Experimental Investigation of the Optical Nonlinearity of Laser-Ablated Titanium Dioxide Nanoparticles Using Femtosecond Laser Light Pulses
<p>Laser ablation setup for preparing TiO<sub>2</sub> NPs colloids via a 532-nm Nd:YAG laser.</p> "> Figure 2
<p>Z-scan experimental setup. L, convex lens; A, attenuator; I, Iris; S, TiO<sub>2</sub> NPs sample; PM, power meter.</p> "> Figure 3
<p>Spectral absorption of TiO<sub>2</sub> NP colloidal solutions as a function of wavelength at different ablation times.</p> "> Figure 4
<p>(<b>a</b>–<b>c</b>) show the energy band gaps that were obtained by extrapolating the straight line of Tauc’s plot of TiO<sub>2</sub> nanocolloids at various ablation times.</p> "> Figure 5
<p>(<b>a</b>–<b>c</b>) depict the size distributions of TiO<sub>2</sub> NPs colloids that were synthesized using various ablation times of 5 min, 10 min, and 15 min, respectively.</p> "> Figure 6
<p>EDX spectra of the TiO<sub>2</sub> NP colloid and inset ZAF Method Standardless Quantitative Analysis of TiO<sub>2</sub> NPs.</p> "> Figure 7
<p>(<b>a</b>–<b>c</b>) OA Z-scan measurements of TiO<sub>2</sub> NP colloids with different ablation times and incident powers at an 800 nm excitation wavelength. (<b>d</b>) Dependence of the NLA coefficient on the incident laser power at an 800 nm excitation wavelength.</p> "> Figure 8
<p>(<b>a</b>–<b>c</b>) OA Z-scan experimental data of TiO<sub>2</sub> NP colloidal solutions with different ablation times and excitation wavelengths at 1 W incident power. (<b>d</b>) Relationship between the excitation wavelength and NLA coefficient at 1 W incident laser power.</p> "> Figure 9
<p>(<b>a</b>) OA Z-scan experimental data of TiO<sub>2</sub> NP colloidal solutions with different ablation times and a constant excitation wavelength of 800 nm and an incident power of 1 W. (<b>b</b>) Dependence between the ablation time and the NLA coefficient.</p> "> Figure 10
<p>(<b>a</b>–<b>c</b>) CA Z-scan measurements for TiO<sub>2</sub> NP colloids at different incident powers and ablation times at an excitation wavelength of 800 nm. The symbols represent the experimental data, and the solid curves are the fits obtained via Equations (6) and (7). (<b>d</b>) Relationship between the NLR index and incident power at each ablation time.</p> "> Figure 11
<p>(<b>a</b>–<b>c</b>) CA Z-scan transmission of TiO<sub>2</sub> NP colloids at different excitation wavelengths and ablation times; (<b>d</b>) relationship values of n<sub>2</sub> for TiO<sub>2</sub> NP colloidal solutions with different ablation times at 1 W incident power. The dots represent the experimental data, and the solid curves are linear fits.</p> "> Figure 12
<p>(<b>a</b>) Plot of CA Z-scan measurements of different ablation times of 5 min, 10 min, and 15 min at 800 nm excitation wavelength and 1 W incident power. (<b>b</b>) Dependence between the measured n<sub>2</sub> and ablation time at a 1 W incident power and 800 nm excitation wavelength. The dots represent the experimental data, and the solid lines are linear fits.</p> "> Figure 13
