The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry
<p>(<b>a</b>) Topographic map of Tibetan Plateau. (<b>b</b>) Geological map illustrating spatial distribution of Mesozoic-Cenozoic magmatism (modified from [<a href="#B40-minerals-14-01292" class="html-bibr">40</a>]). (<b>c</b>) Geological map of study area, Baingoin County, northern Lhasa Terrane (modified from [<a href="#B41-minerals-14-01292" class="html-bibr">41</a>]). LMF = Luobadui–Milashan Fault; KF = Karakoram Fault; ATF = Altyn Tagh Fault; IYZS = Indus-Yarlung Zangbo suture zone; SNMZ = Shiquan River–Nam Tso mélange zone; JSS = Jinsha suture zone; BNS = Bangong–Nujiang suture zone.</p> "> Figure 2
<p>(<b>a</b>) Long view of Mazin rhyolite porphyry. (<b>b</b>) Photograph of Mazin rhyolite porphyry outcrop. (<b>c</b>) Close-up image of Mazin rhyolite porphyry. (<b>d</b>) Breccias from wall rock associated with Mazin rhyolite porphyry.</p> "> Figure 3
<p>Zircon U-Pb isotope concordia diagrams and representative cathodoluminescence images of zircon from Mazin rhyolite porphyry, Baingoin County, northern Lhasa Terrane. (<b>a</b>) BGA38-3; (<b>b</b>) BGA40-3; ‘n’ denotes number of samples; ‘MSWD’ represents mean square of weighted deviations.</p> "> Figure 4
<p>Diagram of zircon εHf(t) versus zircon <sup>206</sup>Pb/<sup>238</sup>U age (Ma). Zircon εHf(t) data for Xiongmei granite were compiled from [<a href="#B43-minerals-14-01292" class="html-bibr">43</a>]; for Norite, data were compiled from [<a href="#B44-minerals-14-01292" class="html-bibr">44</a>]; and for Xietongmen rhyolite, data were compiled from [<a href="#B29-minerals-14-01292" class="html-bibr">29</a>].</p> "> Figure 5
<p>(<b>a</b>) Total alkalis versus SiO<sub>2</sub> diagram. (<b>b</b>) Diagram of Zr/TiO<sub>2</sub> × 0.0001 versus Nb/Y. (<b>c</b>) A/NK versus A/CNK [where A/NK = molar Al<sub>2</sub>O<sub>3</sub>/(Na<sub>2</sub>O + K<sub>2</sub>O); A/CNK = molar Al<sub>2</sub>O<sub>3</sub>/(CaO + Na<sub>2</sub>O + K<sub>2</sub>O)] [<a href="#B45-minerals-14-01292" class="html-bibr">45</a>]; (<b>d</b>) K<sub>2</sub>O versus SiO<sub>2</sub> [<a href="#B46-minerals-14-01292" class="html-bibr">46</a>].</p> "> Figure 6
<p>(<b>a</b>) Chondrite-normalized rare earth element spidergram and (<b>b</b>) primitive mantle-normalized trace element spidergram for Mazin rhyolite porphyry, Baingoin County, North Lhasa Terrane. Normalized values were sourced from [<a href="#B47-minerals-14-01292" class="html-bibr">47</a>].</p> "> Figure 7
<p>(<b>a</b>) <span class="html-italic">w</span>(SiO<sub>2</sub>)/% versus <span class="html-italic">w</span>(P<sub>2</sub>O<sub>5</sub>)/%; (<b>b</b>) 10000Ga/Al versus <span class="html-italic">w</span>(Zr)/10<sup>−6</sup>; (<b>c</b>) Zr+Ce+Nb+Y versus10000 Ga/Al; (<b>d</b>) TFeO/MgO versus Zr+Nb+Ce+Y (FG = high-grade metamorphic granite, OGT = undifferentiated I-type, S-type, and M-type granites) [<a href="#B65-minerals-14-01292" class="html-bibr">65</a>,<a href="#B66-minerals-14-01292" class="html-bibr">66</a>].</p> "> Figure 8
<p>(<b>a</b>) Sr\Y versus La/Yb. (<b>b</b>) Al<sub>2</sub>O<sub>3</sub>\(FeO<sup>T</sup> + MgO + TiO<sub>2</sub>) versus Al<sub>2</sub>O<sub>3</sub> + FeO<sup>T</sup> + TiO<sub>2</sub> (HP means high pressure; LP means low pressure) [<a href="#B71-minerals-14-01292" class="html-bibr">71</a>].</p> "> Figure 9
<p>(<b>a</b>) Y × 10<sup>−6</sup> versus SiO<sub>2</sub>; (<b>b</b>) Nb/Zr versus Zr × 10<sup>−6</sup>; (<b>c</b>) R2 versus R1; (<b>d</b>) Rb × 10<sup>−6</sup> versus (Y + Nb) × 10<sup>−6</sup> (modified based on [<a href="#B80-minerals-14-01292" class="html-bibr">80</a>,<a href="#B81-minerals-14-01292" class="html-bibr">81</a>,<a href="#B82-minerals-14-01292" class="html-bibr">82</a>]).</p> "> Figure 10
<p>Schematic illustrations depicting the remote effects of the Paleogene geodynamic evolution processes associated with the Neo-Tethys oceanic tectonic regime in the northern Lhasa Terrane.</p> ">
Abstract
:1. Introduction
2. Geological Background
3. Analytical Methods
4. Results
4.1. Zircon U-Pb Ages and Lu-Hf Isotopic Compositions
4.2. Whole-Rock Major, Trace Element, and Sr-Nd Isotopic Compositions
Sample No. | 17BGA38-3 | 17BGA38-5 | 17BGA39-2 | 17BGA40-3 | 17BGA41-1 | 17BGA41-2 | 17BGA42-1 |
---|---|---|---|---|---|---|---|
SiO2 | 77.20 | 76.60 | 74.41 | 75.12 | 74.19 | 74.46 | 74.69 |
TiO2 | 0.09 | 0.08 | 0.21 | 0.13 | 0.21 | 0.21 | 0.19 |
Al2O3 | 12.20 | 12.30 | 13.36 | 13.32 | 13.35 | 13.35 | 13.30 |
FeO | 0.65 | 0.64 | 0.40 | 1.00 | 0.88 | 0.88 | 0.92 |
