Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny
<p>(<b>a</b>) Sketch map of the regional tectonic framework. (<b>b</b>) The distributions of the Jurassic granites and deposits in the South China Block (modified from [<a href="#B3-minerals-14-00897" class="html-bibr">3</a>]).</p> "> Figure 2
<p>Sketch map of the regional geology showing the tectonic framework and mineralization resources (modified from [<a href="#B19-minerals-14-00897" class="html-bibr">19</a>]). Geochronological data from [<a href="#B11-minerals-14-00897" class="html-bibr">11</a>,<a href="#B40-minerals-14-00897" class="html-bibr">40</a>,<a href="#B41-minerals-14-00897" class="html-bibr">41</a>,<a href="#B42-minerals-14-00897" class="html-bibr">42</a>,<a href="#B43-minerals-14-00897" class="html-bibr">43</a>,<a href="#B44-minerals-14-00897" class="html-bibr">44</a>,<a href="#B45-minerals-14-00897" class="html-bibr">45</a>].</p> "> Figure 3
<p>Simplified geologic map of the Baoshan Cu-Pb-Zn deposit (after [<a href="#B47-minerals-14-00897" class="html-bibr">47</a>]).</p> "> Figure 4
<p>Cross section along the No. 169 prospecting line from the Baoshan Cu-Pb-Zn deposit (after [<a href="#B48-minerals-14-00897" class="html-bibr">48</a>]).</p> "> Figure 5
<p>Hydrothermal alteration characteristics of the Baoshan deposit. (<b>a</b>) Development of potassic alteration, epidotization, chloritization, and silicification in the ore-forming granodiorite porphyry. (<b>b</b>) Skarnization and silicification are closely associated with Cu mineralization. (<b>c</b>) Skarnization in wall rocks. (<b>d</b>) Silicitization and fluoropylitization are closely related to sphalerite and galena. Ep = epidote; Qtz = quartz; Chl = chlorite; Ccp = Chalcopyrite; Grt = garnet; Cb = Carbonate minerals; Cpx = pyroxene; ls = limestone; Fl = fluorite; Py = pyrite; Sp = sphalerite.</p> "> Figure 6
<p>Petrographic characteristics of granodiorite porphyry in the Baoshan deposit. (<b>a</b>,<b>b</b>) Granodiorite porphyry; (<b>c</b>,<b>d</b>) K-feldspar and biotite in granodiorite porphyry (Crossed polar and transmitted light). Kfs = K-feldspar; Pl = Plagioclase; Bt = Biotite; Qtz = Quartz; Amp = Aamphibole.</p> "> Figure 7
<p>Alteration box plots (after [<a href="#B49-minerals-14-00897" class="html-bibr">49</a>]) showing that all the samples from the Dongguashan and Xinqiao in this study have relatively weak hydrothermal alteration. Previous data based on the literature [<a href="#B4-minerals-14-00897" class="html-bibr">4</a>,<a href="#B9-minerals-14-00897" class="html-bibr">9</a>,<a href="#B16-minerals-14-00897" class="html-bibr">16</a>], the same below. AI = 100 × (K<sub>2</sub>O + MgO)/(K<sub>2</sub>O + MgO + Na<sub>2</sub>O + CaO); CCPI = 100 × (MgO + FeO)/(MgO + FeO + K<sub>2</sub>O + Na<sub>2</sub>O). Additional abbreviation: ab = albite; calc = calcite; carb = carbonate; chl = chlorite; ep = epidote; Kfs = K-feldspar; ms = muscovite; py = pyrite.</p> "> Figure 8
<p>Impact of hydrothermal alteration on major elements.</p> "> Figure 9
<p>Impact of hydrothermal alteration on trace elements.</p> "> Figure 10
<p>Harker diagram of Baoshan granodiorite porphyry.</p> "> Figure 11
<p>(<b>a</b>) REE distribution pattern diagram of granodiorite porphyry. (<b>b</b>) The trace element spider diagram of granodiorite porphyry. Data from [<a href="#B4-minerals-14-00897" class="html-bibr">4</a>]. Chondrite normalization based on the literature [<a href="#B50-minerals-14-00897" class="html-bibr">50</a>].</p> "> Figure 12
<p>Cathodoluminescence image of zircon from Baoshan granodiorite porphyry.</p> "> Figure 13
<p>(<b>a</b>) U-Pb concordant age and (<b>b</b>) U-Pb weighted mean age of zircons from Baoshan granodiorite porphyry.</p> "> Figure 14
<p>Geochronological constraints on the formation of magmatic rocks and mineralization events in Southern Hunan. Age data source [<a href="#B5-minerals-14-00897" class="html-bibr">5</a>,<a href="#B10-minerals-14-00897" class="html-bibr">10</a>,<a href="#B11-minerals-14-00897" class="html-bibr">11</a>,<a href="#B12-minerals-14-00897" class="html-bibr">12</a>,<a href="#B16-minerals-14-00897" class="html-bibr">16</a>,<a href="#B17-minerals-14-00897" class="html-bibr">17</a>,<a href="#B18-minerals-14-00897" class="html-bibr">18</a>,<a href="#B19-minerals-14-00897" class="html-bibr">19</a>,<a href="#B54-minerals-14-00897" class="html-bibr">54</a>,<a href="#B55-minerals-14-00897" class="html-bibr">55</a>,<a href="#B56-minerals-14-00897" class="html-bibr">56</a>,<a href="#B57-minerals-14-00897" class="html-bibr">57</a>,<a href="#B58-minerals-14-00897" class="html-bibr">58</a>,<a href="#B59-minerals-14-00897" class="html-bibr">59</a>,<a href="#B60-minerals-14-00897" class="html-bibr">60</a>]. Bt = biotite; Zrn = zircon; Ttn = titanite; Mol = molybdenite; Grt = garnet.</p> "> Figure 15