<p>Optical limiting of the TiO<sub>2</sub> NP colloids at ablation times of 5 min, 10 min, and 15 min and an 800 nm excitation wavelength.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. TiO2 Sample Preparation
2.2. Z-Scan Setup
3. Results and Discussion
3.1. TiO2 NP Colloidal Solution Characterization
3.2. Open Aperture Z-Scan Measurements
3.2.1. The Effect of Incident Power on β
3.2.2. Effect of the Excitation Wavelength on β
3.2.3. Effect of Ablation Time on β of TiO2 NPs
3.3. CA Z-Scan Measurements: The Effect of Incident Power on n2
3.4. Investigating the Effect of the Excitation Wavelength on the Nonlinear Refractive Index
3.5. Effect of Various Ablation Times on the Nonlinear Refractive Index
3.6. NLO Susceptibility of TiO2 NP Colloidal Solutions
3.7. Optical Power Limiting Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Liu, X.; Cui, J.; Liu, D.; Li, J.; Jiang, H.; Wang, J.; Liu, H. Control synthesis of rutile TiO2 microspheres, nanoflowers, nanotrees and nanobelts via acid-hydrothermal method and their optical properties. CrystEngComm 2011, 13, 4557–4563. [Google Scholar] [CrossRef]
- Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface plasmonic-assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: Design, synthesis, and applications. Adv. Funct. Mater. 2020, 30, 1906744. [Google Scholar] [CrossRef]
- Chen, M.S.; Goodman, D.W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.B.; Xiao, R.F.; Wang, H.; Wong, K.S.; Wong, G.K.L. Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale. Appl. Phys. Lett. 1998, 72, 1817–1819. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; You, G.; Li, B.; Shi, J.; Qian, S. Ultrafast nonlinear optical response of Au: TiO2 composite nanoparticle films. Phys. B Condens. Matter 2005, 357, 334–339. [Google Scholar] [CrossRef]
- Ma, G.; He, J.; Tang, S.H. Femtosecond nonlinear birefringence and nonlinear dichroism in Au: TiO2 composite films. Phys. Lett. A 2003, 306, 348–352. [Google Scholar] [CrossRef]
- Hu, J.; Li, L.-s.; Yang, W.; Manna, L.; Wang, L.-w.; Alivisatos, A.P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, C.; Liu, X.; Gu, F.; Jiang, H.; Shao, W.; Zhang, L.; He, Y. Synthesis and optical properties of TiO2 nanoparticles. Mater. Lett. 2007, 61, 79–83. [Google Scholar] [CrossRef]
- Lee, W.; Yoo, H.-I.; Lee, J.K. Template route toward a novel nanostructured superionic conductor film; AgI nanorod/γ-Al2O3. Chem. Commun. Vol. 2001, 2530–2531. [Google Scholar] [CrossRef]
- Tamgadge, Y.; Muley, G.; Deshmukh, K.; Pahurkar, V. Synthesis and nonlinear optical properties of Zn doped TiO2 nano-colloids. Opt. Mater. 2018, 86, 185–190. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Afzal, A.; Habib, A.; Ulhasan, I.; Shahid, M.; Rehman, A. Antireflective self-cleaning TiO2 coatings for solar energy harvesting applications. Front. Mater. 2021, 8, 687059. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Appl. Phys. 2005, 44, 8269. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of nanostructured TiO2 in UV photodetectors: A review. Adv. Mater. 2022, 34, 2109083. [Google Scholar] [CrossRef]
