Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing
<p>TEM images: (<b>a</b>) GNP filler surfaces with SEAD pattern (inset); (<b>b</b>) high-resolution TEM image of the GNP thickness showing the multi-layered structure of oriented graphene monolayers; and (<b>c</b>) exfoliated GNP nanostructures dispersed in the PVDF matrix. Arrows show the thickness of the exfoliated GNPs.</p> "> Figure 2
<p>Thermal properties of PVDF and 6 wt% GNP/PVDF: DSC thermograms of heat flow vs. temperature at a scan rate of 10 °C/min, showing the first heating run (<b>a</b>), cooling cycle (<b>b</b>), and second heating run (<b>c</b>). The dash lines point the thermal transitions of the neat PVDF. In (<b>d</b>), the TGA/DTG thermograms of mass loss vs. temperature for the polymer and the nanocomposite are plotted, while the GNP thermogram is presented in the inset figure.</p> "> Figure 3
<p>SEM micrographs of the cut surface of samples with different deposition directions: (<b>a</b>) longitudinal (3DP 0°); (<b>b</b>) diagonal (3DP 45°); (<b>c</b>) transverse (3DP 90°); and (<b>d</b>) voltage vs. current dependence, varying the printing directions. The magnification bar is 1 mm. The arrows show the current flow direction.</p> "> Figure 4
<p>Comparison of (<b>a</b>) temperature vs. time and (<b>b</b>) temperature increase and heat vs. electrical conductivity of 6 wt% GNP/PVDF, varying the 3D printing directions—3DP 0°, 3DP 45°, and 3DP 90°—for 2 mm thick samples at an applied voltage of 2 V.</p> "> Figure 5
<p>Temperature vs. time for four-cycle heating–cooling test of 6 wt% GNP/PVDF samples at an applied voltage of 2 V with various printing directions: (<b>a</b>) longitudinal 3DP 0°, (<b>b</b>) diagonal 3DP 45°, and (<b>c</b>) transverse 3DP 90°. (<b>d</b>) Repeatability of the maximal temperature and current in the four heating–cooling cycles for the three printing directions.</p> "> Figure 6
<p>Temperature and current vs. time for 6 wt% GNP/PVDF, for the diagonally printed samples (3DP 45°) with (<b>a</b>) 4 printed layers (0.8 mm thick) and (<b>b</b>) 10 printed layers (2 mm thick), varying the applied voltage.</p> "> Figure 7
<p>Comparison of (<b>a</b>) maximum heating temperature and current vs. applied voltage and (<b>b</b>) generated heat and heating efficiency vs. power for the 3DP45° samples of the 6 wt% GNP/PVDF nanocomposite, with a controlled number of printed layers (4 layers, 0.8 mm thick; and 10 layers, 2 mm thick).</p> "> Figure 8
<p>Resistance vs. temperature of the 6 wt% GNP/PVDF composites with various printing directions of 3DP 0°, 3DP 45°, and 3DP 90°.</p> "> Figure 9
<p>Thermal diffusivity and conductivity of the 3DP samples of 6 wt% GNP/PVDF vs. temperature, with various printing directions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Nanocomposite Preparation
2.2. Controlled 3D Printing
2.3. Characterization Methods
3. Results and Discussion
3.1. Nanocomposite Structure
3.2. Thermal Analyses—DSC and TGA
3.3. Morphology and Electrical Conductivity of 3D-Printed Structures
- When the printed layers are oriented at 0°, relative to the direction of current flow (Figure 3a), the conductive pathways are continuous and aligned with the flow of electrons. This orientation minimizes resistance, as the current travels directly along the conductive pathways within the layers and there are fewer interruptions or boundaries that the electrons encounter, allowing a more efficient flow of current. Therefore, the 0° orientation results in the lowest resistivity in comparison to the 45° and 90° orientations (Table 2).