<p>(<b>a</b>) TAS diagram for classification of intrusive rock types [<a href="#B61-minerals-14-00897" class="html-bibr">61</a>]. (<b>b</b>) Whole-rock A/NK-A/CNK diagram [<a href="#B62-minerals-14-00897" class="html-bibr">62</a>].</p> "> Figure 16
<p>Discrimination diagrams for granite rock types. (<b>a</b>) Zr-10000*(Ga/Al) diagram [<a href="#B64-minerals-14-00897" class="html-bibr">64</a>]; (<b>b</b>) Al-Na-K–Ca–Fe+Mg diagram [<a href="#B65-minerals-14-00897" class="html-bibr">65</a>]; (<b>c</b>) Th-Rb diagram [<a href="#B63-minerals-14-00897" class="html-bibr">63</a>].</p> "> Figure 17
<p>Partial melting and fractional crystallization trends in rocks. (<b>a</b>) Zr/Nb-Zr diagram; (<b>b</b>) La/Sm-La diagram.</p> "> Figure 18
<p>Discrimination diagrams for fractional crystallization. (<b>a</b>) Sr-Eu diagram; (<b>b</b>) Ba-Sr diagram; (<b>c</b>) Dy-Er diagram; (<b>d</b>) Yb-Dy<sub>N</sub>/(La<sub>N</sub><sup>4/13</sup> × Yb<sub>N</sub><sup>9/13</sup>)-Dy/Yb diagram. (<b>a</b>–<b>c</b>) according to Kong et al. [<a href="#B10-minerals-14-00897" class="html-bibr">10</a>]; (<b>d</b>) according to Liu et al. [<a href="#B9-minerals-14-00897" class="html-bibr">9</a>].</p> "> Figure 19
<p>(<b>a</b>) Whole-rock Rb-Sr diagram and (<b>b</b>) ε<sub>Nd</sub>(t)-t diagram.</p> "> Figure 20
<p>Relationship between whole-rock (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> and ε<sub>Nd</sub>(t) with SiO<sub>2</sub> and MgO contents. (<b>a</b>) (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub>-SiO<sub>2</sub> diagram; (<b>b</b>) ε<sub>Nd</sub>(t)-SiO<sub>2</sub> diagram; (<b>c</b>) (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub>-MgO diagram; (<b>d</b>) ε<sub>Nd</sub>(t)-MgO diagram.</p> "> Figure 21
<p>Discrimination diagrams for tectonic settings of Baoshan granodiorite porphyry. (<b>a</b>) Rb-Y+Nb tectonic discrimination diagram [<a href="#B106-minerals-14-00897" class="html-bibr">106</a>]; (<b>b</b>) Rb/30-Hf-3Ta tectonic discrimination diagram [<a href="#B107-minerals-14-00897" class="html-bibr">107</a>]. syn-COLG = syn-collisional granites; VAG = volcanic arc granites; Late and post-COLG = late- and post-collisional granites; WPG = within-plate granites; ORG = ocean ridge granites.</p> "> Figure 22
<p>Comparison of water content characteristics between the Baoshan granodiorite porphyry and W-Sn-related granites. (<b>a</b>) Al<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>-SiO<sub>2</sub> diagram; (<b>b</b>) V/Sc-SiO<sub>2</sub> diagram. W-Sn-related granite data from the literature [<a href="#B45-minerals-14-00897" class="html-bibr">45</a>,<a href="#B131-minerals-14-00897" class="html-bibr">131</a>,<a href="#B132-minerals-14-00897" class="html-bibr">132</a>].</p> ">
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Deposit Geology
3. Samples and Analytical Methods
3.1. Samples
3.2. Analytical Methods
4. Results
4.1. Whole-Rock Major and Trace Elements
4.2. Whole-Rock Sr-Nd Isotope
4.3. Zircon U-Pb Geochronology
5. Discussion
5.1. Age of Baoshan Granodiorite Porphyry
5.2. Petrogenesis of Granodiorite Porphyry
5.3. Metallogenic Significance
5.4. Comparison of W-Sn-Related Granites in the Region
Comparison Aspects | Cu-Related Baoshan Granodiorite Porphyry | W-Sn-Related Granites | ||
---|---|---|---|---|
Furong Deposit | Xianghualing Deposit | Yaogangxian Deposit | ||
Rock types | Granodiorite porphyry | Alkali feldspar granite | Alkali feldspar granite; sodium feldspar granite | Two-mica granite; muscovite granite |
Evolution process | Partial melting | Fractional crystallization | ||
Differentiation degree | Rb/Sr = 0.47–2.9 | Rb/Sr = 7–116 | Rb/Sr = 97–245 | Rb/Sr = 14.5–175.6 |
Oxygen fugacity | ΔNNO +3.1 | ΔNNO −1.3 | - | ΔNNO +2.7 |
Magma source | Ancient and new crust | Crust-derived metamorphic mudstone | ||
Incorporation of mantle-derived material | Yes | Yes | Yes | No |
6. Conclusions
- (1)
- The Baoshan granodiorite porphyry has a zircon U-Pb age of 162 ± 1 Ma.
- (2)
- The granodiorite porphyry is classified as a high-potassium calc-alkaline I-type granite. It originated from the partial melting of ancient Mesoproterozoic crust and Neoproterozoic mafic juvenile lower crust, with contributions from water-rich, high oxygen fugacity melts derived from the lithospheric mantle.
- (3)
- The magma formed in an extensional tectonic setting during the Middle Jurassic period in South China.