- Ge, S.; Sang, D.; Zou, L.; Yao, Y.; Zhou, C.; Fu, H.; Xi, H.; Fan, J.; Meng, L.; Wang, C. A review on the progress of optoelectronic devices based on TiO2 thin films and nanomaterials. Nanomaterials 2023, 13, 1141. [Google Scholar] [CrossRef]
- Sathyaseelan, B.; Manikandan, E.; Lakshmanan, V.; Baskaran, I.; Sivakumar, K.; Ladchumananandasivam, R.; Kennedy, J.; Maaza, M. Structural, optical and morphological properties of post-growth calcined TiO2 nanopowder for opto-electronic device application: Ex-situ studies. Alloys Compd. 2016, 671, 486–492. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, B.; Hao, Q.; Liu, L.-M.; Zhou, C.; Mao, X.; Lang, X.; Yin, W.-J.; Dai, D.; Selloni, A. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J. Am. Chem. Soc. 2015, 137, 9146–9152. [Google Scholar] [CrossRef]
- Moran, M.; She, C.-Y.; Carman, R.J.I.J. Interferometric measurements of the nonlinear refractive-index coefficient relative to CS 2 in laser-system-related materials. IEEE J. Quantum Electron. 1975, 11, 259–263. [Google Scholar] [CrossRef]
- Adair, R.; Chase, L.; Payne, S.A. Nonlinear refractive-index measurements of glasses using three-wave frequency mixing. JOSA B 1987, 4, 875–881. [Google Scholar] [CrossRef]
- Owyoung, A. Ellipse rotation studies in laser host materials. IEEE J. Quantum Electron. 1973, 9, 1064–1069. [Google Scholar] [CrossRef]
- Williams, W.E.; Soileau, M.; Van Stryland, E.W. Optical switching and n2 measurements in CS2. Opt. Commun. 1984, 50, 256–260. [Google Scholar] [CrossRef]
- Miguez, M.; Barbano, E.; Zilio, S.C.; Misoguti, L.J.O.E. Accurate measurement of nonlinear ellipse rotation using a phase-sensitive method. Opt. Express 2014, 22, 25530–25538. [Google Scholar] [CrossRef] [PubMed]
- Soileau, M.; Williams, W.E.; Van Stryland, E.W.; Boggess, T.F.; Smirl, A.L. Picosecond damage studies at 0.5 and 1 µm. Opt. Eng. 1983, 22, 424–430. [Google Scholar] [CrossRef]
- Lee, K.-H.; Cho, W.-R.; Park, J.-H.; Kim, J.-S.; Park, S.-H.; Kim, U. Measurement of free-carrier nonlinearities in ZnSe based on the Z-scan technique with a nanosecond laser. Opt. Lett. 1994, 19, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Sheik-Bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n 2 measurements. Opt. Lett. 1989, 14, 955–957. [Google Scholar] [CrossRef] [PubMed]
- Kalanoor, B.S.; Gouda, L.; Gottesman, R.; Tirosh, S.; Haltzi, E.; Zaban, A.; Tischler, Y.R. Third-order optical nonlinearities in organometallic methylammonium lead iodide perovskite thin films. ACS Photonics 2016, 3, 361–370. [Google Scholar] [CrossRef]
- Gu, B.; Wang, H.-T. Linear and Nonlinear Optical Properties of Ferroelectric Thin Films. In Ferroelectrics-Physical Effects; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Samad, F.A.; Abdel-wahab, M.S.; Tawfik, W.Z.; Qayyum, H.; Apsari, R.; Mohamed, T. Thickness-dependent nonlinear optical properties of ITO thin films. Opt. Quantum Electron. 2023, 55, 753. [Google Scholar] [CrossRef]
- Shehata, A.; Mohamed, T. Method for an accurate measurement of nonlinear refractive index in the case of high-repetition-rate femtosecond laser pulses. JOSA B 2019, 36, 1246–1251. [Google Scholar] [CrossRef]