Fe2O3T | 1.4 | 1.5 | 1.6 | 1.7 | 2.0 | 2.0 | 2.0 |
MnO | 0.06 | 0.06 | 0.07 | 0.08 | 0.04 | 0.04 | 0.03 |
MgO | 0.13 | 0.19 | 0.27 | 0.20 | 0.32 | 0.33 | 0.30 |
CaO | 0.69 | 0.69 | 0.81 | 0.96 | 0.88 | 0.82 | 1.07 |
Na2O | 2.76 | 2.93 | 2.49 | 3.62 | 3.07 | 2.89 | 3.14 |
K2O | 4.74 | 4.66 | 4.94 | 4.78 | 4.84 | 4.90 | 4.86 |
P2O5 | 0.02 | 0.02 | 0.06 | 0.03 | 0.06 | 0.06 | 0.05 |
LOI | 0.76 | 0.71 | 1.23 | 0.48 | 0.83 | 1.04 | 0.59 |
Mg# | 15.72 | 20.38 | 25.65 | 19.08 | 24.06 | 24.63 | 23.17 |
A/CNK | 1.12 | 1.11 | 1.22 | 1.03 | 1.12 | 1.16 | 1.07 |
Ga | 17.3 | 18.4 | 16.9 | 19.9 | 17.5 | 17.4 | 17.25 |
Sr | 51.90 | 44.80 | 94.30 | 73.00 | 100.00 | 97.10 | 99.00 |
Hf | 3.80 | 4.20 | 4.70 | 4.10 | 4.70 | 4.70 | 4.30 |
Zr | 95.00 | 113.00 | 151.00 | 112.00 | 155.00 | 159.00 | 136.00 |
Nb | 24.30 | 25.70 | 19.40 | 22.50 | 19.40 | 19.30 | 19.30 |
Ta | 4.40 | 4.60 | 2.10 | 6.30 | 2.00 | 2.00 | 2.20 |
Ba | 98.70 | 93.70 | 253.00 | 159.50 | 250.00 | 258.00 | 224.00 |
Pb | 30.60 | 32.70 | 27.50 | 30.00 | 25.60 | 28.30 | 27.60 |
Th | 28.90 | 30.00 | 29.50 | 28.30 | 29.20 | 29.00 | 29.20 |
U | 6.51 | 4.65 | 7.70 | 6.09 | 5.38 | 5.13 | 3.95 |
Cr | 9.00 | 14.00 | 8.00 | 9.00 | 8.00 | 8.00 | 5.00 |
Ni | 0.70 | 0.90 | 1.70 | 1.70 | 1.60 | 1.60 | 1.80 |
La | 32.00 | 27.60 | 33.10 | 30.90 | 36.80 | 43.70 | 36.50 |
Ce | 59.80 | 60.70 | 82.90 | 70.50 | 82.00 | 88.00 | 76.20 |
Pr | 8.82 | 7.48 | 8.43 | 8.07 | 8.81 | 9.97 | 8.67 |
Nd | 34.20 | 27.90 | 29.90 | 30.10 | 31.40 | 34.10 | 30.60 |
Sm | 9.13 | 7.66 | 6.40 | 7.94 | 6.30 | 7.08 | 6.10 |
Eu | 0.31 | 0.28 | 0.60 | 0.39 | 0.63 | 0.66 | 0.56 |
Gd | 9.78 | 8.18 | 5.60 | 8.24 | 5.40 | 5.89 | 4.85 |
Tb | 1.65 | 1.44 | 0.94 | 1.47 | 0.86 | 0.91 | 0.78 |
Dy | 9.70 | 8.91 | 5.42 | 8.99 | 5.01 | 5.25 | 4.71 |
Ho | 1.99 | 1.83 | 1.13 | 1.83 | 1.11 | 1.00 | 0.86 |
Er | 5.68 | 5.36 | 3.28 | 5.30 | 3.07 | 3.00 | 2.74 |
Tm | 0.84 | 0.81 | 0.47 | 0.82 | 0.46 | 0.45 | 0.40 |
Yb | 5.61 | 5.26 | 3.07 | 5.62 | 2.95 | 2.83 | 2.68 |
Lu | 0.85 | 0.81 | 0.47 | 0.87 | 0.44 | 0.45 | 0.41 |
Y | 60.10 | 56.60 | 32.40 | 60.60 | 29.30 | 31.80 | 27.00 |
∑REE | 180.36 | 164.22 | 181.71 | 181.04 | 185.24 | 203.29 | 176.06 |
(La/Yb)N | 4.09 | 3.76 | 7.73 | 3.94 | 8.95 | 11.08 | 9.77 |
δEu | 0.10 | 0.11 | 0.30 | 0.15 | 0.32 | 0.30 | 0.30 |
Tzr(°C) | 755 | 768 | 800 | 758 | 794 | 799 | 778 |
87Rb/86Sr | 31.3079 | 24.1950 | 8.3082 | ||||
87Sr/86Sr | 0.726408 | 0.715432 | 0.713521 | ||||
(87Sr/86Sr)i | 0.700168 | 0.696184 | 0.706912 | ||||
147Sm/144Nd | 0.1661 | 0.1596 | 0.1206 | ||||
143Nd/144Nd | 0.512432 | 0.512315 | 0.512407 | ||||
fSm/Nd | −0.16 | −0.19 | −0.39 | ||||
(143Nd/144Nd)i | 0.51237 | 0.51226 | 0.51236 | ||||
εNd(t) | −3.8 | −6.0 | −4.0 | ||||
TDM2 | 1167 | 1348 | 1184 |
5. Discussion
5.1. Relationships Between the Mazin Rhyolite Porphyry and the Linzizong Group
5.2. Magma Source and Melting Condition
5.3. A Formation Model for the Mazin Rhyolite Porphyry
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Analytical Methods
Appendix A.1. LA-ICP-MS Zircon U-Pb Dating
Appendix A.2. Major and Trace Element Analysis
Appendix A.3. Whole-Rock Sr-Nd Isotopic Compositions
Appendix A.4. Zircon Hf Isotopic Compositions Analysis
Appendix B
Test Point Number | t (Ma) | 176Yb/177Hf | 1σ | 176Lu/177Hf | 1σ | 176Hf/177Hf | 1σ | εHf(0) | εHf(t) | TDM (Ma) | TDM2 (Ma) | fLu/Hf |
17BGA40-3_1 | 57 | 0.015600 | 0.000019 | 0.000510 | 0.000001 | 0.282799 | 0.000189 | 0.9 | 2.2 | 634 | 992 | −0.98 |
17BGA40-3_2 | 57 | 0.095442 | 0.000018 | 0.002928 | 0.000042 | 0.282718 | 0.000624 | −1.9 | −0.8 | 797 | 1179 | −0.91 |
17BGA40-3_3 | 58 | 0.045959 | 0.000016 | 0.001456 | 0.000023 | 0.282768 | 0.001203 | −0.2 | 1.1 | 695 | 1064 | −0.96 |
17BGA40-3_4 | 56 | 0.034152 | 0.000014 | 0.001119 | 0.000006 | 0.282785 | 0.000541 | 0.5 | 1.7 | 664 | 1024 | −0.97 |
17BGA40-3_5 | 60 | 0.033350 | 0.000016 | 0.001068 | 0.000006 | 0.282735 | 0.000546 | −1.3 | 0.0 | 734 | 1135 | −0.97 |
17BGA40-3_6 | 58 | 0.039746 | 0.000016 | 0.001307 | 0.000040 | 0.282804 | 0.000785 | 1.1 | 2.4 | 640 | 980 | −0.96 |
17BGA40-3_7 | 55 | 0.048725 | 0.000013 | 0.001543 | 0.000036 | 0.282789 | 0.000948 | 0.6 | 1.7 | 666 | 1017 | −0.95 |
17BGA40-3_8 | 57 | 0.040171 | 0.000016 | 0.001407 | 0.000022 | 0.282782 | 0.000421 | 0.4 | 1.6 | 673 | 1030 | −0.96 |
17BGA40-3_9 | 55 | 0.024348 | 0.000015 | 0.000844 | 0.000003 | 0.282795 | 0.000331 | 0.8 | 2.0 | 646 | 1003 | −0.97 |
0.000301 | −8.7 | −6.2 | 1027 | 1572 | ||||||||
