[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Exploration of novel drug delivery systems in topical management of osteoarthritis

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Osteoarthritis is one of the foremost disabling disorders in the world. There is no definitive treatment to prevent the progression of osteoarthritis. Hence, palliative treatment aims at minimizing pain, disability and improving function, performance and quality of life. Oral administration of nonsteroidal anti-inflammatory drug is associated with number of adverse effects and reduced therapeutic efficacy. Intra-articular injection has been the preferred route of drug administration. However, the clearance of drug from the arthritic site, risk of infections, cost and the pain associated with frequent injections make this route highly non-compliant to patients. Since osteoarthritis is a chronic condition which requires treatment for prolonged duration, there is an urgent need for another administration route which circumvents the hindrances linked with intra-articular route. Transdermal route across the skin locally at the osteoarthritis site could help in surpassing the disadvantages associated with intra-articular route. However, traversing skin barrier and reaching the chondrocytes with sufficient amount of the drug is extremely difficult. Nanocarrier-based approaches could hold an answer to the said shortcomings owing to their reduced size, targeting tunability and site specificity. In this article, we discuss the pathophysiology of osteoarthritis, molecular targets, and utilization of nanocarrier-based approaches to strategize the treatment of osteoarthritis in a new direction, i.e. topical delivery of nanocarriers in osteoarthritis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Greco A, Lorengo V, Malfatti N. ICR-like and osteoarthritis in geriatric patients: pilot study at an RCH facility. J Orthop Rheumatism. 2018;2(1):33–46.

    Google Scholar 

  2. Lo J, Chan L, Flynn S. A systematic review of the incidence, prevalence, costs, and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States: a 2019 update. Arch Phys Med Rehabil. 2021;102(1):115–31.

    Article  Google Scholar 

  3. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian J Intern Med. 2011;2(2):205.

    Google Scholar 

  4. Verbrugge LM. Women, men, and osteoarthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 1995;8(4):212–20.

    Article  CAS  Google Scholar 

  5. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthr Cartil. 2020;28(3):242–8.

    Article  CAS  Google Scholar 

  6. Cui A, et al. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29: 100587.

    Article  Google Scholar 

  7. Quicke J, Osteoarthritis year in review, et al. epidemiology & therapy. Osteoarthr Cartil. 2021;2021:180–9.

    Google Scholar 

  8. Long H, Prevalence trends of site-specific osteoarthritis from, et al. to 2019: findings from the Global Burden of Disease Study 2019. Arthritis & Rheumatology. 1990;2022:1–22.

    Google Scholar 

  9. Centers for Disease Control and Prevention. Arthritis related statistics,. 2021 [cited 2021, October 12,]; Available from: https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm.

  10. Puljak L, et al. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5:1–199.

    Google Scholar 

  11. Wieland HA, et al. Osteoarthritis—an untreatable disease? Nat Rev Drug Discovery. 2005;4(4):331–44.

    Article  CAS  Google Scholar 

  12. Kan H, et al. Non-surgical treatment of knee osteoarthritis. Hong Kong Med J. 2019:127–133.

  13. Puett DW, Griffin MR. Published trials of nonmedicinal and noninvasive therapies for hip and knee osteoarthritis. Ann Intern Med. 1994;121(2):133–40.

    Article  CAS  Google Scholar 

  14. Brown S, Kumar S, Sharma B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2019;93:239–57.

    Article  CAS  Google Scholar 

  15. Meng Z, Huang R. Topical treatment of degenerative knee osteoarthritis. Am J Med Sci. 2018;355(1):6–12.

    Article  Google Scholar 

  16. Zhang Z, Huang G. Micro-and nano-carrier mediated intra-articular drug delivery systems for the treatment of osteoarthritis. J Nanotechnol. 2012;2012:1–11.

    Article  Google Scholar 

  17. Rodriguez-Merchan E. Topical therapies for knee osteoarthritis. Postgrad Med. 2018;130(7):607–12.

    Article  CAS  Google Scholar 

  18. Smith SR, et al. Comparative pain reduction of oral non-steroidal anti-inflammatory drugs and opioids for knee osteoarthritis: systematic analytic review. Osteoarthr Cartil. 2016;24(6):962–72.

    Article  CAS  Google Scholar 

  19. Zhang Y, et al. Development and prospect of intra-articular injection in the treatment of osteoarthritis: a review. J Pain Res. 2020;13:1941.

