Abstract
Solids consist of 1022–1023 particles per cubic centimetre, interacting through infinite-range Coulomb interactions. The linear response of a solid to a weak external perturbation is well described by the concept of non-interacting ‘quasiparticles’ first introduced by Landau. But interactions between quasiparticles can be substantial in dense systems. For example, studies over the past decade have shown that Coulomb correlations between quasiparticles dominate the nonlinear optical response of semiconductors, in marked contrast to the behaviour of atomic systems. These Coulomb correlations and other many-body interactions are important not only for semiconductors, but also for all condensed-matter systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
£199.00 per year
only £3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Leo, K. et al. Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing. Phys. Rev. Lett. 65, 1340–1343 (1990).
Kim, D. S. et al. Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: direct evidence for the dominance of interaction effects. Phys. Rev. Lett. 69, 2725–2728 (1992).
Weiss, S., Mycek, M.-A., Bigot, J.-Y., Schmitt-Rink, S. & Chemla, D. S. Collective effects in excitonic free induction decay: do semiconductors and atoms emit coherent light in different ways? Phys. Rev. Lett. 69, 2685–2689 (1992).
Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Wiley Interscience, New York, 1975).
Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).
Kner, P., Bar-Ad, S., Marquezini, M. V., Chemla, D. S. & Schäfer, W. Magnetically enhanced exciton–exciton correlations in semiconductors. Phys. Rev. Lett. 78, 1319–1322 (1997).
Birkedal, D., Shah, J. & Pfeiffer, L. N. Coherent secondary emission from resonantly excited two-exciton states: An intrinsic phenomenon. Phys. Rev. B 60, 15585–15588 (1999).
Wehner, M. U., Ulm, M. H., Chemla, D. S. & Wegener, M. Coherent control of electron-LO-phonon scattering in bulk GaAs. Phys. Rev. Lett. 80, 1992–1995 (1998).
Rossi, F., Brunetti, R. & Jacoboni, C. in Hot Carriers in Semiconductor Nanostructures: Physics and Applications (ed. Shah, J.) 153–188 (Academic, Boston, 1992).
Haug, H. & Jauho, A. P. Quantum Kinetics in Transport and Optics of Semiconductors (ed. Klitzing, K. V.) (Springer Series in Solid-State Sciences, Springer, Berlin, 1996).
Steel, D. G., Wang, H., Jiang, M., Ferrio, K. B. & Cundiff, S. T. in Coherent Optical Interactions in Solids (ed. Phillips, R. T.) 157–180 (Plenum, New York, 1994).
Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, New York, 1995).
Binder, R. & Koch, S. W. Nonequilibrium semiconductor dynamics. Prog. Quant. Electron. 19, 307–462 (1995).
Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Heidelberg, 1999).
Chemla, D. S. in Nonlinear Optics in Semiconductors (ed. Garmire, E. & Kost, A. R.) 175–256 (Academic, New York, 1999).
Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling in semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).
Perakis, I. E. & Shahbazyan, T. V. Canonical transformation approach to the ultrafast nonlinear optical dynamics of semiconductors. Int. J. Mod. Phys. B 13, 869–893 (1999).
Perakis, I. E. & Shahbazyan, T. V. Many-body correlation effects in the ultrafast non-linear optical response of confined Fermi seas. Surf. Sci. Rep. 40, 3–74 (2000).
Wegener, M., Chemla, D. S., Schmitt-Rink, S. & Schäfer, W. Line shape of time-resolved four-wave mixing. Phys. Rev. A 42, 5675–5683 (1990).
Henneberger, F., Schmitt-Rink, S. & Göbel, E. O. (eds) Optics of Semiconductor Nanostructures (Akademie, Berlin, 1993).
Phillips, R. T. (ed.) Coherent Optical Processes in Semiconductors (Plenum, New York, 1994).
Schmitt-Rink, S. & Chemla, D. S. Collective excitations and the dynamical Stark effect in a coherently driven exciton system. Phys. Rev. Lett. 57, 2752–2755 (1986).
Lindberg, M. & Koch, S. W. Effective Bloch equations for semiconductors. Phys. Rev. B 38, 3342–3350 (1988).
Pines, D. & Nozieres, P. The Theory of Quantum Liquids (Benjamin, New York, 1966).
Bloch, F. Nuclear induction. Phys. Rev. 70, 460–474 (1946).
Schmitt-Rink, S., Mukamel, S., Leo, K., Shah, J. & Chemla, D. S. Stochastic theory of time-resolved four-wave mixing in interacting media. Phys. Rev. A 44, 2124–2129 (1991).