17BGA40-3_14 | 54 | 0.035717 | 0.000015 | 0.001232 | 0.000008 | 0.282783 | 0.000106 | 0.4 | 1.6 | 668 | 1029 | −0.96 |
17BGA40-3_15 | 54 | 0.060200 | 0.000015 | 0.001966 | 0.000038 | 0.282744 | 0.001093 | −1.0 | 0.1 | 739 | 1121 | −0.94 |
17BGA40-3_16 | 56 | 0.021108 | 0.000014 | 0.000750 | 0.000003 | 0.282771 | 0.000112 | −0.1 | 1.2 | 678 | 1056 | −0.98 |
17BGA40-3_17 | 65 | 0.010517 | 0.000013 | 0.000340 | 0.000005 | 0.282555 | 0.000091 | −7.7 | −6.3 | 969 | 1535 | −0.99 |
17BGA40-3_18 | 55 | 0.019575 | 0.000014 | 0.000716 | 0.000021 | 0.282765 | 0.000515 | −0.2 | 0.9 | 685 | 1069 | −0.98 |
17BGA40-3_19 | 55 | 0.018078 | 0.000014 | 0.000655 | 0.000002 | 0.282797 | 0.000132 | 0.9 | 2.1 | 639 | 998 | −0.98 |
17BGA40-3_20 | 56 | 0.024329 | 0.000017 | 0.000921 | 0.000015 | 0.282746 | 0.000246 | −0.9 | 0.3 | 715 | 1111 | −0.97 |
17BGA40-3_21 | 54 | 0.036828 | 0.000017 | 0.001316 | 0.000013 | 0.282794 | 0.000306 | 0.8 | 1.9 | 654 | 1005 | −0.96 |
17BGA40-3_22 | 54 | 0.039641 | 0.000015 | 0.001389 | 0.000028 | 0.282765 | 0.000684 | −0.2 | 0.9 | 697 | 1071 | −0.96 |
17BGA40-3_23 | 58 | 0.066720 | 0.000017 | 0.002219 | 0.000031 | 0.282789 | 0.001260 | 0.6 | 1.8 | 678 | 1016 | −0.93 |
17BGA40-3_24 | 58 | 0.122678 | 0.000016 | 0.004008 | 0.000043 | 0.282761 | 0.000970 | −0.4 | 0.7 | 756 | 1084 | −0.88 |
17BGA38-3_1 | 59 | 0.067176 | 0.000018 | 0.002155 | 0.000037 | 0.282763 | 0.001022 | −0.3 | 0.9 | 716 | 1076 | −0.94 |
17BGA38-3_2 | 60 | 0.120023 | 0.000018 | 0.003827 | 0.000159 | 0.282862 | 0.004724 | 3.2 | 4.3 | 598 | 855 | −0.88 |
17BGA38-3_3 | 58 | 0.020785 | 0.000015 | 0.000714 | 0.000001 | 0.282801 | 0.000163 | 1.0 | 2.3 | 635 | 987 | −0.98 |
17BGA38-3_4 | 57 | 0.019291 | 0.000015 | 0.000665 | 0.000003 | 0.282840 | 0.000234 | 2.4 | 3.6 | 579 | 899 | −0.98 |
17BGA38-3_5 | 59 | 0.034248 | 0.000015 | 0.001140 | 0.000001 | 0.282769 | 0.000131 | −0.1 | 1.2 | 686 | 1058 | −0.97 |
17BGA38-3_6 | 59 | 0.020320 | 0.000016 | 0.000696 | 0.000002 | 0.282826 | 0.000197 | 1.9 | 3.2 | 599 | 930 | −0.98 |
17BGA38-3_7 | 79 | 0.041075 | 0.000016 | 0.001368 | 0.000007 | 0.282767 | 0.000481 | −0.2 | 1.5 | 693 | 1051 | −0.96 |
17BGA38-3_8 | 56 | 0.060680 | 0.000012 | 0.002002 | 0.000055 | 0.282788 | 0.001468 | 0.6 | 1.7 | 676 | 1020 | −0.94 |
17BGA38-3_9 | 62 | 0.051150 | 0.000015 | 0.001619 | 0.000039 | 0.282808 | 0.001701 | 1.3 | 2.6 | 640 | 971 | −0.95 |
17BGA38-3_10 | 58 | 0.034936 | 0.000015 | 0.001168 | 0.000004 | 0.282770 | 0.000233 | −0.1 | 1.2 | 686 | 1057 | −0.96 |
17BGA38-3_11 | 58 | 0.035653 | 0.000015 | 0.001195 | 0.000030 | 0.282802 | 0.000703 | 1.1 | 2.3 | 641 | 985 | −0.96 |
17BGA38-3_12 | 60 | 0.022348 | 0.000013 | 0.000751 | 0.000001 | 0.282808 | 0.000157 | 1.3 | 2.6 | 625 | 970 | −0.98 |
17BGA38-3_13 | 59 | 0.028763 | 0.000015 | 0.000938 | 0.000004 | 0.282794 | 0.000251 | 0.8 | 2.0 | 647 | 1001 | −0.97 |
17BGA38-3_14 | 60 | 0.062997 | 0.000017 | 0.002082 | 0.000026 | 0.282781 | 0.001246 | 0.3 | 1.5 | 687 | 1034 | −0.94 |
17BGA38-3_15 | 62 | 0.030634 | 0.000015 | 0.001051 | 0.000004 | 0.282790 | 0.000366 | 0.6 | 1.9 | 656 | 1010 | −0.97 |
17BGA38-3_16 | 59 | 0.033109 | 0.000017 | 0.001143 | 0.000042 | 0.282797 | 0.001097 | 0.9 | 2.2 | 647 | 995 | −0.97 |
17BGA38-3_17 | 58 | 0.023389 | 0.000015 | 0.000822 | 0.000001 | 0.282795 | 0.000176 | 0.8 | 2.1 | 644 | 1000 | −0.98 |
17BGA38-3_18 | 60 | 0.020474 | 0.000015 | 0.000700 | 0.000006 | 0.282775 | 0.000159 | 0.1 | 1.4 | 671 | 1044 | −0.98 |
17BGA38-3_19 | 57 | 0.039767 | 0.000015 | 0.001351 | 0.000006 | 0.282742 | 0.000151 | −1.1 | 0.1 | 730 | 1122 | −0.96 |
17BGA38-3_20 | 56 | 0.033664 | 0.000016 | 0.001112 | 0.000011 | 0.282796 | 0.000606 | 0.9 | 2.0 | 648 | 999 | −0.97 |
Isotope Ratios | Isotopic Ratios: 1 Sigma Uncertainty | Age Estimates (Ma) | Age Estimates: 1 Sigma Uncertainty (Ma) | |||||||||||||
207Pb/206Pb | 206Pb/238U | 207Pb/235U | 208Pb/232Th | 207Pb/206Pb | 206Pb/238U | 207Pb/235U | 208Pb/232Th | 207Pb/206Pb | 206Pb/238U | 207Pb/235U | 208Pb/232Th | 207Pb/206Pb | 206Pb/238U | 207Pb/235U | 208Pb/232Th | |
17BGA40-3_1 | 0.0525 | 0.00892 | 0.06381 | 0.00309 | 0.00179 | 0.00014 | 0.00215 | 0.00009 | 307.1 | 57.2 | 62.8 | 62.3 | 75.76 | 0.91 | 2.05 | 1.79 |
17BGA40-3_2 | 0.04817 | 0.00889 | 0.06015 | 0.00308 | 0.00071 | 0.00011 | 0.00095 | 0.00003 | 107.7 | 57 | 59.3 | 62.2 | 34.44 | 0.7 | 0.91 | 0.7 |
17BGA40-3_3 | 0.04819 | 0.00903 | 0.06052 | 0.00317 | 0.0008 | 0.00011 | 0.00106 | 0.00004 | 108.7 | 57.9 | 59.7 | 64 | 38.73 | 0.72 | 1.02 | 0.8 |
