M.; Boddu, S.H.S.; Neupane, R.; Tiwari, A.K.; et al. Topical Delivery of Diacetyl Boldine in a Microemulsion Formulation for Chemoprotection against Melanoma. Pharmaceutics 2023, 15, 901. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Wang, X.; Song, Y.; Wang, X.; Hao, J. Design and Development of Lidocaine Microemulsions for Transdermal Delivery. AAPS PharmSciTech 2019, 20, 63. [Google Scholar] [CrossRef] [PubMed]
- Virani, A.; Puri, V.; Mohd, H.; Michniak-Kohn, B. Effect of Penetration Enhancers on Transdermal Delivery of Oxcarbazepine, an Antiepileptic Drug Using Microemulsions. Pharmaceutics 2023, 15, 183. [Google Scholar] [CrossRef]
- Çağlar, E.Ş.; Okur, M.E.; Aksu, B.; Üstündağ Okur, N. Transdermal Delivery of Acemetacin Loaded Microemulsions: Preparation, Characterization, in Vitro—Ex Vivo Evaluation and in Vivo Analgesic and Anti-Inflammatory Efficacy. J. Dispers. Sci. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- Panoutsopoulou, E.; Zbytovská, J.; Vávrová, K.; Paraskevopoulos, G. Phospholipid-Based Microemulsions for Cutaneous Imiquimod Delivery. Pharmaceuticals 2022, 15, 515. [Google Scholar] [CrossRef] [PubMed]
- Üstündağ Okur, N.; Onay, E.; Kadioğlu Yaman, B.; Sίpahί, H. New Topical Microemulsions of Etofenamate as Sufficient Management of Osteoarthritis. Braz. J. Pharm. Sci. 2022, 58, e20123. [Google Scholar] [CrossRef]
- Mehanna, M.M.; Abla, K.K.; Domiati, S.; Elmaradny, H. Superiority of Microemulsion-Based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-Nociceptive Efficacy Study. Int. J. Pharm. 2022, 622, 121830. [Google Scholar] [CrossRef]
- Subongkot, T.; Charernsriwilaiwat, N.; Chanasongkram, R.; Rittem, K.; Ngawhirunpat, T.; Opanasopit, P. Development and Skin Penetration Pathway Evaluation Using Confocal Laser Scanning Microscopy of Microemulsions for Dermal Delivery Enhancement of Finasteride. Pharmaceutics 2022, 14, 2784. [Google Scholar] [CrossRef]
- Duangjit, S.; Rattanachithawat, N.; Opanasopit, P.; Ngawhirunpat, T. Development and Optimization of Finasteride-Cinnamon Oil-Loaded Ethanol-Free Microemulsions for Transdermal Delivery. J. Drug Deliv. Sci. Technol. 2022, 69, 103107. [Google Scholar] [CrossRef]
- Sae Yoon, A.; Sakdiset, P. Development of Microemulsions Containing Glochidion Wallichianum Leaf Extract and Potential for Transdermal and Topical Skin Delivery of Gallic Acid. Sci. Pharm. 2020, 88, 53. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, J.; Zhang, D.; Yang, Y.; Zheng, L.; Qu, Y.; Yang, X.; Cui, X. Ionic Liquid—Microemulsions Assisting in the Transdermal Delivery of Dencichine: Preparation, in-Vitro and in-Vivo Evaluations, and Investigation of the Permeation Mechanism. Int. J. Pharm. 2018, 535, 120–131. [Google Scholar] [CrossRef]
- Zainuddin, N.; Ahmad, I.; Zulfakar, M.H.; Kargarzadeh, H.; Ramli, S. Cetyltrimethylammonium Bromide-Nanocrystalline Cellulose (CTAB-NCC) Based Microemulsions for Enhancement of Topical Delivery of Curcumin. Carbohydr. Polym. 2021, 254, 117401. [Google Scholar] [CrossRef]
- Mojeiko, G.; de Brito, M.; Salata, G.C.; Lopes, L.B. Combination of Microneedles and Microemulsions to Increase Celecoxib Topical Delivery for Potential Application in Chemoprevention of Breast Cancer. Int. J. Pharm. 2019, 560, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Souza de Araujo, G.R.; Mendonça da Cruz Macieira, G.; Xavier de Oliveira, D.; Santos Matos, S.; Nery dos Santos, Q.; Otubo, L.; Antunes de Souza Araújo, A.; Cavalcante Duarte, M.; Moreira Lira, A.A.; de Souza Nunes, R.; et al. Microemulsions Formed by PPG-5-CETETH-20 at Low Concentrations for Transdermal Delivery of Nifedipine: Structural and in Vitro Study. Colloids Surf. B Biointerfaces 2022, 214, 112474. [Google Scholar] [CrossRef] [PubMed]