- At a 45° raster angle (Figure 3b), the conductive pathways are diagonal, meaning that electrons have to traverse boundaries between layers at an angle. This orientation introduces more interruptions and transitions between layers, increasing contact resistance and reducing slightly the overall conductivity compared to the 0° orientation. The current encounters more scattering and resistance due to the diagonal alignment, leading to an intermediate level of conductivity. This orientation could be useful in applications where a balance between conductivity and mechanical strength is desired, as it may offer slightly improved structural properties while still maintaining moderate conductivity.
- When the layers are oriented at 90° (Figure 3c), the current flow is perpendicular to the conductive pathways. This results in the lowest electrical conductivity because the current must cross multiple layer boundaries, each adding resistance and interrupting the flow of electrons. The 90° orientation introduces the highest amount of contact resistance as the electrons continuously jump across insulating or less-conductive interfaces. This is often unfavorable for applications requiring high conductivity but may have benefits in terms of mechanical reinforcement across layers.
3.4. Resistive Heating Performance
3.4.1. Joule Heating Depending on the 3D Printing Direction
3.4.2. Repeatability of Joule Heating
3.4.3. Joule Heating Controlled by the Number of Printed Layers
3.5. Thermo-Resistivity and Thermal Properties
3.5.1. Resistance–Temperature Analysis
3.5.2. Heat Flow Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunelle, M.; Ferralli, I.; Whitsitt, R.; Medicus, K. Current Use and Potential of Additive Manufacturing for Optical Applications; SPIE Optifab: Rochester, NY, USA, 2017; p. 10448. [Google Scholar] [CrossRef]
- Diegel, O.; Singamneni, S.; Huang, B.; Gibson, I. The future of electronic products: Conductive 3D printing? In Innovative Developments in Design and Manufacturing; Reddy, J.N., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 397–403. [Google Scholar]
- Cadman, D.; Zhang, S.; Vardaxoglou, Y. Fused deposition modelling for microwave circuits & antennas. In Proceedings of the 2016 International Symposium on Antennas and Propagation, Okinawa, Japan, 24–28 October 2016; pp. 418–419. [Google Scholar]
- Cader, M. The estimation method of strength for technology-oriented 3D printing parts of mobile robots. Adv. Intell. Syst. Comput. 2017, 550, 367–379. [Google Scholar] [CrossRef]
- Klippstein, H.; Diaz De Cerio Sanchez, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Fused deposition modeling for unmanned aerial vehicles (UAVs): A review. Adv. Eng. Mater. 2018, 20, 1700552. [Google Scholar] [CrossRef]
- Salentijn, G.I.J.; Oomen, P.E.; Grajewski, M.; Verpoorte, E. Fused deposition modeling 3D printing for (bio)analytical device fabrication: Procedures, materials, and applications. Anal. Chem. 2017, 89, 7053–7061. [Google Scholar] [CrossRef] [PubMed]
- Penumakala, P.; Santo, J.; Thomas, A. A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. Part B 2020, 201, 108336. [Google Scholar] [CrossRef]
- Kwok, S.W.; Goh, K.H.H.; Tan, Z.D.; Tan, S.T.M.; Tjiu, W.W.; Soh, J.Y.; Ng, Z.J.G.; Chan, Y.Z.; Hui, H.K.; Goh, K.E.J. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today 2017, 9, 167–175. [Google Scholar] [CrossRef]
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Wei, X.; Li, D.; Jiang, W.; Gu, Z.; Wang, X.; Zhang, Z.; Sun, Z. 3D printable graphene composite. Sci. Rep. 2015, 5, 11181. [Google Scholar] [CrossRef]
- Fraser, D.; Naim, H.P.; Arden, L.M.; Weiss, L.; Adarsh, D.R. Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling. Int. J. Adv. Manuf. Technol. 2018, 99, 1215–1224. [Google Scholar] [CrossRef]
- Kotsilkova, R.; Tabakova, S.; Ivanova, R. Effect of graphene nanoplatelets and multiwalled carbon nanotubes on the viscous and viscoelastic properties and printability of polylactide nanocomposites. Mech. Time-Depend. Mater. 2022, 26, 611–632. [Google Scholar] [CrossRef]
- Spinelli, G.; Guarini, R.; Kotsilkova, R.; Batakliev, T.; Ivanov, E.; Romano, V. Experimental and Simulation Studies of Temperature Effect on Thermophysical Properties of Graphene-based Polylactic Acid. Materials 2022, 15, 986. [Google Scholar] [CrossRef] [PubMed]
- Kotsilkova, R.; Ivanov, E.; Georgiev, V. Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application. Polymers 2020, 12, 1208. [Google Scholar] [CrossRef] [PubMed]
- Graphene 3D Lab. Conductive Graphene PLA Filament. Available online: https://www.indiamart.com/proddetail/conductive-graphene-pla-filament-24681126055.html (accessed on 15 September 2024).