Schäfer, W., Jahnke, F. & Schmitt-Rink, S. Many-particle effects on transient four-wave-mixing signals in semiconductors. Phys. Rev. B 47, 1217–1220 (1993).
Axt, V. M. & Stahl, A. A dynamics-controlled truncation scheme for the hierarchy of density matrices in semiconductor optics. Z. Phys. B 93, 195–204 (1994).
Maialle, M. Z. & Sham, L. J. Interacting electron theory of coherent nonlinear response. Phys. Rev. Lett. 73, 3310–3313 (1994).
Östreich, T., Schönhammer, K. & Sham, L. J. Exciton–exciton correlation in the nonlinear optical regime. Phys. Rev. Lett. 74, 4698–4701 (1995).
Schäfer, W., Lövenich, R., Fromer, N. A. & Chemia, D. S. From coherently excited highly correlated states to incoherent relaxation processes in semiconductors. Phys. Rev. Lett. 86, 344–347 (2001).
Bolton, S. R., Neukirch, U., Sham, L. J., Chemla, D. S. & Axt, V. M. Demonstration of sixth-order Coulomb correlations in a semiconductor single quantum well. Phys. Rev. Lett. 85, 2002–2005 (2000).
Meier, T., von Plessen, G., Thomas, P. & Koch, S. W. Coherent electric-field effects in semiconductors. Phys. Rev. Lett. 73, 902–905 (1994).
Haring Bolivar, P. et al. Excitonic emission of THz radiation: experimental evidence of the shortcomings of the Block equation method. Phys. Rev. Lett. 78, 2232–2235 (1997).
Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications (Wiley Interscience, New York, 1992).
Kner, P. et al. Effect of magnetoexciton correlations on the coherent emission of semiconductors. Phys. Rev. B 60, 4731–4748 (1999).
Lepetit, L., Cheriaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).
Birkedal, D. & Shah, J. Femtosecond spectral interferometry of resonant secondary emission from quantum wells: resonance Rayleigh scattering in the nonergodic regime. Phys. Rev. Lett. 81, 2372–2375 (1998).
Kner, P., Schafer, W., Lovenich, R. & Chemla, D. S. Coherence of four-particle correlations in semiconductors. Phys. Rev. Lett. 81, 5386–5389 (1998).
Banyai, L. et al. Exciton-LO-phonon quantum kinetics: evidence of memory effects in bulk GaAs. Phys. Rev. Lett. 75, 2188–2191 (1995).
Bar-Ad, S., Kner, P., Marquezini, M. V., Chemla, D. S. & El Sayed, K. Carrier dynamics in the quantum kinetic regime. Phys. Rev. Lett. 77, 3177–3180 (1996).
Camescasse, F. X. et al. Ultrafast electron redistribution through Coulomb scattering in undoped GaAs: experiment and theory. Phys. Rev. Lett. 77, 5429–5432 (1996).
Bar-Ad, S. & Chemla, D. S. Quantum kinetics regime during and immediately after laser excitation of semiconductors. Mater. Sci. Eng. B 48, 83–87 (1997).
Fürst, C., Leitenstorfer, A., Laubereau, A. & Zimmermann, R. Quantum kinetic electron–phonon interaction in GaAs: energy nonconserving scattering events and memory effects. Phys. Rev. Lett. 78, 3733–3736 (1997).
Fromer, N. A. et al. Electronic dephasing in the quantum Hall regime. Phys. Rev. Lett. 83, 4646–4649 (1999).
Dodge, J. S. et al. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).
Kaindl, R. A. et al. Ultrafast mid-infrared response of YBa2Cu3O7-δ. Science 287, 470–473 (2000).
Garvin, S. M., McDonald, A. H. & Platzman, P. M. Magneto-roton theory of collective excitation in the fractional quantum Hall effect. Phys. Rev. B 33, 2481–2494 (1986).
Acknowledgements
The work of D.S.C. was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Office of Science, US Department of Energy.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chemla, D., Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001). https://doi.org/10.1038/35079000
Issue Date:
DOI: https://doi.org/10.1038/35079000
This article is cited by
-
Exciton dissociation in 2D layered metal-halide perovskites
Nature Communications (2023)
-
Thickness-dependent nonlinear optical properties of ITO thin films
Optical and Quantum Electronics (2023)
-
Visualization and quantum control of light-accelerated condensates by terahertz multi-dimensional coherent spectroscopy
Communications Physics (2022)
-
Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing
Nature Photonics (2021)
-
Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes
Nature Communications (2020)