- (4)
- A comparison with the diagenesis of the ore-bearing intrusions in the W-Sn deposits suggests that different magma source regions may be the primary cause for the spatial and temporal development of Cu-Pb-Zn versus W-Sn mineralization in southern Hunan.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, J.W.; Zhang, J.D.; Pirajno, F.; Ishiyama, D.; Su, H.M.; Guo, C.L.; Chen, Y.C. Porphyry Cu-Au-Mo-epithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China—A linked ore system. Ore Geol. Rev. 2011, 43, 203–216. [Google Scholar] [CrossRef]
- Ding, T.; Tan, T.T.; Wang, J.; Ma, D.S.; Lu, J.J.; Zhang, R.Q.; Liang, J. Trace-element composition of pyrite in the Baoshan Cu-Mo-Pb-Zn deposit, southern Hunan Province, China: Insights into the ore genesis. Ore Geol. Rev. 2022, 147, 104989. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Epis. J. Int. Geosci. 2006, 29, 26–33. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Guo, F. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in southeastern Hunan Province, South China: Petrogenesis and tectonic implications. Geochem. J. 2003, 37, 427–448. [Google Scholar] [CrossRef]
- Lu, Y.F.; Ma, L.Y.; Qu, W.J.; Mel, Y.P.; Chen, X.Q. U-Pb and Re-Os isotope geochronology of Baoshan Cu-Mo polymetallic ore deposit in Hunan province. Acta Petrol. Sin. 2006, 22, 2483–2492, (In Chinese with English abstract). [Google Scholar]
- Zhuang, J.L.; Liu, Z.W.; Tan, B.X.; Jiang, P.C.; He, A.S. Relation of the small rock bodies in southern hunan to the formation of ore deposits and prognosis of concealed deposits. Hunan Geol. 1988, 4 (Suppl. S1), 1–199, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.J.; Fan, W.M.; Guo, F.; Li, X. Petrological and geochemical characteristics of Mesozoic granodioritic intrusions in Southeast Hunan Province, China. Acta Petrol. Sin. 2001, 1, 169–175, (In Chinese with English abstract). [Google Scholar]
- Wang, Y. The Early Mid-Jurassic Granodiorite in South Hunan-It Petrochamical Characteristics, Tectonic Setting and Geological Implication. Beijing Geol. 2003, 15, 1–7, (In Chinese with English abstract). [Google Scholar]
- Liu, X.; Wang, Q.; Ma, L.; Wyman, D.A.; Zhao, Z.H.; Yang, J.H.; Zi, F.; Tang, G.J.; Dan, W.; Zhou, J.S. Petrogenesis of late Jurassic Pb-Zn mineralized high δ18O granodiorites in the western Nanling range, South China. J. Asian Earth Sci. 2020, 192, 104236. [Google Scholar] [CrossRef]
- Kong, H.; Li, H.; Wu, Q.H.; Xi, X.S.; Dick, J.M.; Gabo-Ratio, J.a.S. Co-development of Jurassic I-type and A-type granites in southern Hunan, South China: Dual control by plate subduction and intraplate mantle upwelling. Geochemistry 2018, 78, 500–520. [Google Scholar] [CrossRef]
- Mi, J.R.; Yuan, S.D.; Xuan, Y.S.; Zhang, D.L. Zircon U-Pb ages, Hf isotope and trace element characteristics of the granodiorite porphyry from the Baoshan-Dafang ore district, Hunan: Implications for regional metallogeny. Acta Petrol. Sin. 2018, 34, 2548–2564. [Google Scholar]
- Chen, Z.F. Study on Genesis and Intraplate Tectonic Environment of Baoshan Lead-Zinc Deposit, Southern Hunan Province. Master’s Thesis, Central South University, Changsha, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Hu, T.Y.; Liu, L.; Zhou, W.J.; Shao, Y.J.; Li, H.; Liu, Z.F.; Cao, L.; Xu, G.F.; Li, J.X. Contributions of trans-magmatic fluid in the formation of porphyry copper deposits: A case study from the Baoshan deposit, South China. Geochemistry 2022, 82, 125881. [Google Scholar] [CrossRef]
- Quan, T.J.; Kong, H.; Fei, L.D.; Wang, G.; Li, H.; Wu, C.M. Petrogenesis of granodiorite porphyry in Baoshan deposit: Constraints from geochemistry, zircon U-Pb chronology and Hf isotopes. Chin. J. Nonferrous Met. 2012, 22, 611–621. [Google Scholar]
- Xie, Y.C. Genesis of the Granodiorite Porphyry and Sources of Metallogenic Materials in the Baoshan Pb-Zn Polymetallic Deposit, Southern Hunan Province. Master Thesis, Nanjing University, Nanjing, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Xie, Y.C.; Lu, J.J.; Ma, D.S.; Zhang, R.Q.; Gao, J.F.; Yao, Y. Origin of granodiorite porphyry and mafic microgranular enclave in the Baoshan Pb-Zn polymetallic deposit, southern Hunan Province: Zircon U-Pb chronological, geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrol. Sin. 2013, 29, 4186–4214. [Google Scholar]
- Zhu, D.P.; Li, H.; Tamehe, L.S.; Jiang, W.C.; Wang, C.; Wu, K.Y. Two-stage Cu-Pb-Zn mineralization of the Baoshan deposit in southern Hunan, South China: Constraints from zircon and pyrite geochronology and geochemistry. J. Geochem. Explor. 2022, 241, 107070. [Google Scholar] [CrossRef]
- Zhao, P.L.; Yuan, S.D.; Mao, J.W.; Santosh, M.; Zhang, D.L. Zircon U–Pb and Hf–O isotopes trace the architecture of polymetallic deposits: A case study of the Jurassic ore-forming porphyries in the Qin–Hang metallogenic belt, China. Lithos 2017, 292, 132–145. [Google Scholar] [CrossRef]
- Li, D.F.; Tan, C.Y.; Miao, F.Y.; Liu, Q.F.; Zhang, Y.; Sun, X.M. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet. Ore Geol. Rev. 2019, 107, 587–599. [Google Scholar] [CrossRef]