17BGA40-3_4 | 0.04826 | 0.00876 | 0.05735 | 0.00307 | 0.00136 | 0.00013 | 0.00162 | 0.00007 | 111.9 | 56.2 | 56.6 | 61.9 | 65.24 | 0.8 | 1.55 | 1.51 |
17BGA40-3_5 | 0.05013 | 0.00934 | 0.06419 | 0.00329 | 0.00114 | 0.00013 | 0.00148 | 0.00007 | 201.2 | 59.9 | 63.2 | 66.4 | 51.86 | 0.8 | 1.41 | 1.35 |
17BGA40-3_6 | 0.04892 | 0.00898 | 0.06102 | 0.00313 | 0.00148 | 0.00013 | 0.00183 | 0.00007 | 143.9 | 57.6 | 60.1 | 63.1 | 69.46 | 0.86 | 1.76 | 1.45 |
17BGA40-3_7 | 0.04781 | 0.0086 | 0.05783 | 0.0031 | 0.00083 | 0.00011 | 0.00105 | 0.00005 | 89.1 | 55.2 | 57.1 | 62.5 | 41.41 | 0.69 | 1.01 | 0.91 |
17BGA40-3_8 | 0.05307 | 0.0089 | 0.06499 | 0.00303 | 0.00195 | 0.00015 | 0.00236 | 0.00008 | 331.7 | 57.1 | 63.9 | 61.2 | 81.27 | 0.93 | 2.25 | 1.58 |
17BGA40-3_9 | 0.04967 | 0.00862 | 0.05907 | 0.00299 | 0.00129 | 0.00012 | 0.00154 | 0.00007 | 179.6 | 55.3 | 58.3 | 60.4 | 59.51 | 0.77 | 1.48 | 1.34 |
17BGA40-3_10 | 0.04884 | 0.00913 | 0.06111 | 0.00328 | 0.00151 | 0.00014 | 0.00188 | 0.00008 | 139.9 | 58.6 | 60.2 | 66.2 | 71.18 | 0.88 | 1.8 | 1.51 |
17BGA40-3_11 | 0.05132 | 0.01807 | 0.12852 | 0.00666 | 0.00162 | 0.00028 | 0.0041 | 0.00023 | 255.3 | 115.5 | 122.8 | 134.2 | 70.89 | 1.75 | 3.69 | 4.64 |
17BGA40-3_12 | 0.04821 | 0.00854 | 0.05752 | 0.00313 | 0.00193 | 0.00015 | 0.00226 | 0.00011 | 109.7 | 54.8 | 56.8 | 63.2 | 91.91 | 0.94 | 2.17 | 2.26 |
17BGA40-3_13 | 0.05667 | 0.00842 | 0.06559 | 0.00305 | 0.00232 | 0.00015 | 0.00261 | 0.00012 | 478.2 | 54.1 | 64.5 | 61.6 | 88.74 | 0.99 | 2.49 | 2.5 |
17BGA40-3_14 | 0.05003 | 0.00846 | 0.05868 | 0.0034 | 0.00129 | 0.00012 | 0.00153 | 0.00008 | 196.5 | 54.3 | 57.9 | 68.6 | 59 | 0.74 | 1.47 | 1.63 |
17BGA40-3_15 | 0.05152 | 0.00835 | 0.05941 | 0.00317 | 0.00086 | 0.0001 | 0.00104 | 0.00005 | 264.1 | 53.6 | 58.6 | 64.1 | 38.06 | 0.66 | 1 | 1.1 |
17BGA40-3_16 | 0.04854 | 0.00877 | 0.05786 | 0.00307 | 0.00134 | 0.00012 | 0.00159 | 0.00009 | 125.7 | 56.3 | 57.1 | 62 | 63.69 | 0.8 | 1.53 | 1.88 |
17BGA40-3_17 | 0.04897 | 0.01015 | 0.06862 | 0.0033 | 0.00142 | 0.00015 | 0.00199 | 0.00054 | 146.5 | 65.1 | 67.4 | 66.5 | 66.61 | 0.94 | 1.89 | 10.88 |
17BGA40-3_18 | 0.04794 | 0.00858 | 0.05686 | 0.00325 | 0.002 | 0.00015 | 0.00233 | 0.00014 | 95 | 55.1 | 56.2 | 65.6 | 97.02 | 0.94 | 2.24 | 2.74 |
17BGA40-3_19 | 0.05227 | 0.00862 | 0.06308 | 0.00312 | 0.00168 | 0.00013 | 0.002 | 0.00011 | 297.2 | 55.3 | 62.1 | 62.9 | 71.62 | 0.85 | 1.91 | 2.23 |
17BGA40-3_20 | 0.04796 | 0.00874 | 0.05861 | 0.00319 | 0.00188 | 0.00014 | 0.00226 | 0.00011 | 96.4 | 56.1 | 57.8 | 64.4 | 91.21 | 0.92 | 2.17 | 2.23 |
17BGA40-3_21 | 0.04996 | 0.00847 | 0.05866 | 0.00316 | 0.00182 | 0.00014 | 0.00211 | 0.00012 | 192.9 | 54.4 | 57.9 | 63.9 | 82.77 | 0.88 | 2.02 | 2.42 |
17BGA40-3_22 | 0.04884 | 0.00833 | 0.05641 | 0.00329 | 0.00123 | 0.00011 | 0.00143 | 0.00008 | 140.1 | 53.5 | 55.7 | 66.4 | 58.24 | 0.73 | 1.38 | 1.53 |
17BGA40-3_23 | 0.04867 | 0.00901 | 0.05946 | 0.00308 | 0.00165 | 0.00014 | 0.00201 | 0.00008 | 132.1 | 57.8 | 58.6 | 62.1 | 78.01 | 0.88 | 1.92 | 1.58 |
17BGA40-3_24 | 0.04992 | 0.00896 | 0.06128 | 0.00326 | 0.00063 | 0.00011 | 0.00085 | 0.00006 | 191.1 | 57.5 | 60.4 | 65.8 | 29.09 | 0.67 | 0.81 | 1.13 |
17BGA38-3_1 | 0.04739 | 0.00916 | 0.06012 | 0.00274 | 0.0009 | 0.00012 | 0.00118 | 0.00004 | 68.5 | 58.8 | 59.3 | 55.3 | 45.04 | 0.75 | 1.13 | 0.88 |
17BGA38-3_2 | 0.05259 | 0.00931 | 0.06677 | 0.00294 | 0.0022 | 0.00016 | 0.00275 | 0.00009 | 311.2 | 59.8 | 65.6 | 59.3 | 92.45 | 1.04 | 2.61 | 1.73 |
17BGA38-3_3 | 0.04992 | 0.00901 | 0.06244 | 0.00246 | 0.00217 | 0.00016 | 0.00266 | 0.0001 | 191.4 | 57.8 | 61.5 | 49.8 | 98.23 | 1.04 | 2.54 | 1.95 |
17BGA38-3_4 | 0.04919 | 0.00893 | 0.06056 | 0.00251 | 0.00247 | 0.00018 | 0.00298 | 0.00012 | 156.7 | 57.3 | 59.7 | 50.8 | 113.71 | 1.12 | 2.85 | 2.41 |
17BGA38-3_5 | 0.04943 | 0.00913 | 0.06269 | 0.00276 | 0.00089 | 0.00012 | 0.00117 | 0.00004 | 168.3 | 58.6 | 61.7 | 55.8 | 41.32 | 0.74 | 1.11 | 0.89 |
17BGA38-3_6 | 0.04916 | 0.00916 | 0.06245 | 0.00276 | 0.00178 | 0.00015 | 0.00223 | 0.00008 | 155.5 | 58.8 | 61.5 | 55.6 | 82.59 | 0.95 | 2.13 | 1.7 |
17BGA38-3_7 | 0.04839 | 0.01239 | 0.08205 | 0.00383 | 0.00098 | 0.00016 | 0.00172 | 0.00006 | 118.4 | 79.4 | 80.1 | 77.3 | 47.24 | 1.02 | 1.61 | 1.25 |
17BGA38-3_8 | 0.05023 | 0.00877 | 0.06178 | 0.00256 | 0.00163 | 0.00014 | 0.00198 | 0.00008 | 205.7 | 56.3 | 60.9 | 51.7 | 73.68 | 0.86 | 1.9 | 1.55 |
17BGA38-3_9 | 0.05402 | 0.00969 | 0.07241 | 0.00303 | 0.00101 | 0.00012 | 0.0014 | 0.00005 | 371.7 | 62.2 | 71 | 61.2 | 41.79 | 0.8 | 1.33 | 0.92 |