- Shehata, A.; Tawfik, W.Z.; Mohamed, T. Cobalt enhanced nonlinear optical properties and optical limiting of zinc oxide irradiated by femtosecond laser pulses. JOSA B 2020, 37, A1–A8. [Google Scholar] [CrossRef]
- Samad, F.A.; Mohamed, T. Intensity and wavelength-dependent two-photon absorption and its saturation in ITO film. Appl. Phys. A 2023, 129, 31. [Google Scholar] [CrossRef]
- Reyna, A.S.; Russier-Antoine, I.; Bertorelle, F.; Benichou, E.; Dugourd, P.; Antoine, R.; Brevet, P.-F.; de Araújo, C.B. Nonlinear refraction and absorption of Ag29 nanoclusters: Evidence for two-photon absorption saturation. Phys. Chem. C 2018, 122, 18682–18689. [Google Scholar] [CrossRef]
- Zeng, H.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.; He, J.; Cai, W. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353. [Google Scholar] [CrossRef]
- Elim, H.; Ji, W.; Yuwono, A.H.; Xue, J.; Wang, J. Ultrafast optical nonlinearity in poly (methylmethacrylate)-TiO2 nanocomposites. Appl. Phys. Lett. 2003, 82, 2691–2693. [Google Scholar] [CrossRef]
- Pramodini, S.; Aravinda, L.; Nagaraja, K.; Poornesh, P. Continuous wave laser probed thermal nonlinearity in TiO2 and TiO2-dye nano colloidal. Opt. Laser Technol. 2021, 142, 107182. [Google Scholar] [CrossRef]
- Moslehirad, F.; Ara, M.M.; Torkamany, M.; Afsary, M.; Ghorannevis, M.; Sabbaghzadeh, J. Thermal nonlinear optical properties of TiO2 nanocrystals prepared through pulsed laser ablation. Laser Phys. 2013, 23, 055402. [Google Scholar] [CrossRef]
- Banerjee, D.; Moram, S.S.B.; Byram, C.; Rathod, J.; Jena, T.; Podagatlapalli, G.K.; Soma, V.R. Plasmon-enhanced ultrafast and tunable thermo-optic nonlinear optical properties of femtosecond laser ablated TiO2 and Silver-doped TiO2 nanoparticles. Appl. Surf. Sci. 2021, 569, 151070. [Google Scholar] [CrossRef]
- Ashour, M.; Faris, H.G.; Ahmed, H.; Mamdouh, S.; Thambiratnam, K.; Mohamed, T. Using femtosecond laser pulses to explore the nonlinear optical properties of Au NP colloids that were synthesized by laser ablation. Nanomaterials 2022, 12, 2980. [Google Scholar] [CrossRef]
- Asanuma, T.; Matsutani, T.; Liu, C.; Mihara, T.; Kiuchi, M. Structural and optical properties of titanium dioxide films deposited by reactive magnetron sputtering in pure oxygen plasma. Appl. Phys. 2004, 95, 6011–6016. [Google Scholar] [CrossRef]
- Ovshinsky, S.R.; Adler, D. Local structure, bonding, and electronic properties of covalent amorphous semiconductors. Contemp. Phys. 1978, 19, 109–126. [Google Scholar] [CrossRef]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Georgescu, G.; Petris, A. Analysis of thickness influence on refractive index and absorption coefficient of zinc selenide thin films. Opt. Express 2019, 27, 34803–34823. [Google Scholar] [CrossRef] [PubMed]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.-H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef]
- Xiao, Q.-H.; Feng, X.-Y.; Yang, W.; Lin, Y.-K.; Peng, Q.-Q.; Jiang, S.-Z.; Liu, J.; Su, L.B. Epsilon-near-zero indium tin oxide nanocolumns array as a saturable absorber for a Nd: BGO laser. Laser Phys. 2020, 30, 055802. [Google Scholar] [CrossRef]