- Ni, P.; Wang, G.-G.; Li, W.-S.; Chi, Z.; Li, S.-N.; Gao, Y. A review of the Yanshanian ore-related felsic magmatism and tectonic settings in the Nanling W-Sn and Wuyi Au-Cu metallogenic belts, Cathaysia Block, South China. Ore Geol. Rev. 2021, 133, 104088. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.K.; Algeo, T.J.; Wu, J.H.; Jiang, W.C. Geochronology and geochemistry of tuffaceous rocks from the Banxi Group: Implications for Neoproterozoic tectonic evolution of the southeastern Yangtze Block, South China. J. Asian Earth Sci. 2019, 177, 152–176. [Google Scholar] [CrossRef]
- Chen, J.; Jahn, B.-M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Zhou, J.C.; Wang, X.L.; Qiu, J.S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Res. 2009, 170, 27–42. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhou, M.F.; Yan, D.P.; Zheng, J.P.; Li, J.W. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology 2011, 39, 299–302. [Google Scholar] [CrossRef]
- Shu, L.S.; Charvet, J. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics 1996, 267, 291–302. [Google Scholar] [CrossRef]
- Charvet, J.; Shu, L.; Faure, M.; Choulet, F.; Wang, B.; Lu, H.; Le Breton, N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen. J. Asian Earth Sci. 2010, 39, 309–330. [Google Scholar] [CrossRef]
- Faure, M.; Shu, L.; Wang, B.; Charvet, J.; Choulet, F.; Monie, P. Intracontinental subduction: A possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 2009, 21, 360–368. [Google Scholar] [CrossRef]
- Shu, L.S.; Faure, M.; Wang, B.; Zhou, X.M.; Song, B. Late Palaeozoic–Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia. Comptes Rendus Geosci. 2008, 340, 151–165. [Google Scholar] [CrossRef]
- Shu, L.S.; Zhou, X.M.; Deng, P.; Wang, B.; Jiang, S.Y.; Yu, J.H.; Zhao, X.X. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. J. Asian Earth Sci. 2009, 34, 376–391. [Google Scholar] [CrossRef]
- Shu, L.S.; Yao, J.L.; Wang, B.; Faure, M.; Charvet, J.; Chen, Y. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Dai, B.Z.; Liao, S.Y.; Zhao, K.D.; Ling, H.F. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Chen, Y.C. Large-scale tungsten-tin mineralization in the Nanling regionSouth China: Metallogenic ages and correspondlng geodynamic processes. Acta Petrol. Sin. 2007, 10, 2329–2338, (In Chinese with English abstract). [Google Scholar]
- Hua, R.M.; Chen, P.R.; Zhang, W.L.; Yao, J.M.; Lin, J.F.; Zhang, Z.S.; Gu, S.Y. Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nanling Range. Geol. J. China Univ. 2005, 11, 291, (In Chinese with English abstract). [Google Scholar]
- Wang, F.Y.; Ling, M.X.; Ding, X.; Hu, Y.H.; Zhou, J.B.; Yang, X.Y.; Liang, H.Y.; Fan, W.M.; Sun, W.D. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific plate. Int. Geol. Rev. 2011, 53, 704–726. [Google Scholar] [CrossRef]
- Liu, S.A.; Li, S.G.; He, Y.S.; Huang, F. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu–Au mineralization. Geochim. Cosmochim. Acta 2010, 74, 7160–7178. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.D.; Xiao, Q.H.; Geng, S.F.; Wang, T.; Chen, B.H. New chronology of the Ningyuan alkali basalt in southern Hunan, China: Evidence from LA-ICP-MS zircon U-Pb dating. Geol. Bull. China 2010, 29, 833–841. [Google Scholar]
- He, Z.Y.; Xu, X.S.; Niu, Y.L. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos 2010, 119, 621–641. [Google Scholar] [CrossRef]
- Wang, F.Y.; Liu, S.A.; Li, S.G.; He, Y.S. Contrasting zircon Hf–O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu–Au mineralization. Lithos 2013, 156, 97–111. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y.H. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Ren, T. Nature and Timing of Sn Mineralization in Southern Hunan, South China: Constraints from LA-ICP-MS Cassiterite U-Pb Geochronology, Trace Element Composition, and Tin Isotopes Composition. Master’s Thesis, Central South University, Changsha, China, 2023. (In Chinese with English abstract). [Google Scholar]
- Lei, Z.H.; Chen, F.W.; Chen, Z.H.; Xu, Y.M.; Gong, S.Q.; Li, H.Q.; Mei, Y.P.; Qu, W.J.; Wang, D.H. Petrogenetic and Metallogenic Age Determination of the Huangshaping Lead-Zinc Polymetallic Deposit and its Geological Significance. Acta Geosci. Sin. 2010, 31, 532–540, (In Chinese with English abstract). [Google Scholar]
- Li, S.T.; Wang, J.B.; Zhu, X.Y.; Li, C. Re-Os Dating of Molybdenite and Sulfur Isotope Analysis of the Yaogangxian Tungsten Polymetallic Deposits in Hunan Province and Their Geological Significance. Geoscience 2011, 25, 228–235, (In Chinese with English abstract). [Google Scholar]
- Yuan, S.D.; Zhang, D.L.; Shuang, Y.; Du, A.D.; Qu, W.J. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrol. Sin. 2012, 28, 27–38, (In Chinese with English abstract). [Google Scholar]
- Zhang, R.Q.; Lu, J.J.; Zhu, J.C.; Yao, Y.; Gao, J.F.; Chen, W.F.; Zhao, Z.J. Zircon U-Pb Geochronology and Hf Isotopic Compositions of Hehuaping Granite Porphyry, Southern Hunan Province, and its Geological Significance. Geol. J. China Univ. 2010, 16, 436–447, (In Chinese with English abstract). [Google Scholar]