17BGA38-3_10 | 0.05227 | 0.00908 | 0.06568 | 0.00278 | 0.0019 | 0.00015 | 0.00234 | 0.00008 | 297.3 | 58.2 | 64.6 | 56.1 | 80.52 | 0.96 | 2.23 | 1.67 |
17BGA38-3_11 | 0.0483 | 0.00906 | 0.06117 | 0.00271 | 0.00147 | 0.00013 | 0.00186 | 0.00007 | 113.9 | 58.1 | 60.3 | 54.7 | 70.51 | 0.85 | 1.78 | 1.36 |
17BGA38-3_12 | 0.04641 | 0.00931 | 0.05922 | 0.00273 | 0.00157 | 0.00014 | 0.00198 | 0.00008 | 18.9 | 59.7 | 58.4 | 55.1 | 77.95 | 0.92 | 1.89 | 1.71 |
17BGA38-3_13 | 0.05737 | 0.00917 | 0.07271 | 0.00294 | 0.00185 | 0.00014 | 0.00231 | 0.00008 | 505.1 | 58.8 | 71.3 | 59.2 | 69.86 | 0.92 | 2.19 | 1.64 |
17BGA38-3_14 | 0.05078 | 0.00933 | 0.06387 | 0.00252 | 0.00171 | 0.00015 | 0.00214 | 0.00005 | 231.1 | 59.9 | 62.9 | 50.9 | 76.07 | 0.93 | 2.04 | 1.02 |
17BGA38-3_15 | 0.04794 | 0.00961 | 0.06286 | 0.00263 | 0.00184 | 0.00016 | 0.00238 | 0.0001 | 95 | 61.6 | 61.9 | 53.1 | 89.7 | 1.03 | 2.27 | 1.93 |
17BGA38-3_16 | 0.04999 | 0.00926 | 0.06367 | 0.00247 | 0.00235 | 0.00018 | 0.00291 | 0.00015 | 194.4 | 59.4 | 62.7 | 49.8 | 105.85 | 1.15 | 2.78 | 2.96 |
17BGA38-3_17 | 0.0492 | 0.00899 | 0.06072 | 0.0028 | 0.00189 | 0.00015 | 0.0023 | 0.00009 | 157.4 | 57.7 | 59.9 | 56.5 | 87.61 | 0.95 | 2.2 | 1.75 |
17BGA38-3_18 | 0.04532 | 0.0094 | 0.05782 | 0.00259 | 0.00224 | 0.00018 | 0.00277 | 0.00014 | 0.1 | 60.3 | 57.1 | 52.4 | 76.42 | 1.16 | 2.66 | 2.87 |
17BGA38-3_19 | 0.05386 | 0.00895 | 0.06678 | 0.00253 | 0.00231 | 0.00017 | 0.00278 | 0.00009 | 364.9 | 57.4 | 65.6 | 51.1 | 93.79 | 1.09 | 2.64 | 1.86 |
17BGA38-3_20 | 0.04988 | 0.00877 | 0.05942 | 0.00249 | 0.00171 | 0.00014 | 0.00201 | 0.00008 | 189.3 | 56.3 | 58.6 | 50.3 | 77.95 | 0.89 | 1.93 | 1.64 |
References
- Dickinson, W.R. Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs. Geology 1975, 3, 53–56. [Google Scholar] [CrossRef]
- Gill, J.B. Orogenic Andesites and Plate Tectonics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 16. [Google Scholar]
- Schmidt, M.W.; Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 2017, 18, 2817–2854. [Google Scholar] [CrossRef]
- Mo, X.; Niu, Y.; Dong, G.; Zhao, Z.; Hou, Z.; Zhou, S.; Ke, S. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem. Geol. 2008, 250, 49–67. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and pre-Cenozoic evolution of the Tibetan plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Dong, G.C.; Mo, X.X.; Zhao, Z.D.; Wang, L.; Zhou, S. A new understanding of the stratigraphic successions of the Linzizong volcanic rocks in the Linzhou basin, Tibet. Geol. Bull. China 2005, 24, 549–557, (In Chinese with English Abstract). [Google Scholar]
- He, S.; Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M. Cretaceous-Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics 2007, 433, 15–37. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhong, S.L.; Wang, Y.B.; Zhu, D.C.; Yang, J.H.; Song, B.; Liu, D.Y.; Wu, F.Y. Age, genesis and geological significane of volcanic rocks from Linzizong, Linzhou Basin, Southern Tibet: Zircon U-Pb age and Hf isotope evidenve. Acta Petrol. 2007, 23, 493–500, (In Chinese with English Abstract). [Google Scholar]
- Huang, W.T.; Dupont-Nivet, G.; Lippert, P.C.; van Hinsbergen, D.J.J.; Dekkers, M.J.; Waldrip, R.; Ganerød, M.; Li, X.; Guo, Z.; Kapp, P. What was the Paleogene Latitude of the LhasaTerrane? A Reassessment of the Geochronology and Paleomagnetism of Linzizong Volcanic Rocks (Linzhou Basin, Tibet). Tectonics 2015, 34, 594–622. [Google Scholar] [CrossRef]
- Zhu, D.C.; Wang, Q.; Zhao, Z.D.; Chung, S.L.; Cawood, P.A.; Niu, Y.; Liu, S.; Wu, F.Y.; Mo, X.X. Magmatic Record of India-Asia Collision. Sci. Rep. 2015, 5, 14289. [Google Scholar] [CrossRef]
- Chen, B.; Ding, L.; Xu, Q.; Yue, Y.; Xie, J. U-Pb age framework of the Linzizong volcanic rocks from the Linzhou Basin, Tibet. Quat. Sci. 2016, 36, 1037–1054, (In Chinese with English Abstract). [Google Scholar]
- Liu, A.L.; Wang, Q.; Zhu, D.C.; Zhao, Z.D.; Liu, S.A.; Wang, R.; Dai, J.G.; Zheng, Y.C.; Zhang, L.L. Origin of the Ca. 50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc, Southern Tibet. Lithos 2018, 304–307, 374–387. [Google Scholar] [CrossRef]
- Yan, H.Y.; Long, X.P.; Li, J.; Wang, Q.; Zhao, B.; Shu, C.; Gou, L.; Zuo, R. Arc Andesitic Rocks Derived from Partial Melts of Mélange Diapir in Subduction Zones: Evidence from Whole-Rock Geochemistry and Sr-Nd-Mo Isotopes of the Paleogene Linzizong Volcanic Succession in Southern Tibet. J. Geophys. Res. Solid Earth 2019, 124, 456–475. [Google Scholar] [CrossRef]