    Article  CAS  Google Scholar 

  20. Harst MRvd, et al. Biochemical analysis of the articular cartilage and subchondral and trabecular bone of the metacarpophalangeal joint of horses with early osteoarthritis. Am J Vet Res. 2005;66(7):1238–1246.

  21. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17(8):971–9.

    Article  CAS  Google Scholar 

  22. Yang Y, et al. Comparison of early-stage changes of osteoarthritis in cartilage and subchondral bone between two different rat models. PeerJ. 2020;8:e8934.

    Article  Google Scholar 

  23. Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res. 1999;40(1):1–11.

    Article  CAS  Google Scholar 

  24. Lin C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res. 2019;7(1):1–13.

    Google Scholar 

  25. Messent E, et al. Osteophytes, juxta-articular radiolucencies and cancellous bone changes in the proximal tibia of patients with knee osteoarthritis. Osteoarthr Cartil. 2007;15(2):179–86.

    Article  CAS  Google Scholar 

  26. Chou C-H, et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci Rep. 2020;10(1):1–14.

    Article  Google Scholar 

  27. Woodell-May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. J Orthop Res®. 2020;38(2):253–257.

  28. Novack DV. Role of NF-κB in the skeleton. Cell Res. 2011;21(1):169–82.

    Article  CAS  Google Scholar 

  29. Chow YY, Chin K-Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020;2020:1–19.

    Article  Google Scholar 

  30. Mehana E-SE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234: 116786.

    Article  CAS  Google Scholar 

  31. Afifah E, et al. Induction of matrix metalloproteinases in chondrocytes by interleukin IL-1β as an osteoarthritis model. J Math Fundam Sci. 2019;51(2):103–11.

    Article  CAS  Google Scholar 

  32. Lepetsos P, Papavassiliou KA, Papavassiliou AG. Redox and NF-κB signaling in osteoarthritis. Free Radical Biol Med. 2019;132:90–100.

    Article  CAS  Google Scholar 

  33. Wang Y, et al. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator–activated receptor γ coactivator 1α. Arthritis Rheumatol. 2015;67(8):2141–53.

    Article  CAS  Google Scholar 

  34. Geiger BC, et al. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med. 2018;10(469):1–12.

    Article  Google Scholar 

  35. Callender SP, et al. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm. 2017;526(1–2):425–42.

    Article  CAS  Google Scholar 

  36. Shukla T, et al. Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother. 2018;108:1477–94.

    Article  CAS  Google Scholar 

  37. Date AA, Patravale VB. Microemulsions: applications in transdermal and dermal delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2007;24(6):547–596.

  38. Kale SN, Deore SL. Emulsion microemulsion and nano emulsion: a review. Syst Rev Pharm. 2017;8(1):39.

    Article  CAS  Google Scholar 

  39. Hu X-B, et al. Topical delivery of 3, 5, 4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv Transl Res. 2019;9(1):357–65.

    Article  CAS  Google Scholar 

  40. Chen H, et al. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2006;315(1–2):52–8.

    Article  CAS  Google Scholar 

  41. Goindi S, Narula M, Kalra A. Microemulsion-based topical hydrogels of tenoxicam for treatment of arthritis. AAPS PharmSciTech. 2016;17(3):597–606.

    Article  CAS  Google Scholar 

  42. Lalatsa A, et al. Topical buparvaquone nano-enabled hydrogels for cutaneous leishmaniasis. Int J Pharm. 2020;588: 119734.

    Article  CAS  Google Scholar 

  43. Ponto T, et al. Novel self-nano-emulsifying drug delivery systems containing astaxanthin for topical skin delivery. Pharmaceutics. 2021;13(5):649.

    Article  CAS  Google Scholar 

  44. Egbaria K, Weiner N. Liposomes as a topical drug delivery system. Adv Drug Deliv Rev. 1990;5(3):287–300.

    Article  CAS  Google Scholar 

  45. Storm G, Crommelin DJ. Liposomes: quo vadis? Pharm Sci Technol Today. 1998;1(1):19–31.

    Article  CAS  Google Scholar 

  46. Frisbie DD, et al. Evaluation of topically administered diclofenac liposomal cream for treatment of horses with experimentally induced osteoarthritis. Am J Vet Res. 2009;70(2):210–5.