- Ramakanth, S.; Hamad, S.; Venugopal Rao, S.; James Raju, K.C. Magnetic and nonlinear optical properties of batio3 nanoparticles. AIP Adv. 2015, 5, 057139. [Google Scholar] [CrossRef]
- Chemla, D.; Shah, J. Many-body and correlation effects in semiconductors. Nature 2001, 411, 549–557. [Google Scholar] [CrossRef]
- Shahriari, E.; Moradi, M.; Ghasemi Varnamkhasti, M. Investigation of nonlinear optical properties of Ag nanoparticles. Opt. Photonics 2015, 9, 107–114. [Google Scholar]
- Shahriari, E.; Yunus, W.; Saion, E. Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution. Braz. J. Phys. 2010, 40, 256–260. [Google Scholar] [CrossRef]
- Falconieri, M. Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. Opt. A Pure Appl. Opt. 1999, 1, 662. [Google Scholar] [CrossRef]
- Callen, W.R.; Huth, B.G.; Pantell, R.H. Optical patterns of thermally self-defocused light. Appl. Phys. Lett. 1967, 11, 103–105. [Google Scholar] [CrossRef]
- Severiano-Carrillo, I.; Alvarado-Méndez, E.; Trejo-Durán, M.; Méndez-Otero, M.M. Improved Z-scan adjustment to thermal nonlinearities by including nonlinear absorption. Opt. Commun. 2017, 397, 140–146. [Google Scholar] [CrossRef]
- Shehata, A.; Ali, M.; Schuch, R.; Mohamed, T. Experimental investigations of nonlinear optical properties of soda-lime glasses and theoretical study of self-compression of fs laser pulses. Opt. Laser Technol. 2019, 116, 276–283. [Google Scholar] [CrossRef]
- Mohamed, T.; El-Motlak, M.H.; Mamdouh, S.; Ashour, M.; Ahmed, H.; Qayyum, H.; Mahmoud, A. Excitation wavelength and colloids concentration-dependent nonlinear optical properties of silver nanoparticles synthesized by laser ablation. Materials 2022, 15, 7348. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi-Ghaleh, K.; Namdar, A.; Mansour, N. Nonlinear optical properties of soda-lime glass at 800-nm femtosecond irradiation. Laser Phys. 2005, 15, 1714–1717. [Google Scholar]
- Gordon, J.P.; Leite RC, C.; Moore, R.S.; Porto SP, S.; Whinnery, J.R. Long-transient effects in lasers with inserted liquid samples. Appl. Phys. 1965, 36, 3–8. [Google Scholar] [CrossRef]
- Christodoulides, D.N.; Khoo, I.C.; Salamo, G.J.; Stegeman, G.I.; Van Stryland, E.W. Nonlinear refraction and absorption: Mechanisms and magnitudes. Adv. Opt. Photonics 2010, 2, 60–200. [Google Scholar] [CrossRef]
- Kwak, C.H.; Lee, Y.L.; Kim, S.G. Analysis of asymmetric Z-scan measurement for large optical nonlinearities in an amorphous As 2 S 3 thin film. JOSA B 1999, 16, 600–604. [Google Scholar] [CrossRef]
- Venkatram, N.; Rao, D.N.; Akundi, M.A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Opt. Express 2005, 13, 867–872. [Google Scholar] [CrossRef]
- Miller, M.J.; Mott, A.G.; Ketchel, B.P. General optical limiting requirements. In Nonlinear Optical Liquids for Power Limiting and Imaging; SPIE: Cergy-Pontoise, France, 1998; pp. 24–29. [Google Scholar]
- Zhang, R.F.; Guo, D.Z.; Zhang, G.M. Strong saturable absorption of black titanium oxide nanoparticle films. Appl. Surf. Sci. 2017, 426, 763–769. [Google Scholar] [CrossRef]
- Divya, S.; Nampoori VP, N.; Radhakrishnan, P.; Mujeeb, A. Morphology dependent dispersion of third-order optical nonlinear susceptibility in TiO2. Appl. Phys. A 2014, 114, 1079–1084. [Google Scholar] [CrossRef]