- Chen, S.C. Sn Mineralization Mechanism Related to Highly Differentiated Granites—A Case Study of the Furong tin Deposit in Nanling. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2022. (In Chinese with English abstract). [Google Scholar]
- Xie, Y.C.; Lu, J.J.; Yang, P.; Ma, D.S.; Xu, Z.W.; Zhang, R.Q.; Cai, Y.; Ding, T. S, Pb, C and O isotopic characteristics and sources of metallogenic materials of Baoshan Pb–Zn deposit, southern Huanan Province. Miner. Depos. 2015, 34, 333–351. [Google Scholar]
- Zhang, J.K.; Shao, Y.J.; Chen, K.; Tan, H.J.; Tan, R.C.; Zhang, T.D.; Liu, Z.F. Evidence of fluid evolution of Baoshan Cu-Pb-Zn polymetallic deposit: Constraints from in-situ sulfur isotope and trace element compositions of pyrite. Trans. Nonferrous Met. Soc. China 2021, 31, 3530–3548. [Google Scholar] [CrossRef]
- Li, H.; Kong, H.; Zhou, Z.-K.; Wu, Q.-H.; Xi, X.-S.; Gabo-Ratio, J.a.S. Ore-forming material sources of the Jurassic Cu-Pb-Zn mineralization in the Qin-Hang ore belt, South China: Constraints from S-Pb isotopes. Geochemistry 2019, 79, 280–306. [Google Scholar] [CrossRef]
- Large, R.R.; Gemmell, J.B.; Paulick, H.; Huston, D.L. The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ. Geol. Bull. Soc. Econ. Geol. 2001, 96, 957–971. [Google Scholar] [CrossRef]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Li, X.F.; Zhang, C.Q.; Mei, Y.X. Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China. Earth Sci. Front. 2004, 1, 45–55. [Google Scholar]
- Fu, J.M.; Xu, D.M.; Yang, X.J.; Ma, L.Y.; Cai, M.H.; Liu, Y.H.; Wei, J.Q.; Liu, G.Q.; Wei, D.F.; Chen, X.Q.; et al. Nanling Tin Deposits 2011; China University of Geosciences Press: Wuhan, China, 2011. [Google Scholar]
- Yuan, Y.B.; Yuan, S.D.; Chen, C.J.; Huo, R. Zircon U-Pb ages and Hf isotopes of the granitoids in the Huangshaping mining area and their geological significance. Acta Petrol. Sin. 2014, 30, 64–78, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.; Li, H.; Sun, W.; Ireland, T.; Tian, X.; Hu, Y.; Yang, W.; Chen, C.; Xu, D. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn mineralization and tectonic evolution. Lithos 2016, 266, 435–452. [Google Scholar] [CrossRef]
- Zhao, P.L.; Yuan, S.D.; Mao, J.W.; Yuan, Y.B.; Zhao, H.J.; Zhang, D.L.; Shuang, Y. Constraints on the timing and genetic link of the large-scale accumulation of proximal W–Sn–Mo–Bi and distal Pb–Zn–Ag mineralization of the world-class Dongpo orefield, Nanling Range, South China. Ore Geol. Rev. 2018, 95, 1140–1160. [Google Scholar] [CrossRef]
- Yuan, S.D.; Liu, X.F.; Wang, X.D.; Wu, S.H.; Yuan, Y.B.; Li, X.K.; Wang, T.Z. Geological characteristics and 40Ar/39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrol. Sin. 2012, 28, 3787–3797, (In Chinese with English abstract). [Google Scholar]
- Cai, M.H.; Zhang, W.B.; Peng, Z.A.; Liu, H.; Guo, T.F.; Tan, Z.M.; Tang, L.F. Study on minerogenetic epoch of the Hehuaping tin-polymetallic deposit in southern Hunan. Acta Petrol. Sin. 2016, 32, 2111–2123, (In Chinese with English abstract). [Google Scholar]
- Peng, J.T.; Hu, R.Z.; Bi, X.W.; Dai, T.M.; Li, Z.L.; Li, X.M.; Shuang, Y.; Yuan, S.D.; Liu, S.R. 40Ar/39Ar isotopic dating of tin mineralization in Furong deposit of Hunan Province and its geological significance. Miner. Depos. 2007, 22, 237–248, (In Chinese with English abstract). [Google Scholar]
- Lu, Y.Y.; Fu, J.M.; Cheng, S.B.; Liu, S.S.; Li, C.B.; Zhang, L.G.; Ma, L.Y. Rock-Forming and Ore-Forming Ages of Tongshanling Copper Polymetallic Ore-Field in Southern Hunan Province. Geotecton. Metallog. 2015, 39, 1061–1071, (In Chinese with English abstract). [Google Scholar]
- Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.; Bonin, B.; Bateman, P. Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A. I-and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Zhao, Z.H. Principles of Trace Element Geochemistry; Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Zhang, Z.Z.; Jiang, X.Y.; Guo, J.; Jiang, K.N. Geochronology and Geochemistry of Cretaceous Adakitic Rocks of the Dongguashan Cu Deposit in the Lower Yangtze River Belt: Insights into Petrogenesis and Mineralization. Minerals 2023, 13, 953. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- Costa, F.; Scaillet, B.; Pichavant, M. Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36 S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J. Petrol. 2004, 45, 855–881. [Google Scholar] [CrossRef]
- Loucks, R. Distinctive composition of copper-ore-forming arcmagmas. Aust. J. Earth Sci. 2014, 61, 5–16. [Google Scholar] [CrossRef]
- Lu, P.F.; Liu, P.P. Constraints of combined Sr-Nd-Pb-Hf-O isotopic systematics on the petrogenesis of peralkaline, metaluminous and peraluminous granitoids in the Permian Emeishan large igneous province, SW China. Chem. Geol. 2023, 624, 121423. [Google Scholar] [CrossRef]
- Sai, L.; Zhe, D.X.; Juan, N.S.; Nan, L.; Ran, S.H.; Peng, W.; Tong, D.H.; Cong, G.; Ke, D.X. Geochemical characteristics and geodynamic significance of Mesozoic basalts in South China Block. Geol. Explor. 2022, 58, 1001–1015, (In Chinese with English abstract). [Google Scholar]
