Enhanced Optical and Electrical Properties of IGZO/Ag/IGZO for Solar Cell Application via Post-Rapid Thermal Annealing
<p>The RTA process for the IGZO/Ag/IGZO multilayer, and the right diagram describes the generated oxygen vacancies from the IGZO inside by RTA.</p> "> Figure 2
<p>AFM topology images of IGZO/Ag/IGZO after RTA, (<b>a</b>) RT, (<b>b</b>) 300, (<b>c</b>) 400, and (<b>d</b>) 500 °C for 60 s.</p> "> Figure 3
<p>The sheet resistance of (<b>a</b>) IGZO and (<b>b</b>) IGZO/Ag/IGZO multilayers after varying temperature conditions.</p> "> Figure 4
<p>(<b>a</b>) Impedance of IGZO/Ag/IGZO after RTA RT to 500 °C for 60 s and (<b>b</b>) equivalent circuit of IGZO/Ag/IGZO.</p> "> Figure 5
<p>(<b>a</b>) Transmittance, (<b>b</b>) reflectivity, and (<b>c</b>) absorption coefficient of IGZO/Ag/IGZO after RTA RT to 500 °C for 60 s, and each inset depicts the transmittance and reflectivity at 500 nm wavelength with varying annealing temperature.</p> "> Figure 6
<p>(<b>a</b>) Schematic structure of IGZO/Ag/IGZO-based solar cell and (<b>b</b>) the photo-generated short circuit current of IGZO/Ag/IGZO-based solar cell as a function of annealing temperature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, G.; Noh, Y.; Choi, M.; Kim, K.; Song, O.; Kim, G.; Noh, Y.; Choi, M.; Kim, K.; Song, O. Properties of working electrodes with IGZO layers in a dye sensitized solar cell. J. Korean Ceram. Soc. 2016, 53, 110–115. [Google Scholar] [CrossRef]
- Han, W.; Xu, Q.; Wang, J.; Liu, J.; Li, Y.; Huang, Q.; Shi, B.; Xu, S.; Zhao, Y.; Zhang, X. Highly conductive and broadband transparent Zr-doped In2O3 as the front electrode for monolithic perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 2023, 31, 1032–1041. [Google Scholar] [CrossRef]
- Fahland, M.; Vogt, T.; Schoenberger, W.; Schiller, N. Optical properties of metal based transparent electrodes on polymer films. Thin Solid Film. 2008, 516, 5777–5780. [Google Scholar] [CrossRef]
- Leitão, D.; Torres, J.P.N.; Fernandes, J.F. Spectral irradiance influence on solar cells efficiency. Energies 2020, 13, 5017. [Google Scholar] [CrossRef]
- Chavan, G.T.; Kim, Y.; Khokhar, M.Q.; Hussain, S.Q.; Cho, E.-C.; Yi, J.; Ahmad, Z.; Rosaiah, P.; Jeon, C.-W. A brief review of transparent conducting oxides (TCO): The influence of different deposition techniques on the efficiency of solar cells. Nanomaterials 2023, 13, 1226. [Google Scholar] [CrossRef]
- Guillen, C.; Herrero, J. TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Film. 2011, 520, 1–17. [Google Scholar] [CrossRef]
- Ghosh, S.; Mallick, A.; Kole, A.; Chaudhury, P.; Garner, S.; Basak, D. Study on AZO coated flexible glass as TCO substrate. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, ON, USA, 5–10 June 2016; pp. 0634–0638. [Google Scholar]
- Lin, Y.-C.; Chen, M.; Kuo, C.; Yen, W. Electrical and optical properties of ZnO: Al film prepared on polyethersulfone substrate by RF magnetron sputtering. Colloids Surf. A Physicochem. Eng. Asp. 2009, 337, 52–56. [Google Scholar] [CrossRef]
- Yuan, Z.-S.; Wu, C.-C.; Tzou, W.-C.; Yang, C.-F.; Chen, Y.-H. Investigation of high transparent and conductivity of IGZO/Ag/IGZO sandwich structures deposited by sputtering method. Vacuum 2019, 165, 305–310. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, S.; Kim, H.-D. Improved electrical and optical properties of IGZO transparent conductive oxide due to microwave treatment: Application to silicon solar cells. IEEE Access 2022, 10, 90401–90407. [Google Scholar] [CrossRef]