- Long, H.; Chen, A.; Yang, G.; Li, Y.; Lu, P. Third-order optical nonlinearities in anatase and rutile TiO2 thin films. Thin Solid Film. 2009, 517, 5601–5604. [Google Scholar] [CrossRef]
- Irimpan, L.; Krishnan, B.; Nampoori VP, N.; Radhakrishnan, P. Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO–TiO2. Colloid Interface Sci. 2008, 324, 99–104. [Google Scholar] [CrossRef]
Ablation Time (min) | TiO2 Conc. mg/L | Average Size (nm) | n0 | α (m−1) | n2 × 10−15 cm2/W | × 10−9 cm/W | × 10−13 esu | × 10−16 esu | × 10−13 esu | FOM × 10−11 esu.cm | Saturation Input Power (W) |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 1.9 | 19.11 | 1.35 | 4.38 | 5.96 | 1.72 | 7.93 | 8.53 | 7.93 | 1.8 | 1 |
10 | 2.9 | 11.96 | 1.61 | 11 | 6.48 | 2 | 13.11 | 11.07 | 13.11 | 1.2 | 0.9 |
15 | 4.35 | 8.33 | 1.53 | 8.7 | 7.88 | 2.12 | 12.55 | 12.79 | 12.55 | 1.44 | 0.8 |
Sample | Preparation Method | Phase | Wavelength (nm) | Pulse Duration | Repetition Rate (Hz) | (cm/W) | n2 (cm2/W) | Ref. |
---|---|---|---|---|---|---|---|---|
Black TiO2 | Cathodic plasma electrolysis | Film | 532 | 20 ps | 1000 | −4.9 × 10−6 | - | [60] |
TiO2 | Chemical | Liquid | 532 | 7 ns | 10 | 2.206 × 10−8 | 3.477× 10−13 | [61] |
TiO2 | Laser ablation | Liquid | 632.8 | - | - | 0.34 × 10−3 | −4.3× 10−8 | [36] |
TiO2 | Chemical | Liquid | 1064 | 7 ns | 10 | −1.53 × 10−6 | 2.35× 10−13 | [10] |
TiO2 | Laser ablation | Liquid | 800 | 150 fs | 80 × 106 | 6.2 × 10−8 | - | [37] |
TiO2 | - | Film | 800 | 50 fs | −6.2 × 10−9 | −6.32 × 10−13 | [62] | |
TiO2 | Chemical | Liquid | 532 | 7 ns | 10 | 77.8 × 10−9 | 2.9 × 10−13 | [63] |
TiO2 | Laser ablation | Liquid | 800 | 100 fs | 80 × 106 | 2.12 × 10−9 | 7.88 × 10−15 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Samad, F.; Ali Jasim, M.; Mahmoud, A.; Abd El-Salam, Y.; Qayyum, H.; Apsari, R.; Mohamed, T. Experimental Investigation of the Optical Nonlinearity of Laser-Ablated Titanium Dioxide Nanoparticles Using Femtosecond Laser Light Pulses. Nanomaterials 2024, 14, 1940. https://doi.org/10.3390/nano14231940
Abdel Samad F, Ali Jasim M, Mahmoud A, Abd El-Salam Y, Qayyum H, Apsari R, Mohamed T. Experimental Investigation of the Optical Nonlinearity of Laser-Ablated Titanium Dioxide Nanoparticles Using Femtosecond Laser Light Pulses. Nanomaterials. 2024; 14(23):1940. https://doi.org/10.3390/nano14231940
Chicago/Turabian StyleAbdel Samad, Fatma, Mohammed Ali Jasim, Alaa Mahmoud, Yasmin Abd El-Salam, Hamza Qayyum, Retna Apsari, and Tarek Mohamed. 2024. "Experimental Investigation of the Optical Nonlinearity of Laser-Ablated Titanium Dioxide Nanoparticles Using Femtosecond Laser Light Pulses" Nanomaterials 14, no. 23: 1940. https://doi.org/10.3390/nano14231940
APA StyleAbdel Samad, F., Ali Jasim, M., Mahmoud, A., Abd El-Salam, Y., Qayyum, H., Apsari, R., & Mohamed, T. (2024). Experimental Investigation of the Optical Nonlinearity of Laser-Ablated Titanium Dioxide Nanoparticles Using Femtosecond Laser Light Pulses. Nanomaterials, 14(23), 1940. https://doi.org/10.3390/nano14231940