- Li, X.H.; Chung, S.L.; Zhou, H.W.; Lo, C.H.; Liu, Y.; Chen, C.H. Jurassic intraplate magmatism in southern Hunan-eastern Guangxi: 40Ar/39Ar dating, geochemistry, Sr-Nd isotopes and implications for the tectonic evolution of SE China. Geol. Soc. Lond. Spec. Publ. 2004, 226, 193–215. [Google Scholar] [CrossRef]
- Wyllie, P.J. Magma genesis, plate tectonics, and chemical differentiation of the Earth. Rev. Geophys. 1988, 26, 370–404. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, Y.X.; Dai, L.Q.; Zhao, Z.F. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci. China Earth Sci. 2015, 45, 711–735, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, Z.H.; Guo, K.Y.; Dong, Y.G.; Chen, R.; Li, L.M.; Liang, Y.H.; Li, C.H.; Yu, X.M.; Zhao, L.; Xing, G.F. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry. Sci. China (Ser. D) 2009, 39, 994–1008, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wu, R.X.; Zheng, Y.F.; Wu, Y.B.; Zhao, Z.F.; Zhang, S.B.; Liu, X.M.; Wu, F.Y. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res. 2006, 146, 179–212. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Wang, R.; Zheng, Y.C. Further discussion on porphyry Cu-Mo-Au deposit formation In Chinese mainland. Earth Sci. Front. (China Univ. Geosci. Beijing) 2020, 27, 2, (In Chinese with English abstract). [Google Scholar]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.L.; Yang, Z.M.; Hou, Z.Q. Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology 2015, 43, 583–586. [Google Scholar] [CrossRef]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3. 8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Zhang, C.C.; Sun, W.D.; Wang, J.T.; Zhang, L.P.; Sun, S.J.; Wu, K. Oxygen fugacity and porphyry mineralization: A zircon perspective of Dexing porphyry Cu deposit, China. Geochim. Cosmochim. Acta 2017, 206, 343–363. [Google Scholar] [CrossRef]
- Zhang, H.J.; Lü, Q.T.; Wang, X.L.; Han, S.C.; Liu, L.J.; Gao, L.; Wang, R.; Hou, Z.Q. Seismically imaged lithospheric delamination and its controls on the Mesozoic Magmatic Province in South China. Nat. Commun. 2023, 14, 2718. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Bao, Z.W.; Huang, W.T.; Lin, S.P.; Xie, S.X.; Liao, J.; Li, J.; Liang, H.Y. Flat-slab subduction and formation of “intraplate” porphyry deposits: Insights from the Jurassic high and low La/Yb ore-forming porphyries along the Qin-Hang belt, South China. Ore Geol. Rev. 2020, 123, 103574. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Guo, F.; Peng, T.P.; Li, C.W. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks. Int. Geol. Rev. 2003, 45, 263–286. [Google Scholar] [CrossRef]
- Shu, L.S. An analysis of principal features of tectonic evolution in South China Block. Geol. Bull. China 2012, 31, 1035–1053, (In Chinese with English abstract). [Google Scholar]
- Hui, Z.Z.; Da, Z.; He, X.L.; Hu, B.J.; Zhu, X.Y.; Du, Z.Z.; Jia, W.B.; Gong, X.D. Biotite granodiorite age of Jiuling complex in Jiangxi Province and its limitation on the collision and splicing time of the Yangtze and Cathay plates. Geol. China 2021, 48, 1562–1579, (In Chinese with English abstract). [Google Scholar]
- Liu, H.C.; Zi, J.W.; Cawood, P.A.; Cui, X.; Zhang, L.M. Reconstructing South China in the Mesoproterozoic and its role in the Nuna and Rodinia supercontinents. Precambrian Res. 2020, 337, 105558. [Google Scholar] [CrossRef]
- Duan, L.; Meng, Q.R.; Wu, G.L.; Yang, Z.; Wang, J.Q.; Zhan, R.R. Nanpanjiang basin: A window on the tectonic development of south China during Triassic assembly of the southeastern and eastern Asia. Gondwana Res. 2020, 78, 189–209. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, S.B.; Zheng, Y.F.; Li, Q.L.; Li, Z.X.; Sun, F.Y. The occurrence of Neoproterozoic low δ18O igneous rocks in the northwestern margin of the South China Block: Implications for the Rodinia configuration. Precambrian Res. 2020, 347, 105841. [Google Scholar] [CrossRef]
- Li, S.Z.; Jahn, B.M.; Zhao, S.J.; Dai, L.M.; Li, X.Y.; Suo, Y.H.; Guo, L.L.; Wang, Y.M.; Liu, X.C.; Lan, H.Y. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data. Earth-Sci. Rev. 2017, 166, 270–285. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Li, X.Y.; Zhou, J.; Santosh, M.; Wang, P.C.; Wang, G.Z.; Guo, L.L.; Yu, S.Y.; Lan, H.Y. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Deng, J.F. Petrogenesis, Tectonic Environment and Mineralization; Geological Publishing House: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Hou, Z.Q.; Pan, X.F.; Li, Q.Y.; Yang, Z.M.; Song, Y.C. The giant Dexing porphyry Cu-Mo-Au deposit in east China: Product of melting of juvenile lower crust in an intracontinental setting. Miner. Depos. 2013, 48, 1019–1045. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Bao, Z.W.; Zhang, B.Y. Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province. Sci. China Ser. D Earth Sci. 1998, 41, 102–112. [Google Scholar] [CrossRef]
- Xie, X.; Xu, X.S.; Zou, H.B.; Jiang, S.Y.; Zhang, M.; Qiu, J.S. The early Jurassic J2 basaltic magmatism: Prelude to large-scale magmatism in southeastern China during the Late Mesozoic. Sci. China (Ser. D) 2005, 35, 587–605. (In Chinese) [Google Scholar]