- Pan, Z.; Hu, Y.; Chen, J.; Wang, F.; Jeong, Y.; Pham, D.P.; Yi, J. Approaches to Improve Mobility and Stability of IGZO TFTs: A Brief Review. Trans. Electr. Electron. Mater. 2024, 25, 1–9. [Google Scholar] [CrossRef]
- Chauhan, R.N.; Singh, C.; Anand, R.; Kumar, J. Effect of sheet resistance and morphology of ITO thin films on polymer solar cell characteristics. Int. J. Photoenergy 2012, 2012, 879261. [Google Scholar] [CrossRef]
- Mahajan, C.; Takwale, M. An influence of deposition temperature on structural, optical and electrical properties of sprayed ZnO thin films of identical thickness. Curr. Appl. Phys. 2013, 13, 2109–2116. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, J.; Zhu, S.; Wu, J.; Zeng, D.; Xie, C. Thickness study of AZO films by RF sputtering in Ar+ H2 atmosphere at room temperature. Phys. Status Solidi (a) 2012, 209, 1251–1258. [Google Scholar] [CrossRef]
- Chen, K.-N.; Yang, C.-F.; Wu, C.-C.; Chen, Y.-H. Development of the α-IGZO/Ag/α-IGZO triple-layer structure films for the application of transparent electrode. Materials 2017, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-H.; Eom, T.-Y.; Heo, S.-B.; Cheon, J.-Y.; Cha, B.-C.; Kim, D. Characteristics of IGZO/Ni/IGZO tri-layer films deposited by DC and RF magnetron sputtering. Mater. Lett. 2017, 205, 122–125. [Google Scholar] [CrossRef]
- Dhar, A.; Alford, T. Optimization of IGZO/Cu/IGZO multilayers as transparent composite electrode on flexible substrate by room-temperature sputtering and post-deposition anneals. MRS Online Proc. Libr. (OPL) 2013, 1577, 333. [Google Scholar] [CrossRef]
- Li, T.-C.; Han, C.-F.; Hsieh, K.-C.; Lin, J.-F. Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen. Ceram. Int. 2018, 44, 6573–6583. [Google Scholar] [CrossRef]
- Jung, Y.S.; Choi, Y.W.; Lee, H.C.; Lee, D.W. Effects of thermal treatment on the electrical and optical properties of silver- based indium tin oxide/metal/indium tin oxide structures. Thin Solid Film. 2003, 440, 278–284. [Google Scholar] [CrossRef]
- Park, J.W.; Jeong, P.S.; Choi, S.-H.; Lee, H.; Kong, B.H.; Cho, H.K. Optical and structural properties of ion-implanted InGaZnO thin films studied with spectroscopic ellipsometry and transmission electron microscopy. Jpn. J. Appl. Phys. 2009, 48, 111603. [Google Scholar] [CrossRef]
- Zhang, Z.; Kawamura, M.; Abe, Y.; Kim, K.H. Optimization of Surface Layers for Suppression of Agglomeration in Ag Films. Jpn. J. Appl. Phys. 2013, 52, 078003. [Google Scholar] [CrossRef]
- Kim, T.; Chae, M.; Lee, D.; Kim, H.-D. Enhanced optical and electrical properties of indium tin oxide for solar cell applications via post-microwave treatment. Opt. Mater. 2024, 149, 115093. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, J.H.; Woo, C.H.; Lee, J.Y.; Cho, H.K. Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors. Thin Solid Film. 2011, 519, 5146–5149. [Google Scholar] [CrossRef]
- Sinclair, D.C.; West, A.R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 1989, 66, 3850–3856. [Google Scholar] [CrossRef]
- Yang, W.; Wu, J.; Fan, Q.H.; Li, W. Highly conductive, transparent, and antireflective PEDOT: PSS/ITO/Ag/ITO on parylene-C with tunable peak transmittance. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 525–528. [Google Scholar]
- Yang, Y.H.; Yang, S.S.; Chou, K.S. Performance improvements of IGZO and ZnO thin-film transistors by laser-irradiation treatment. J. Soc. Inf. Disp. 2011, 19, 247–252. [Google Scholar] [CrossRef]