- Graphene 3D Lab. Conductive Flexible TPU Filament. Available online: https://filament2print.com/gb/graphene/785-graphene-flexible-conductive-tpu.html (accessed on 10 October 2024).
- Walter, S.; Steinmann, W.; Schütte, J.; Seide, G.; Gries, T.; Roth, G.; Wierach, P.; Sinapius, M. Characterization of piezoelectric PVDF monofilaments. Mater. Technol. 2011, 26, 140–145. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, B.C.; Phan, D.T.; Chung, G.S. Fabrication and characterization of highly efficient flexible energy harvesters using PVDF/graphene nanocomposites. Smart Mater. Struct. 2013, 22, 085017. [Google Scholar] [CrossRef]
- Layek, R.K.; Samanta, S.; Chatterjee, D.P.; Nandi, A.K. Physical and mechanical properties of poly(methyl methacrylate) -functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer 2010, 51, 5846–5856. [Google Scholar] [CrossRef]
- Li, Y.C.; Tjong, S.C.; Li, R.K.Y. Electrical conductivity and dielectric response of poly(vinylidene fluoride) graphite nanoplatelet composites. Synth. Met. 2010, 160, 1912–1919. [Google Scholar] [CrossRef]
- Ferreira, A.; Martinez, M.; Ansón-Casaos, A.; Gómez-Pineda, L.; Vaz, F.; Lanceros-Mendez, S. Relationship between electromechanical response and percolation threshold in carbon nanotube/poly(vinylidene fluoride) composites. Carbon 2013, 61, 568–576. [Google Scholar] [CrossRef]
- Kumar, V.; Rupinder Singh, R.; Ahuja, I.P.S. 3D printed graphene-reinforced polyvinylidene fluoride composite for piezoelectric properties. In 4D Printing, Fundamentals and Applications; Singh, R., Ed.; A volume in Additive Manufacturing Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2022; pp. 51–66. [Google Scholar] [CrossRef]
- Tian, X.; Itkis, M.E.; Bekyarova, E.B.; Haddon, R.C. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites. Sci. Rep. 2013, 3, 1710. [Google Scholar] [CrossRef]
- Shahil, K.M.F.; Balandin, A.A. Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef]
- Debelak, B.; Lafdi, K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007, 45, 1727–1734. [Google Scholar] [CrossRef]
- Kumar, P.; Yu, S.; Shahzad, F.; Hong, S.M.; Kim, Y.H.; Koo, C.M. Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 2016, 101, 120–128. [Google Scholar] [CrossRef]
- Balam, A.; Cen-Puc, M.; May-Pat, A.; Abot, J.L.; Avilés, F. Influence of Polymer Matrix on the Sensing Capabilities of Carbon Nanotube Polymeric Thermistors. Smart Mater. Struct. 2020, 29, 015012. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Moriche, R.; Jimenez-Suarez, A.; Delgado, A.; Urena, A. Printable self-healing coatings based on the use of carbon nanoreinforcements. Polym. Compos. 2020, 41, 271–278. [Google Scholar] [CrossRef]