    Article  CAS  Google Scholar 

  47. McIlwraith CW. Management of joint disease in the sport horse. in Proceedings of the 2010 Kentucky Equine Research Nutrition Conference, Feeding and Veterinary Management Of The Sport Horse, Lexington, KY, April. 2010.

  48. Shakouri A, et al. Effectiveness of topical gel of medical leech (Hirudo medicinalis) saliva extract on patients with knee osteoarthritis: a randomized clinical trial. Complement Ther Clin Pract. 2018;31:352–9.

    Article  Google Scholar 

  49. Bhatia A, et al. Evaluation of efficacy and safety of a novel lipogel containing diclofenac: a randomized, placebo controlled, double-blind clinical trial in patients with signs and symptoms of osteoarthritis. Contemp Clin Trials Commun. 2020;20:100664.

  50. Tiwari G, et al. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally. Nanosci Nanotechnol-Asia. 2020;10(1):12–20.

    Article  CAS  Google Scholar 

  51. Bhardwaj V, et al. Transfersomes ultra flexible vesicles for transdermal delivery. Int J Pharm Sci Res. 2010;1(3):12–20.

    CAS  Google Scholar 

  52. Kumar A. Transferosome: a recent approach for transdermal drug delivery. J Drug Deliv Ther. 2018;8(5-s):100–104.

  53. Pawar AY. Transfersome: a novel technique which improves transdermal permeability. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2016;10(04):S424-S436.

  54. Rother M, et al. Efficacy and safety of epicutaneous ketoprofen in transfersome (IDEA-033) versus oral celecoxib and placebo in osteoarthritis of the knee: multicentre randomised controlled trial. Ann Rheum Dis. 2007;66(9):1178–83.

    Article  CAS  Google Scholar 

  55. Fernández-García R, et al. Transferosomes as nanocarriers for drugs across the skin: quality by design from lab to industrial scale. Int J Pharm. 2020;573: 118817.

    Article  Google Scholar 

  56. He Z, et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat Commun. 2017;8(1):1–8.

    Article  Google Scholar 

  57. Ha S, La Y, Kim KT. Polymer cubosomes: infinite cubic mazes and possibilities. Acc Chem Res. 2020;53(3):620–31.

    Article  CAS  Google Scholar 

  58. Sharma P, Dhawan S, Nanda S. Cubosome: a potential liquid crystalline carrier system. Curr Pharm Des. 2020;26(27):3300–16.

    Article  CAS  Google Scholar 

  59. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. Journal of advanced Biomedical and Pharmaceutical Sciences. 2020;3(1):1–9.

    Google Scholar 

  60. Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther Deliv. 2015;6(12):1347–64.

    Article  CAS  Google Scholar 

  61. Puglia C, et al. Evaluation of monooleine aqueous dispersions as tools for topical administration of curcumin: characterization, in vitro and ex-vivo studies. J Pharm Sci. 2013;102(7):2349–61.

    Article  CAS  Google Scholar 

  62. Elakkad YE, et al. Tenoxicam loaded hyalcubosomes for osteoarthritis. Int J Pharm. 2021;601: 120483.

    Article  CAS  Google Scholar 

  63. Collins J, Rother M. 10 Ultra-deformable drug-free sequessome™ vesicles (TDT 064) for the treatment of joint pain following exercise: a case report and clinical data. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine. 2015;A3-A4.

  64. Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141(3):277–99.

    Article  CAS  Google Scholar 

  65. Cevc G, Vierl U, Mazgareanu S. Functional characterisation of novel analgesic product based on self-regulating drug carriers. Int J Pharm. 2008;360(1–2):18–28.

    Article  CAS  Google Scholar 

  66. Lanas A, et al. Prescription patterns and appropriateness of NSAID therapy according to gastrointestinal risk and cardiovascular history in patients with diagnoses of osteoarthritis. BMC Med. 2011;9(1):38.

    Article  Google Scholar 

  67. Conaghan PG, et al. A multicentre, randomized, placebo-and active-controlled trial comparing the efficacy and safety of topical ketoprofen in Transfersome gel (IDEA-033) with ketoprofen-free vehicle (TDT 064) and oral celecoxib for knee pain associated with osteoarthritis. Rheumatology. 2013;52(7):1303–12.

    Article  CAS  Google Scholar 

  68. Rother M, Conaghan PG. A randomized, double-blind, phase III trial in moderate osteoarthritis knee pain comparing topical ketoprofen gel with ketoprofen-free gel. J Rheumatol. 2013;40(10):1742–8.