- Subongkot, T.; Sirirak, T. Development and Skin Penetration Pathway Evaluation of Microemulsions for Enhancing the Dermal Delivery of Celecoxib. Colloids Surf. B Biointerfaces 2020, 193, 111103. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.-A.; Park, P.J.; Kim, S.-B.; Bin, B.-H.; Jang, D.-J.; Kim, S.T. Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration. Pharmaceutics 2020, 12, 332. [Google Scholar] [CrossRef]
- Pires, P.C.; Paiva-Santos, A.C.; Veiga, F. Nano and Microemulsions for the Treatment of Depressive and Anxiety Disorders: An Efficient Approach to Improve Solubility, Brain Bioavailability and Therapeutic Efficacy. Pharmaceutics 2022, 14, 2825. [Google Scholar] [CrossRef]
- Paul, B.K.; Moulik, S.P. Uses and Applications of Microemulsions. Curr. Sci. 2001, 80, 990–1001. [Google Scholar]
- Viswanathan, P.; Muralidaran, Y.; Ragavan, G. Chapter 7—Challenges in Oral Drug Delivery: A Nano-Based Strategy to Overcome. In Nanostructures for Oral Medicine; Andronescu, E., Grumezescu, A.M., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 173–201. ISBN 978-0-323-47720-8. [Google Scholar]
- Silva, A.E.; Barratt, G.; Chéron, M.; Egito, E.S.T. Development of Oil-in-Water Microemulsions for the Oral Delivery of Amphotericin B. Int. J. Pharm. 2013, 454, 641–648. [Google Scholar] [CrossRef]
- Shukla, T.; Upmanyu, N.; Agrawal, M.; Saraf, S.; Saraf, S.; Alexander, A. Biomedical Applications of Microemulsion through Dermal and Transdermal Route. Biomed. Pharmacother. 2018, 108, 1477–1494. [Google Scholar] [CrossRef]
- Lopes, L.B. Overcoming the Cutaneous Barrier with Microemulsions. Pharmaceutics 2014, 6, 52–77. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Yu, M.; Guo, F.; Li, N.; Tan, F. Synergistic Effect of Mixed Cosurfactants on Transdermal Delivery of Indomethacin from O/W Microemulsion. Chem. Res. Chin. Univ. 2013, 29, 338–343. [Google Scholar] [CrossRef]
- Patel, K.; Patel, R.; Patel, M. Formulation and Characterization of Microemulsion Based Gel of Antifungal Drug. PharmaTutor J. 2018, 2, 79–89. [Google Scholar]
- Illner, M.; Kozachynskyi, V.; Esche, E.; Repke, J.-U. Fast-Track Realization of Reactive Microemulsion Systems—Systematic System Analysis and Tailored Application of PSE Methods. Chem. Eng. Sci. 2022, 252, 117290. [Google Scholar] [CrossRef]
- Silva, C.A.; Aurora-Prado, M.S.; Altria, K.D.; Tavares, M.F.M. Separation of Steroids and the Determination of Estradiol Content in Transdermic Patches by Microemulsion Electrokinetic Chromatography. Chromatographia 2011, 73, 373–378. [Google Scholar] [CrossRef]
- Duan, Y.; Dhar, A.; Patel, C.; Khimani, M.; Neogi, S.; Sharma, P.; Kumar, N.S.; Vekariya, R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020, 10, 26777–26791. [Google Scholar] [CrossRef] [PubMed]
- Sabale, V.; Vora, S. Formulation and Evaluation of Microemulsion-Based Hydrogel for Topical Delivery. Int. J. Pharm. Investig. 2012, 2, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Narang, A.S.; Delmarre, D.; Gao, D. Stable Drug Encapsulation in Micelles and Microemulsions. Int. J. Pharm. 2007, 345, 9–25. [Google Scholar] [CrossRef]
- Ruan, J.; Liu, J.; Zhu, D.; Gong, T.; Yang, F.; Hao, X.; Zhang, Z. Preparation and Evaluation of Self-Nanoemulsified Drug Delivery Systems (SNEDDSs) of Matrine Based on Drug–Phospholipid Complex Technique. Int. J. Pharm. 2010, 386, 282–290. [Google Scholar] [CrossRef] [PubMed]
API | ME Type | Aqueous Phase | Surfactant/Co-Surfactant (S and Co-S) | Oil Phase | Application | Ref. |
---|---|---|---|---|---|---|
Sulfamerazine Indomethacin | O/W | Water Or PBS | S: Phosphatidylcholine; sodium oleate; Eumulgin® HRE40; Co-S: N/A | Soybean oil | Antimicrobial | [137] |
Curcumin | W/O | Water | S: Labrasol®, glyceryl oleate Co-S: propylene carbonate | Isopropyl palmitate | Anti-inflammatory | [138] |
Pseudolaric acid B | O/W | Water | S: Cremphor EL® Co-S: Transcutol P® | Isopropyl Myristate | Fungicidal | [139] |