- Sangroniz, L.; Landa, M.; Fernandez, M.; Santamaria, A. Matching rheology, conductivity and Joule effect in PU/CNT nanocomposites. Polymers 2021, 13, 950. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, S.; Ivanov, E.; Hegde, L.R.; Georgopoulou, A.; Clemens, F.; Bedoui, F.; Kotsilkova, R. PVDF Hybrid Nanocomposites with Graphene and Carbon Nanotubes and Their Thermoresistive and Joule Heating Properties. Nanomaterials 2024, 14, 901. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Zhao, T.; Aldaghri, O.; Eisa, M.H. Polymer/Graphene Nanocomposites via 3D and 4D Printing—Design and Technical Potential. Processes 2023, 11, 868. [Google Scholar] [CrossRef]
- Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y.L. Nanomaterial Patterning in 3D Printing. Adv. Mater. 2020, 32, e1907142. [Google Scholar] [CrossRef]
- Pentek, A.; Nyitrai, M.; Schiffer, A.; Abraham, H.; Bene, M.; Molnar, E.; Told, R.; Maroti, P. The Effect of Printing Parameters on Electrical Conductivity and Mechanical Properties of PLA and ABS Based Carbon Composites in Additive Manufacturing of Upper Limb Prosthetics. Crystals 2020, 10, 398. [Google Scholar] [CrossRef]
- Abdalla, A.; Hamzah, H.; Keattch, O.; Covill, D.; Patel, B. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim. Acta 2020, 354, 136618. [Google Scholar] [CrossRef]
- Tirado-Garcia, I.; Garcia-Gonzalez, D.; Garzon-Hernandez, S.; Rusinek, A.; Robles, G.; Martinez-Tarifa, J.; Arias, A. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Compos. Struct. 2021, 265, 113744. [Google Scholar] [CrossRef]
- Liang, Z.; Yao, Y.; Jiang, B.; Wang, X.; Xie, H.; Jiao, M.; Liang, C.; Qiao, H.; Kline, D.; Zachariah, M.R.; et al. 3D Printed Graphene-Based 3000 K Probe. Adv. Funct. Mater. 2021, 31, 2102994. [Google Scholar] [CrossRef]
- Guadagno, L.; Aliberti, F.; Longo, R.; Raimondo, M.; Pantani, R.; Sorrentino, A.; Catauro, M.; Vertuccio, L. Electrical anisotropy controlled heating of acrylonitrile butadiene styrene 3D printed parts. Mater. Des. 2023, 225, 111507. [Google Scholar] [CrossRef]
- Müller, M.T.; Hilarius, K.; Liebscher, M.; Lellinger, D.; Alig, I.; Pötschke, P. Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites. Materials 2017, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.; Araya-Hermosilla, E.; Pucci, A.; Araya-Hermosilla, R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites. Polymers 2024, 16, 2273. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, X.; Wu, C. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes. Membranes 2013, 3, 389–405. [Google Scholar] [CrossRef]
- Steinmann, W.; Walter, S.; Seide, G.; Gries, T.; Roth, G.; Schubnell, M. Structure, properties and phase transitions of melt-spun poly(vinylidene fluoride) fibers. J. Appl. Polym. Sci. 2011, 120, 21–35. [Google Scholar] [CrossRef]
- Nakagawa, K.; Ishida, Y. Annealing effects in poly(vinylidene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J. Polym. Sci. 1973, 11, 2153–2171. [Google Scholar] [CrossRef]
- Islam, A.; Khan, A.N.; Fayzan, M.; Shakir, M.F.; Islam, K. Strengthening of β polymorph in PVDF/FLG and PVDF/GO nanocomposites. Mater. Res. Express 2020, 7, 015017. [Google Scholar] [CrossRef]
- Söderholm, K.J. Influence of silane treatment and filler fraction on thermal expansion of composite resins. J. Dent. Res. 1984, 63, 1321–1326. [Google Scholar] [CrossRef]