    Article  CAS  Google Scholar 

  69. Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanoscience and Nanotechnology Research. 2017;2:67–72.

    Google Scholar 

  70. Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol. 2018;57(6):646–60.

    Article  Google Scholar 

  71. Paliwal R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30(3):179–94.

    Article  CAS  Google Scholar 

  72. Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv. 2018;15(8):771–85.

    Article  CAS  Google Scholar 

  73. Shah S, Mehta V. Controversies and advances in non-steroidal anti-inflammatory drug (NSAID) analgesia in chronic pain management. Postgrad Med J. 2012;88(1036):73–8.

    Article  CAS  Google Scholar 

  74. Jijie R, et al. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B. 2017;5(44):8653–75.

    Article  CAS  Google Scholar 

  75. Sharma G, et al. Nanostructured lipid carriers: a new paradigm in topical delivery for dermal and transdermal applications. Crit Rev™ Ther Drug Carr Syst. 2017;34(4):355–386.

  76. Müller R, et al. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    Article  Google Scholar 

  77. Dudhipala N, Janga KY, Gorre T. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artificial cells, nanomedicine, and biotechnology. 2018;46(sup2):616–25.

    Article  CAS  Google Scholar 

  78. Czajkowska-Kośnik A, Szekalska M, Winnicka K. Nanostructured lipid carriers: a potential use for skin drug delivery systems. Pharmacol Rep. 2019;71(1):156–66.

    Article  Google Scholar 

  79. Kaur A, Goindi S, Katare OP. Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. J Microencapsul. 2016;33(5):475–86.

    Article  CAS  Google Scholar 

  80. Müller-Goymann C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur J Pharm Biopharm. 2004;58(2):343–56.

    Article  Google Scholar 

  81. Nene S, et al. Lipid based nanocarriers: a novel paradigm for topical antifungal therapy. J Drug Deliv Sci Technol. 2021;102397.

  82. Nyström AM, Fadeel B. Safety assessment of nanomaterials: implications for nanomedicine. J Control Release. 2012;161(2):403–8.

    Article  Google Scholar 

  83. United Nations. Economic Commission for Europe. Secretariat, Globally harmonized system of classification and labelling of chemicals (GHS). 2015. Copyright Law of the United St.

  84. Doktorovova S, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–52.

    Article  CAS  Google Scholar 

  85. Sanchez L, et al. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability. Toxicol Lett. 2006;161(1):53–60.

    Article  CAS  Google Scholar 

  86. Lee JK, et al. In vitro cytotoxicity tests on cultured human skin fibroblasts to predict skin irritation potential of surfactants. Toxicol In Vitro. 2000;14(4):345–9.

    Article  CAS  Google Scholar 

  87. Lazzarini R, Duarte I, Ferreira AL. Patch tests. An Bras Dermatol. 2013;88(6):879–88.

    Article  Google Scholar 

  88. Lee M, Hwang J-H, Lim K-M. Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicological research. 2017;33(3):191–203.

    Article  CAS  Google Scholar 

  89. Ragelle H, et al. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017;14(7):851–64.

    Article  CAS  Google Scholar 

  90. Tinkle S, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.

    Article  CAS  Google Scholar 

  91. Patel DM, Patel NN, Patel JK. Nanomedicine scale-up technologies: feasibilities and challenges. In: emerging technologies for nanoparticle manufacturing. Springer; 2021. p. 511–39.

    Chapter  Google Scholar 

  92. Junghanns J-UA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008;3(3):295.

    CAS  Google Scholar 

  93. Galindo-Rodríguez SA, et al. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 2005;25(4–5):357–67.

    Article  Google Scholar 

  94. Agrahari V, Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discovery Today. 2018;23(5):974–91.

    Article  Google Scholar 

  95. U.S. Department of Health and Human Services Food and Drug Administration. PAT — A framework for innovative pharmaceutical development, manufacturing, and quality assurance. 2004. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance.

  96. Rangaraj N, et al. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020;10(5):1476–94.

    Article  CAS  Google Scholar 

  97. Gadekar V, et al. Nanomedicines accessible in the market for clinical interventions. J Control Release. 2020;372–397.

  98. Nene S, et al. Lipid based nanocarriers: a novel paradigm for topical antifungal therapy. J Drug Deliv Sci Technol. 2021;62:102397.