- Chen, J.S.; Huang, B.C.; Sun, L.S. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics 2010, 489, 189–209. [Google Scholar] [CrossRef]
- Liang, Y.P.; Zhu, J.; Ci, Q.; He, W.H.; Zhang, K.X. Zircon U-Pb age and geochemical characteristics of volcanic rocks from Linzizong Group, junuo Area, central Gangdisi Belt, Qinghai-Tibet Plateau. Earth Sci. 2010, 35, 211–223, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Song, Q.Y. Geochemical features of the volcanic rocks of Linzizong group in Chuoqin Basin. J. Geomech. 1999, 5, 66–71, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.X.; Chen, J.L.; Yao, S. Zircon U-Pb geochronology, genesis for Nianbo Formation volcanic rocks of Linzizong Group in the western part of Gangdese arc and its implication. Geochimica 2018, 47, 699–711, (In Chinese with English Abstract). [Google Scholar]
- Fu, W.C.; Kang, Z.Q.; Pan, H.B. Geochemistry, zircon U-Pb age and implications of the Linzizong Group volcanic rocks in Shiquan River area, western Gangdise belt, Tibet. Geol. Bull. China 2014, 33, 850–859, (In Chinese with English Abstract). [Google Scholar]
- Cao, Y.; Yang, F.; Li, D.X.; Chen, H.; Zhou, T.; Liu, D.M.; Li, Y.X. Geochemical characteristics and tectonic significance of Linzizong volcanic rocks in the west Yare area of Lhasa terrane. Collect. Geol. Prospect. Pap. 2020, 35, 216–222, (In Chinese with English Abstract). [Google Scholar]
- Ding, X.L.; Ding, L.; Wang, C.; Wang, H.Q.; Guo, X.D. Petrogenesis and tectonic implications of Palaeocene (ca.54 Ma) rhyolites in the western Lhasa Terrane, south Tibet: Constraints from geochemistry and Sr-Nd-Hf isotope compositions. Geol. J. 2020, 56, 494–507. [Google Scholar] [CrossRef]
- Mo, X.X. Response of volcanism to the India Asia collision. Earth Sciences. Frontiers 2003, 10, 135–148, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Z.D.; Mo, X.X.; Nomade, S.; Renne, P.R.; Zhou, S.; Dong, G.C.; Wang, L.L.; Zhu, D.C.; Liao, Z.L. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan plateau: Spatial and temporal distribution and its implications. Acta Petrol. Sin. 2006, 22, 787–794, (In Chinese with English Abstract). [Google Scholar]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z.M. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Zhu, D.C.; Pan, G.T.; Chun, S.L.; Liao, Z.L.; Wang, L.Q.; Li, G.M. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in south Tibet. Int. Geol. Rev. 2008, 50, 442–471. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Lo, C.H.; Ji, J.Q.; Lee, T.Y.; Qian, Q.; Zhang, Q. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 2009, 477, 20–35. [Google Scholar] [CrossRef]
- Yu, F.; Li, Z.G.; Zhao, Z.D.; Xie, G.G.; Dong, G.C.; Zhou, S.; Zhu, D.C.; Mo, X.X. Geochemistry and implication of the Linzizong volcanic succession in Cuomai area, central-western Gangdese, Tibet. Acta Petrol. Sin. 2010, 26, 2217–2225, (In Chinese with English Abstract). [Google Scholar]
- Xie, B.J.; Zhou, S.; Xie, G.G.; Tian, Z.M.; Liao, Z.L. Zircon SHRIMP U-Pb data and regional contrasts of geochemical characteristics of Linzizong volcanic rocks from Konglong and Dinrenle region, middle Gangdese belt. Acta Petrol. Sin. 2013, 29, 3803–3814, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Zhang, S.Z.; Li, F.Q.; Qin, Y.D.; Gong, X.D. Zircon U-Pb ages and implications of the Dianzhong formation in Chazi area, middle Lhasa block, Tibet. Earth Sci. 2018, 43, 2755–2766, (In Chinese with English Abstract). [Google Scholar]
- Zeng, C.; Yan, M.Q.; Shen, Z.Y.; Gao, Q.; Wei, J.H.; Mao, G.Z.; Deng, Y.M. U-Pb age, Hf isotope and geochemical characteristics of zircons from Dianzhong Formation rhyolite in Qieqiang Area, Xietongmen, Tibet. Geotecton. Metallog. 2022, 46, 154–174, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Harrison, T.M.; Yin, A.; Grove, M.; Lovera, O.M.; Ryerson, F.J.; Zhou, X.H. The Zedong window: A record of superposed Tertiary convergence in southeastern Tibet. J. Gephysical Res. 2000, 105, 19211–19230. [Google Scholar] [CrossRef]
- Pan, G.T. Spatial temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol. Sin. 2006, 22, 521–533, (In Chinese with English Abstract). [Google Scholar]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Mo, X.X.; Chung, S.L.; Hou, Z.Q.; Wang, L.Q.; Wu, F.Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 1–2. [Google Scholar] [CrossRef]
- Zhou, S.; Mo, X.X.; Zhao, Z.D.; Qiu, R.Z.; Zhang, S.Q.; Guo, T.Y. 40Ar/39Ar isotopic chronology of volcanic rocks in Wuyu Basin, Nanmulin county, Tibet. China Univ. Geosci. 2004, 4. [Google Scholar]