- Irshad, H.M.; Hakeem, A.S.; Raza, K.; Baroud, T.N.; Ehsan, M.A.; Ali, S.; Tahir, M.S. Design, Development and Evaluation of Thermal Properties of Polysulphone–CNT/GNP Nanocomposites. Nanomaterials 2021, 11, 2080. [Google Scholar] [CrossRef]
Sample | DSC—First Heating Run, After 3D Printing | DSC Cooling | DSC—Second Heating Run | TGA/DTG | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tm1, °C | Tm, °C | ΔHm/ω, Jg−1 | χC1, % | Tc, °C | Tm, C | =Hm/ω, Jg−1 | χC2, % | Tonset, °C | TDTGpeak, °C | |
PVDF | 167.5 | 171.2 | 57.4 | 54.8 | 139.7 | 169.9 | 60.6 | 57.9 | 449.1 | 466.3 |
6GNP/PVDF | 163.5 | 169.5 | 48.7 | 46.5 | 141.4 | 168.7 | 53.2 | 50.8 | 453.8 | 474.5 |
GNP | - | - | - | - | - | - | - | - | 605.7 | 694.3 |
Printing Direction | Voltage (V) | Tmax (°C) | Imsax (A) | P (W) | H (J) | Hr (°C/s) | Heff (%) | ΔT (°C) | R (Ω) | ρ (Ω·m) | σ (S·m−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Longitudinal, 3DP 0° | 2 | 64.6 | 0.225 | 0.45 | 225 | 0.45 | 61 | 39.6 | 8.9 | 0.0089 | 112 |
Diagonal, 3DP 45° | 2 | 53.7 | 0.180 | 0.36 | 180 | 0.22 | 53 | 28.7 | 11.1 | 0.0111 | 90.1 |
Transverse, 3DP 90° | 2 | 44.9 | 0.137 | 0.27 | 135 | 0.15 | 44 | 19.9 | 14.6 | 0.0146 | 68.5 |
Printed Layers | Voltage (V) | Tmax (°C) | Imax (A) | P (W) | H (J) | Hr (°C·s−1) | Heff (%) | ΔT, °C |
---|---|---|---|---|---|---|---|---|
10 | 2 | 53.0 | 0.192 | 0.38 | 114 | 0.20 | 53 | 28.0 |
10 | 3 | 78.0 | 0.289 | 0.87 | 261 | 0.43 | 68 | 53.0 |
10 | 4 | 109.0 | 0.378 | 1.51 | 453 | 0.65 | 77 | 84.0 |
4 | 2 | 32.0 | 0.040 | 0.08 | 24 | 0.15 | 22 | 7.0 |
4 | 3 | 42.9 | 0.066 | 0.20 | 60 | 0.21 | 42 | 17.9 |
4 | 4 | 54.4 | 0.088 | 0.35 | 105 | 0.25 | 54 | 29.4 |
4 | 5 | 69.6 | 0.109 | 0.55 | 165 | 0.43 | 64 | 44.6 |
4 | 7 | 92.0 | 0.146 | 1.02 | 306 | 0.65 | 73 | 67.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsilkova, R.; Georgiev, V.; Aleksandrova, M.; Batakliev, T.; Ivanov, E.; Spinelli, G.; Tomov, R.; Tsanev, T. Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing. Nanomaterials 2024, 14, 1840. https://doi.org/10.3390/nano14221840
Kotsilkova R, Georgiev V, Aleksandrova M, Batakliev T, Ivanov E, Spinelli G, Tomov R, Tsanev T. Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing. Nanomaterials. 2024; 14(22):1840. https://doi.org/10.3390/nano14221840
Chicago/Turabian StyleKotsilkova, Rumiana, Vladimir Georgiev, Mariya Aleksandrova, Todor Batakliev, Evgeni Ivanov, Giovanni Spinelli, Rade Tomov, and Tsvetozar Tsanev. 2024. "Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing" Nanomaterials 14, no. 22: 1840. https://doi.org/10.3390/nano14221840
APA StyleKotsilkova, R., Georgiev, V., Aleksandrova, M., Batakliev, T., Ivanov, E., Spinelli, G., Tomov, R., & Tsanev, T. (2024). Improving Resistive Heating, Electrical and Thermal Properties of Graphene-Based Poly(Vinylidene Fluoride) Nanocomposites by Controlled 3D Printing. Nanomaterials, 14(22), 1840. https://doi.org/10.3390/nano14221840