- Li, X.H.; Chen, Z.G.; Liu, D.Y.; Li, W.X. Jurassic gabbro-granite-syenite suites from Southern Jiangxi Province, SE China: Age, origin, and tectonic significance. Int. Geol. Rev. 2003, 45, 898–921. [Google Scholar] [CrossRef]
- Chen, Y.C.; Pei, R.F.; Zhang, H.L. The geology of nonferrous and rare metaldeposits related to mesozoic granitoidsin the Naning Regin, China. Bull. Chin. Acad. Geol. Sci. 1990, 1, 79–85, (In Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Chen, M.H.; Yuan, S.D.; Guo, C.L. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatia-l Temporal Distribution Regularity of Mineral Deposits. Acta Geol. Sin. 2011, 85, 636–658, (In Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Cheng, Y.B.; Chen, Y.C. Mineral Deposit Models of Mesozoic Ore Deposits in South China. Geol. Rev. 2009, 55, 347–354, (In Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Xie, G.G.; Guo, C.L.; Yuan, S.D.; Cheng, Y.B.; Chen, Y.C. Spatial-Temporal Distribution of Mesozoie Ore Deposits in South China and Their Metallogenie Settings. Geol. J. China Univ. 2008, 14, 510–526, (In Chinese with English abstract). [Google Scholar]
- Xing, G.F.; Hong, W.T.; Zhang, X.H.; Zhao, X.L.; Ban, Y.Z.; Xiao, F. Yanshanian granitic magmatisms and their mineralizations in East China. Acta Petrol. Sin. 2017, 33, 1571–1590, (In Chinese with English abstract). [Google Scholar]
- Wu, J.H.; Kong, H.; Li, H.; Algeo, T.J.; Yonezu, K.; Liu, B.; Wu, Q.H.; Zhu, D.P.; Jiang, H. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geol. Rev. 2021, 139, 104521. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Mao, J.W.; Liu, P. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam. Solid Earth Sci. 2016, 1, 79–88. [Google Scholar] [CrossRef]
- Pearce, J. Sources and settings of granitic rocks. Epis. J. Int. Geosci. 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Harris, R.A.; Stone, D.B.; Turner, D.L. Tectonic implications of paleomagnetic and geochronologic data from the Yukon-Koyukuk province, Alaska. Geol. Soc. Am. Bull. 1987, 99, 362–375. [Google Scholar] [CrossRef]
- Huang, X.D.; Lu, J.J.; Sizaret, S.; Wang, R.C.; Ma, D.S.; Zhang, R.Q.; Zhao, X.; Wu, J.W. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province. Sci. China Earth Sci. 2017, 47, 766–782, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Lu, Y.J.; Kemp, A.; Zheng, Y.C.; Li, Q.Y.; Tang, J.X.; Yang, Z.S.; Duan, L.F. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Wang, R. Fingerprinting metal transfer from mantle. Nat. Commun. 2019, 10, 3510. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Wu, C. Metallogenesis and major challenges of porphyry copper systems above subduction zones. Sci. China Earth Sci. 2020, 63, 899–918. [Google Scholar] [CrossRef]
- Liang, X.; Wang, F.Y.; Zhang, J.Q.; Zhang, L.; Zhang, J.W.; Wang, J.G. Contraints on Petrogenesis and Fe Fertility of Intrusive Complexes in the Han-Xing Region, North China Craton from Apatite Geochemistry. Minerals 2023, 13, 469. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, P.; Wang, G.; Jiang, D.; Zhu, R.; Jiang, Y.; Wang, F. Magmatic controls on the mineralization potential of a porphyry Cu system: The case of Jurassic Tongshan skarn Cu deposit in the Qin–Hang Belt, South China. Gondwana Res. 2022, 101, 203–223. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Li, L.; Zhu, B.; Ding, X.; Jang, Y.H.; Gu, L.X.; Ni, P. Geochemical and Sr-Nd-Hf isotopic compositions ofgranodiorite from the Wushan copper deposit, Jiangxi Province and their implications for petrogenesis. Acta Petrol. Sin. 2008, 24, 1679–1690, (In Chinese with English abstract). [Google Scholar]
- Zeng, Z.J.; Siddique, U.; Sun, M.J.; Gao, Q.; Chen, Y.T.; Chen, L.; Li, Z.; Marshall, D.; Song, G.X.; Cao, M.J.; et al. The Mineral Chemistry of Magnetite and Its Constraints on Ore-Forming Mechanism in the Sandaozhuang Skarn-Type W-Mo Deposit in East Qinling, China. Minerals 2023, 13, 1091. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, P.; Wang, G.-G.; Jiang, Y.-H.; Jiang, D.-S.; Li, S.-N.; Fan, M.-S. Petrogenesis and oxidation state of granodiorite porphyry in the Jurassic Chuankeng skarn Cu deposit, South China: Implications for the Cu fertility and mineralization potential. J. Asian Earth Sci. 2020, 191, 104184. [Google Scholar] [CrossRef]
- Wu, F.Y.; Guo, C.L.; Hu, F.Y.; Liu, X.C.; Zhao, J.X.; Li, X.F.; Qin, K.Z. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrol. Sin. 2023, 39, 1–36, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Mao, J.W.; Song, S.W.; Liu, P.; Min, Z.; Lao, P.; Yuan, S.D. Current progress and development trend of the research on tin deposits. Acta Petrol. Sin. 2023, 39, 1233–1240, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zhao, K.D.; Jiang, H.; Su, H.M.; Xiong, S.F.; Xiong, Y.Q.; Xu, Y.M.; Zhang, W.; Zhu, L.Y. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview. Chin. Sci. Bull. 2020, 65, 3730–3745, (In Chinese with English abstract). [Google Scholar]