- Shin, H.S.; Ahn, B.D.; Rim, Y.S.; Kim, H.J. Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors. J. Inf. Disp. 2011, 12, 209–212. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Yen, S.-S.; Chiu, Y.-C.; Chiou, P.; Chang, C.-Y.; Cheng, C.-H.; Lai, Y.-C.; Chang, C.-P.; Lu, H.-H.; Chuang, C.-S. Correlation of thermal annealing effect, crystallinity and electrical characteristics in c-axis crystallized InGaZnO thin-film transistors. J. Alloys Compd. 2015, 643, S187–S192. [Google Scholar] [CrossRef]
- Ehrenreich, H.; Philipp, H. Optical properties of Ag and Cu. Phys. Rev. 1962, 128, 1622. [Google Scholar] [CrossRef]
- Lee, J.H.; Woo, K.Y.; Kim, K.H.; Kim, H.-D.; Kim, T.G. ITO/Ag/ITO multilayer-based transparent conductive electrodes for ultraviolet light-emitting diodes. Opt. Lett. 2013, 38, 5055–5058. [Google Scholar] [CrossRef]
- Guo, Y.; Van Bilzen, B.; Locquet, J.P.; Seo, J.W. Formation of crystalline InGaO3 (ZnO) n nanowires via the solid-phase diffusion process using a solution-based precursor. Nanotechnology 2015, 26, 495601. [Google Scholar] [CrossRef]
- Bennett, J. Optical scattering and absorption losses at interfaces and in thin films. Thin Solid Film. 1985, 123, 27–44. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Chen, T.; Liu, Y. Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: Effects of free-electrons and quantum confinement. ECS Solid State Lett. 2015, 4, P29. [Google Scholar] [CrossRef]
Material | Thickness (nm) | Rsq (Ω/□) | T (%) (Visible Range) | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|
ITO | 120 | 103 | ~80 | Low resistivity, high optical transmittance | High price, toxicity | [7,12] |
ZnO | 292 | 373 | ~80 | Inexpensive, non-toxicity | Low carrier concentration | [9,13] |
AZO | 185 | ~300 | ~90 | Higher conductivity than ZnO | Mismatch thermal expansion coefficient | [10,14] |
IGZO | 200 | 238 | 87 | Inexpensive, higher carrier mobility | Higher resistance than ITO | [10,11] |
Structure | Thickness (nm) | Rsq (Ω/□) | T (%) (Visible Range) | Ref. |
---|---|---|---|---|
IGZO/Ag/IGZO | 41/14/41 | 14 | 76.23 | This work |
IGZO/Ni/IGZO | 50/15/50 | 47.4 | 54.8 | [16] |
IGZO/Cu/IGZO | 30/9/30 | 5.5 | 28 | [17] |
Rq (nm) | |
---|---|
RT | 0.525 |
300 | 0.646 |
400 | 0.715 |
500 | 0.936 |
Average Transmittance in Visible Range (%) | Optical Band Gap (eV) | |
---|---|---|
RT | 76 | 3.58 |
300 | 75.4 | 3.59 |
400 | 77.1 | 3.69 |
500 | 84.9 | 3.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, C.; Kim, T.; Jang, Y.; Lee, D.; Kim, H.-D. Enhanced Optical and Electrical Properties of IGZO/Ag/IGZO for Solar Cell Application via Post-Rapid Thermal Annealing. Nanomaterials 2024, 14, 1841. https://doi.org/10.3390/nano14221841
Hwang C, Kim T, Jang Y, Lee D, Kim H-D. Enhanced Optical and Electrical Properties of IGZO/Ag/IGZO for Solar Cell Application via Post-Rapid Thermal Annealing. Nanomaterials. 2024; 14(22):1841. https://doi.org/10.3390/nano14221841
Chicago/Turabian StyleHwang, Chanmin, Taegi Kim, Yuseong Jang, Doowon Lee, and Hee-Dong Kim. 2024. "Enhanced Optical and Electrical Properties of IGZO/Ag/IGZO for Solar Cell Application via Post-Rapid Thermal Annealing" Nanomaterials 14, no. 22: 1841. https://doi.org/10.3390/nano14221841
APA StyleHwang, C., Kim, T., Jang, Y., Lee, D., & Kim, H. -D. (2024). Enhanced Optical and Electrical Properties of IGZO/Ag/IGZO for Solar Cell Application via Post-Rapid Thermal Annealing. Nanomaterials, 14(22), 1841. https://doi.org/10.3390/nano14221841