    Article  CAS  Google Scholar 

  99. Sainz V, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–10.

    Article  CAS  Google Scholar 

  100. Kaur IP, et al. Issues and concerns in nanotech product development and its commercialization. J Control Release. 2014;193:51–62.

    Article  CAS  Google Scholar 

  101. Shah S, et al. Bridging the gap: academia, industry and FDA convergence for nanomaterials. Drug Dev Ind Pharm. 2020;46(11):1735–46.

    Article  CAS  Google Scholar 

  102. Guidance D. Considering whether an FDA-regulated product involves the application of nanotechnology. FDA. 2011 Jun.

  103. Hafner A, et al. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomed. 2014;9:1005.

    Google Scholar 

  104. Hare JI, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.

    Article  CAS  Google Scholar 

  105. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.

    Article  Google Scholar 

  106. Sato K, et al. Microfluidics for nano-pathophysiology. Adv Drug Deliv Rev. 2014;74:115–21.

    Article  CAS  Google Scholar 

  107. Gaumet M, et al. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  CAS  Google Scholar 

  108. Fernández-García R, et al. Ultradeformable lipid vesicles localize amphotericin B in the dermis for the treatment of infectious skin diseases. ACS Infectious Diseases. 2020;6(10):2647–60.

    Article  Google Scholar 

  109. Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles: formation and closure. AAPS J. 2011;13(3):473–81.

    Article  Google Scholar 

  110. Yuste I, et al. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res. 2021;169: 105626.

    Article  CAS  Google Scholar 

  111. Corbo C, et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11(1):81–100.

    Article  CAS  Google Scholar 

  112. Cao X, et al. Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: not just simple protein corona effects. NanoImpact. 2019;13:37–43.

    Article  Google Scholar 

  113. Palchetti S, et al. The protein corona of circulating PEGylated liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2016;1858(2):189–196.

  114. Mirshafiee V, et al. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials. 2016;75:295–304.

    Article  CAS  Google Scholar 

  115. Kianvash N, et al. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv Transl Res. 2017;7(5):654–63.

    Article  CAS  Google Scholar 

  116. Tiwari N, et al. Nanocarriers for skin applications: where do we stand? Angewandte Chemie International Edition. 2021;1–26.

  117. Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology and Environmental Health, Part B. 2011;14(8):593–632.

    Article  CAS  Google Scholar 

  118. Agrahari V, Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine. 2017;12(8):819–23.

    Article  CAS  Google Scholar 

  119. Gupta N, et al. Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioengineering & Translational Medicine. 2016;1(1):63–81.

    Article  Google Scholar 

  120. Jeon B, et al. Enhanced predictive capacity using dual-parameter chip model that simulates physiological skin irritation. Toxicol In Vitro. 2020;68: 104955.

    Article  CAS  Google Scholar 

  121. Kim JJ, et al. A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip. 2019;19(18):3094–103.

    Article  CAS  Google Scholar 

  122. Behzadi S, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.

    Article  CAS  Google Scholar 

  123. Fu PP, et al. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):64–75.

    Article  CAS  Google Scholar 

  124. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research funding support by the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

Pratiksha Patil: ideation, writing—original draft preparation, literature search; Shweta Nene:—writing—original draft preparation, literature search; Saurabh Shah: literature search, drafting, writing—review and editing; Dr. Shashi Bala Singh: critical revision of the manuscript; Dr. Saurabh Srivastava:—critical revision of the manuscript, supervision.

Corresponding author

Correspondence to Saurabh Srivastava.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors approve for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key summary points

• Osteoarthritis is a physically debilitating disease that predominantly affect around one in every 30 people and a total of 190 million worldwide.

• It is a degenerative joint disorder primarily affecting cartilage due to an imbalance in biomechanical and metabolic factors.

• Current pharmacologic treatment options primarily consist of non-steroidal anti-inflammatory drugs with associated undesirable side effects and poor patient compliance which have led physicians to search for alternative treatment modalities.

• Disease-modifying drugs, drug repurposing, and topical nano-carriers present potential therapeutic avenues to bypass the loopholes associated with the conventional therapies for the treatment of osteoarthritis.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P., Nene, S., Shah, S. et al. Exploration of novel drug delivery systems in topical management of osteoarthritis. Drug Deliv. and Transl. Res. 13, 531–546 (2023). https://doi.org/10.1007/s13346-022-01229-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01229-z

Keywords