- Zhu, J.C.; Wang, R.C.; Zhang, P.H.; Xie, C.F.; Zhang, W.L.; Zhao, K.D.; Xie, L.; Yang, C.; Che, X.D.; Yu, A.P.; et al. Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China. Sci. China (Ser. D) 2009, 8, 1112–1127, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Zhang, R.Q. Petrogenesis and metallogeny of the W- and Sn-bearing granites in southern Hunan province: Case study from Wangxianling and Xintianling. Ph.D. Thesis, Nanjing University, Nanjing, China, 2015. (In Chinese with English abstract). [Google Scholar]
- Yuan, Y.B.; Li, X.F.; Li, X.K. Zircon LA-ICP-MS U-Pb dating of Jianfengling granite in southern Hunan Province. Acta Geol. Sin. 2013, 87 (Suppl. S1), 65–66. (In Chinese) [Google Scholar]
- Wang, M.; Bai, X.J.; Yun, J.B.; Zhao, L.H.; Li, Y.L.; Wang, Z.Y.; Pu, Z.P.; Qiu, H.N. 40Ar/39Ar dating of mineralization of Shizhuyuan polymetallic deposit. Geochimica 2016, 45, 41–51, (In Chinese with English abstract). [Google Scholar]
- Dong, S.H.; Bi, X.W.; Hu, R.Z.; Chen, Y.W.; Chen, H. Zircon U-Pb chronology and Sr-Nd isotope study of Yaogangxian granite, Hunan Province. In Proceedings of the 13th Annual Conference of Mineralogy, Petrology and Geochemistry Society of China, Guangzhou, China, 6–9 April 2011. [Google Scholar]
- Zhao, P.L.; Yuan, S.D.; Yuan, Y.B. Zircon LA-MC-ICP-MS U-Pb dating of the Xianglinpu granites from the Weijia tungsten deposit in southern Hunan Province and its implications for the Late Jurassic tungsten metallogenesis in the westernmost Nanling W-Sn metallogenic belt. Geol. China 2016, 43, 120–131, (In Chinese with English abstract). [Google Scholar]
- Lai, S.H. Research on Mineralization of the Xianghualing Tin Polymetallic Deposit, Hunan Province, China. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2014. (In Chinese with English abstract). [Google Scholar]
- Ni, P.; Pan, J.-Y.; Han, L.; Cui, J.-M.; Gao, Y.; Fan, M.-S.; Li, W.-S.; Chi, Z.; Zhang, K.-H.; Cheng, Z.-L. Tungsten and tin deposits in South China: Temporal and spatial distribution, metallogenic models and prospecting directions. Ore Geol. Rev. 2023, 157, 105453. [Google Scholar] [CrossRef]
- Qin, Z.W.; Fu, J.M.; Xing, G.F.; Cheng, S.B.; Lu, Y.Y.; Zhu, Y.X. The petrogenetic differences of the Middle-Late Jurassic W-, Sn-, Pb-Zn-Cu-bearing granites in the Nanling Range, South China. Geol. China 2022, 49, 518–541, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Tian, J.; Hollings, P.; Gong, L.; Alburo, I.; Berador, A.E.; Francisco, D.G.; Li, J.; Chen, H. Mesozoic porphyry Cu-Au mineralization and associated adakite-like magmatism in the Philippines: Insights from the giant Atlas deposit. Miner. Depos. 2020, 55, 881–900. [Google Scholar] [CrossRef]
- Yuan, L.L.; Wang, Y.F.; Liu, J.P.; Shao, Y.J.; Liu, Z.F.; Li, B.; Zheng, X.; Ding, T.; Zhang, T.D. Petro-geochemistry of Late Jurassic highly fractionated granites in the Xianghualing area of Hunan Province: Constraints on petrogenesis and rare-metal mineralization. Acta Petrol. Sin. 2022, 38, 2113–2138, (In Chinese with English abstract). [Google Scholar]
- Dong, S.H.; Bi, X.W.; Hu, R.Z.; Chen, Y.W. Petrogenesis of the Yaogangxian granites and implications for wmineralization, Hunan Province. Acta Petrol. Sin. 2014, 30, 2749–2765, (In Chinese with English abstract). [Google Scholar]
- Li, X.Y.; Chi, G.X.; Zhou, Y.Z.; Deng, T.; Zhang, J.R. Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny. Ore Geol. Rev. 2017, 88, 690–701. [Google Scholar] [CrossRef]
- Eugster, H.P.; Wones, D.R. Stability relations of the ferruginous biotite, annite. J. Petrol. 1962, 3, 82–125. [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhang, H.F.; Wu, F.Y.; Xie, L.W.; Zhang, Y.B. Accurate Measurement of Strontium Isotopic Composition by Neptune Multiple Collector Inductively Coupled Plasma Mass Spectrometry. J. Chin. Mass Spectrom. Soc. 2005, 4, 215–221, (In Chinese with English abstract). [Google Scholar]
- He, X.X.; Tang, S.H.; Hu, X.K.; Wang, J.H. Precise Measurement of Nd lsotopic Ratios by Means of Multi-collector Magnetic Sector Inductively Coupled Plasa Mass Spectrometry. Acta Geosci. Sin. 2007, 4, 405–410, (In Chinese with English abstract). [Google Scholar]
- Ludwig, K.R. Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Spec. Publ. 2012, 5, 75. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Chen, K.; Zhang, J.; Li, Y.; He, M.; Liu, Z. Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny. Minerals 2024, 14, 897. https://doi.org/10.3390/min14090897
Dai X, Chen K, Zhang J, Li Y, He M, Liu Z. Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny. Minerals. 2024; 14(9):897. https://doi.org/10.3390/min14090897
Chicago/Turabian StyleDai, Xueling, Ke Chen, Junke Zhang, Yongshun Li, Mingpeng He, and Zhongfa Liu. 2024. "Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny" Minerals 14, no. 9: 897. https://doi.org/10.3390/min14090897
APA StyleDai, X., Chen, K., Zhang, J., Li, Y., He, M., & Liu, Z. (2024). Geochronology and Geochemistry of Granodiorite Porphyry in the Baoshan Cu-Pb-Zn Deposit, South China: Insights into Petrogenesis and Metallogeny. Minerals, 14(9), 897. https://doi.org/10.3390/min14090897