Pentoxifylline | W/O | Water | S: Tween 80; Brij 52 Co-S: N/A | Caprylic/Capric Triglycerides | Inflammatory dermatological diseases | [140] |
Clobetasol | O/W | Water | S: Cremophor EL Co-S: isopropyl alcohol | Isopropyl myristate | Vitiligo | [141] |
Betahistine hydrochloride | W/O | Water | S: Capryol 90® Co-S: Transcutol® | Ethyl oleate | Regulation of feeding behavior and weight control | [142] |
Ropivacaine | O/W | Water | S: Labrasol® Co-S: Ethanol | Capryol® 90 | Anesthesia | [143] |
Penciclovir | O/W | Water | S: Cremorphor EL Co-S: Ethanol | Oleic acid | Antiviral | [144] |
Zidovudine | O/W | Water | S: Labrosol Co-S: Oleic Plurol | Isopropyl myristate | Antiretroviral therapy | [145] |
Curcumin | O/W | Water | S: Chitosan Co-S: Ethanol | Oleic acid | Rheumatoid arthritis anti-inflammatory | [146] |
Diacetyl boldine (DAB) | W/O | Water | S: Solutol® HS 15; ethanol and Lecithin Co-S: Propylene glycol (co-surfactant) | Medium-chain triglyceride | Melanoma skin cancer treatment | [147] |
Lidocaine | O/W | Water | S: Polyoxyl 15 hydroxystearate Co-S: Ethanol | Ethyl oleate | Anesthetic therapy | [148] |
Oxcarbazepine | W/O | Water/buffer solution | S: Tween 80; Labrasol Co-S: PEG 400; Transcutol® P | Oleic acid and cineole | Antiepileptic drug for epilepsy | [149] |
Acemetacin | O/W | Water | S: Transcutol HP; Labrafil M1944 CS Co-S: Ethanol | Isopropyl myristate | analgesic and anti-inflammatory | [150] |
Imiquimod | O/W | Water | S: Phospholipids (PL) Co-S: Ethanol | Oleic acid | psoriasis anti-inflammatory | [151] |
Etofenamate | O/W | Water | S: Cremophor EL or Span 80 with Tween 20 Co-S: Transcutol HP; Ethanol | Oleic acid | Osteoarthritis treatment | [152] |
Diclofenac | W/O | Water | S: Labrasol® Co-S: Labrafil® | Limonene | Non-steroidal anti-inflammatory drugs | [153] |
Finasteride | W/O | Water | S: Poloxamer 124 Co-S: Transcutol P | Oleic acid | Androgenetic alopecia treatment | [154] |
Finasteride-cinnamon | W/O | Reverse osmosis water | S: Tween® 20 Co-S: Propylene glycol | Cinnamon oil | Androgenetic alopecia treatment | [155] |
Gallic acid | W/O | Water | S: Labrasol®/HCO-40® or Tween 80/Span 80 Co-S: Transcutol® or Ethanol | Isopropyl myristate | Antioxidant activity | [156] |
Dencichine | O/W | Water/[HOEIM]Cl | S: Tween 80/[BMIM]C12SO3 Co-S: Propylene glycol | Isopropyl myristate | Hemostatic activity | [157] |
Curcumin | O/W | Water | S: Cremophor® RH 40 Co-S: Transcutol P | Oleic acid/limonene | Anticancer/antioxidant… | [158] |
Celecoxib | W/O | Water | S: Phosphatidylcholine; decylglucoside Co-S: Ethanol; propylene glycol | Monocaprylin | Breast cancer treatment | [159] |
Nifedipine | O/W | PBS | S: PPG-5-Ceteth-20 Co-S: N/A | Oleic acid | Anti-hypertensive Activity | [160] |
Celecoxib | W/O | Water | S: PEG-6 Caprylic/Capric Glycerides Co-S: PEG-35 castor oil or PEG-7 glyceryl cocoate | Isopropyl myristate | Anti-inflammatory drugs | [161] |
Coenzyme Q10 | O/W | Water | S: Cremophor EL® Co-S: Transcutol® HP | Isopropyl myristate | Antioxidant activity | [162] |
Advantages of Microemulsions | Limitations of Microemulsions |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. https://doi.org/10.3390/nano13101688
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials. 2023; 13(10):1688. https://doi.org/10.3390/nano13101688
Chicago/Turabian StyleAit-Touchente, Zouhair, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid, Noureddine Lebaz, Hatem Fessi, and Abdelhamid Elaissari. 2023. "Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges" Nanomaterials 13, no. 10: 1688. https://doi.org/10.3390/nano13101688
APA StyleAit-Touchente, Z., Zine, N., Jaffrezic-Renault, N., Errachid, A., Lebaz, N., Fessi, H., & Elaissari, A. (2023). Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials, 13(10), 1688. https://doi.org/10.3390/nano13101688