- Tang, P.; Tang, J.X.; Zheng, W.B.; Leng, Q.F.; Lin, B.; Tang, X.Q.; Wang, H. Zircon U-Pb ages, Hf isotopes and geochemistry of the volcanic rocks in Dianzhong Formation from xingaguo area, Tibet. Acta Petrol. Mineral. 2018, 37, 47–60, (In Chinese with English Abstract). [Google Scholar]
- Wei, N.S.; Kang, Z.Q.; Yang, F. Geochronology, geochemical characteristics, and genesis of the Dianzhong Formation volcanic rocks in Changguo area, southeastern Lhasa Block, Tibet. Geochimica 2019, 48, 30–42, (In Chinese with English Abstract). [Google Scholar]
- Zhou, P.; Rong, F.; Li, Q.; Liu, G.X. Zircon U-Pb age and Geological significance of gabbro-diorite veins in Gongting area, Tibet. Bull. Mineral. 2019, 38, 773–780, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Fu, Y.G. The Magmatism and Mineralization Related to the Subduction of Neo-Tethys in the Southern Part of Lhasa Block in Tibet; Chinese Academy of Geological Sciences: Beijing, China, 2017; (In Chinese with English Abstract). [Google Scholar]
- Ding, S.; Chen, Y.C.; Tang, J.X.; Xie, F.W.; Hu, G.Y.; Yang, Z.Y.; Shi, S.; Li, Y.H.; Yang, H.Y. Relationship between Linzizong volcanic rocks and mineralization: A case study of Sinongduo epithermal Ag-Pb-Zn deposit. J. Mineral Deposits 2017, 36, 1074–1092, (In Chinese with English Abstract). [Google Scholar]
- Chen, L.P.; Huang, Z.S.; Jiangba, D.J. Zircon U-Pb age and geochemical characteristics of igneous rocks from the Dianzhong Formation in the Shengong area of Tibet. J. Geol. Bull. China 2019, 38, 1127–1135, (In Chinese with English Abstract). [Google Scholar]
- Liu, D.; Zhao, Z.D.; DePaolo, D.J.; Zhu, D.C.; Meng, F.Y.; Shi, Q.; Wang, Q. Potassic volcanic rocks and adakitic intrusions in southern Tibet: Insights into mantle-crust interaction and mass transfer from Indian plate. Lithos 2017, 268–271, 48–64. [Google Scholar] [CrossRef]
- Tang, W.L.; Huang, F.; Xu, J.F.; Zeng, Y.C.; Liu, X.J. Cretaceous magmatism in the northern Lhasa Terrane:Implications for the tectonic evolution and crustal growth tempos of central Tibet. GSA Bull. 2024, 136, 3440–3456. [Google Scholar] [CrossRef]
- Wu, Y.B.; Zheng, Y.F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.D.; Chen, W. Geochronology and petrogenesis of the Xiongmei Cu-bearing granodiorite porphyry in North Lhasa subterrane, central Tibet: Implication for the evolution of Bangong-Nujiang metallogenic belt-ScienceDirect. Ore Geol. Rev. 2019, 114, 103119. [Google Scholar] [CrossRef]
- Hu, W.L.; Wang, Q.; Tang, G.J.; Qi, Y.; Wang, J.; Yang, Z.Y.; Sun, P. First identification of Early Cretaceous mafic dikes in the Baingoin area, central Tibet: Implications for crust-mantle interactions and magmatic flare-up. Geol. Soc. Am. Bull. 2024, 136, 846–860. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Martin, H.; Smiithies, R.H.; Rapp, R.; Moyen, J.F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Yu, S.M.; Ma, X.D.; Hu, Y.C.; Chen, W.; Liu, Q.P.; Song, Y.; Tang, J.X. Post-subdution evolution of the Northern Lhasa Terrane, Tibet: Constraints from geochemical anomalies, chronology and petrogeochemistry. China Geol. 2022, 5, 84–95. [Google Scholar] [CrossRef]
- Coulon, C.; Maluski, H.; Bollinger, C. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet:39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth Planet. Sci. Lett. 1986, 79, 281–302. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Marschall, H.R.; Schumacher, J.C. Arc magmas sourced from melange diapirs in subduction zones. Nat. Geosci. 2012, 5, 862–867. [Google Scholar] [CrossRef]
- Wang, N.; Liu, Z.B.; Song, Y.; Li, Z.J.; Yan, X.K.; An, Q. First identification of the Early Cretaceous Suolong Cu-rich porphyry in the Geji area, central Tibet: A new clue for regional porphyry Cu exploration. J. Asian Earth Sci. 2024, 1367–9120. [Google Scholar] [CrossRef]
- Yang, H.; Xiang, S.Y.; Wang, X. Age and Tectonic Setting of Dianzhong Formation in the Maxiang Area, Tibet. China Geol. Sci. Technol. Inf. 2013, 32, 89–96, (In Chinese with English Abstract). [Google Scholar]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Loiselle, M.C.; Wones, D.R. Characteristics of anorogenic granites. Geol. Soc. Am. Abstr. Programs 1979, 11, 468. [Google Scholar]
- Miller, C.F.; Miller, J.S. Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos 2002, 61, 209–224. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R.; Bell, J.M.; Chamberlain, K.R. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precambrian Res. 2002, 119, 45–71. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas—Petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R.; Williams, I.S.; Wyborn, D. Low- and high-temperature granites. Earth Environ. Sci. Trans. R. Soc. Edinb. 2004, 95, 125–140. [Google Scholar] [CrossRef]
- Li, X.H.; Li, W.X.; Li, Z.X. Rediscussion on genetic types and tectonic significance of early Yanshan granites in Nanling. Chin. Sci. Bull. 2007, 52, 981–991. (In Chinese) [Google Scholar]
- Grove, T.L.; Elkins-Tanton, L.T.; Parman, S.W.; Chatterjee, N.; Müntener, O.; Gaetani, G.A. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Miner. Pet. 1997, 145, 515–533. [Google Scholar] [CrossRef]
- Collins, W.J.; Richards, S.W. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 2008, 36, 559–562. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Moyen, J.F.; Stevens, G.; Kisters, A. Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 2006, 442, 559. [Google Scholar] [CrossRef] [PubMed]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Bea, F.; Morales, I.; Molina, J.F.; Montero, P.; Cambeses, A. Zircon stability grids in crustal partial melts: Implications for zircon inheritance. Contrib. Mineral. Petrol. 2021, 176, 1–13. [Google Scholar] [CrossRef]
- Rajesh, H.M.; Santosh, M. Charnockitic magmatism in southern India. Earth Syst. Sci 2004, 113, 565–585. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Zhong, D.L.; Deng, W.M. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. J. Petrol. 2003, 44, 1833–1865. [Google Scholar] [CrossRef]
- Wen, D.R.; Liu, D.Y.; Chung, S.L.; Chu, M.F.; Ji, J.Q.; Zhang, Q.; Song, B.; Lee, T.Y.; Yeh, M.W.; Lo, C.H. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chem. Geol. 2008, 252, 191–201. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, S.L.; Ji, J.Q.; Qian, Q.; Gallet, S.; Lo, C.H.; Lee, T.Y.; Zhang, Q. Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J. Asian Earth Sci. 2012, 53, 96–114. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Wang, X.C.; Liu, C.Z.; Li, Q.L.; Liu, Z.C.; Liu, X.C.; Wang, J.G. Eocene neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology 2016, 44, 283–286. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Huang, F.; Xu, J.F.; Zeng, Y.C.; Wang, B.D.; Lv, M.D.; Zhang, L.; Li, M.J.; Zhang, Z.; Tian, Y.; et al. Origin of the volcanic rocks in Dianzhong Formation, central Lhasa Terrane, Tibet: Implication for the genesis of syn-collision magmatism and Neo-Tethyan slab roll-back. Int. Geol. Rev. 2022, 65, 21–39. [Google Scholar] [CrossRef]
- Chung, S.; Chu, M.W.; Zhang, Y.; Xie, Y.; Lo, C.H.; Lee, T.Y.; Lan, C.Y.; Li, X.H.; Zhang, Q.; Wang, Y.Z. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. J. Earth-Sci. Rev. 2005, 68, 173–196. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Mo, X.X.; Yang, Z.M.; Gao, Y.F.; Ding, L.; Dong, G.C. Early processes and tectonic model for the Indian-Asian continental collision: Evidence from the Cenozoic Gangdese igneous rocks in Tibet. J. Acta Geol. Sin. 2006, 80, 1233–1248. [Google Scholar]
- Zhang, X.Q. Petrogenesis of Linzizong Group Volcanic Rocks in Zexue Area, Tibet and Its Relation to Mineralization. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2013; pp. 41–44, (In Chinese with English Abstract). [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace elements discrimination diagrams for the tectonic interpretation of granitic rock. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitiod rock series using multicationic parameters. J. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Petrol 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition for terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, N.; Liu, Z.; Ma, X. The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry. Minerals 2024, 14, 1292. https://doi.org/10.3390/min14121292
Wang Z, Wang N, Liu Z, Ma X. The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry. Minerals. 2024; 14(12):1292. https://doi.org/10.3390/min14121292
Chicago/Turabian StyleWang, Zhuosheng, Nan Wang, Zhibo Liu, and Xudong Ma. 2024. "The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry" Minerals 14, no. 12: 1292. https://doi.org/10.3390/min14121292
APA StyleWang, Z., Wang, N., Liu, Z., & Ma, X. (2024). The Northernmost Effects of the Neo-Tethys Oceanic Slab Subduction Under the Lhasa Terrane: Evidence from the Mazin Rhyolite Porphyry. Minerals, 14(12), 1292. https://doi.org/10.3390/min14121292