The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests
<p>(<b>a</b>) An example of a micromechanical spring component made of 1.4310. (<b>b</b>) The micro-tensile test setup. (<b>c</b>) A typical micro-tensile test sample (here, stainless steel 1.4310, 100 μm thick).</p> "> Figure 2
<p>(<b>a</b>) The schematic design of the micro-tensile test sample geometry. (<b>b</b>) Mounted, polished, and etched 1.4310 sample after failure in micro-tensile test with 1—fracture zone, 2—deformation zone (large amount of plastic deformation) and 3—clamping area (larger width, little plastic deformation).</p> "> Figure 3
<p>Micro-tensile tests of 100 μm thin 1.4310 steel. All laser cut samples failed due to the pronounced shear band zone formation at a low fracture strain, as shown in (<b>a</b>–<b>c</b>). The samples cut by the microwaterjet process exhibited local shear band zone formation only at the beginning of the plastic deformation (horizontal stress plateau), which evolved into a more homogeneous strain distribution over the entire measurement length and work hardening before the final fracture (<b>d</b>).</p> "> Figure 4
<p>(<b>a</b>) Microstructure of the laser cut 1.4310 sample with polygonal, non-elongated grains, not deformed in a micro-tensile test. (<b>b</b>) Fracture zone of the laser cut 1.4310 sample with characteristic ductile fracture dimples after fracture in a micro-tensile test inside a shear band zone. (<b>c</b>) Microstructure of a microwaterjet cut 1.4310 sample with polygonal, non-elongated grains, not deformed in a micro-tensile test. (<b>d</b>) Fracture zone of a microwaterjet cut 1.4310 sample with characteristic ductile fracture dimples, after the fracture in a micro-tensile test.</p> "> Figure 5
<p>Microstructure of 1.4310 inside shear band zone. (<b>a</b>) Overview, grains strongly elongated by plastic deformation. (<b>b</b>) Detail with overlapping parallel planar defects in elongated grains.</p> "> Figure 6
<p>Microstructure of 1.4310 outside shear band zone; (<b>a</b>) overview and (<b>b</b>) in more detail.</p> "> Figure 7
<p>(<b>a</b>) Fracture strain A<sub>10mm</sub>, as well as (<b>b</b>) 0.2% yield strength R<sub>p0.2</sub> (proof stress) and tensile strength R<sub>m</sub> of 100 μm thin 1.4310 micro-tensile test samples microfabricated by pulsed fiber laser cutting and by cold microwaterjet cutting.</p> "> Figure 8
<p>Comparison of the microstructure of the 1.4310 samples in the deformation zone (not in the shear band zones). Samples were cut with (<b>a</b>) hot, (<b>b</b>) medium, and (<b>c</b>) mild laser parameters, and with (<b>d</b>) microwaterjet. The laser cut samples (<b>a</b>–<b>c</b>) exhibited pronounced chromium carbide formation at the grain boundaries.</p> "> Figure 9
<p>Strain–stress behavior and representative shear fracture images of 1.4310 micro-tensile test samples cut with microwaterjet and annealed at 100 °C (<b>a</b>), 200 °C (<b>b</b>), 400 °C (<b>c</b>) and 600 °C (<b>d</b>) for one hour, respectively.</p> "> Figure 10
<p>Deformation zone of 1.4310 samples cut by microwaterjet and annealed (<b>a</b>) at 600 °C, (<b>b</b>) at 400 °C, (<b>c</b>) at 200 °C, and (<b>d</b>) at 100 °C for 1 h, respectively.</p> "> Figure 11
<p>(<b>a</b>) Young’s modulus E, (<b>b</b>) 0.2% yield strength R<sub>p0.2</sub> (proof stress), (<b>c</b>) tensile strength R<sub>m</sub>, and (<b>d</b>) fracture strain A<sub>10mm</sub> of 100 μm thin 1.4310 micro-tensile test samples, produced by microwaterjet cutting, without and with annealing heat treatment.</p> "> Figure 12
<p>Micro-tensile tests curves of microwaterjet cut 1.4301 samples. No horizontal stress plateaus at beginning of plastic deformation. (<b>a</b>) No annealing. (<b>b</b>) After annealing at 600 °C for 1 h.</p> "> Figure 13
<p>Microwaterjet cut 1.4301 samples (2.5 mm in width, 100 μm in thickness) of different annealing conditions, after failure in micro-tensile tests. All 1.4301 samples failed due to ductile fractures. Necking occurred mainly in the form of specimen thickness reduction at the fracture site.</p> "> Figure 14
<p>(<b>a</b>) Young’s modulus E, (<b>b</b>) 0.2% yield strength R<sub>p0.2</sub> (proof stress), (<b>c</b>) tensile strength R<sub>m</sub>, and (<b>d</b>) fracture strain A<sub>10mm</sub> of 100 μm thin 1.4301 micro-tensile test samples, produced by microwaterjet cutting, without and with annealing heat treatment.</p> "> Figure 15
<p>Micro-tensile test stress–strain curves of microwaterjet cut EN AW-5005-H24 samples. (<b>a</b>) No heat treatment; elevated R<sub>p0.2</sub> due to significant work hardening effect after cold rolling. (<b>b</b>) After annealing at 400 °C for 1 h; low R<sub>p0.2</sub> with subsequent work hardening.</p> "> Figure 16
<p>Microwaterjet cut EN AW-5005-H24 samples (3 mm in width, 500 μm in thickness) of different annealing conditions, after failure in micro-tensile tests. All samples failed by ductile fracture. Necking occurred in the form of pronounced thickness and width reduction at the fracture site.</p> "> Figure 17
<p>Mechanical properties of 500 μm thin microwaterjet cut EN AW-5005-H24 samples, without and with annealing (<b>a</b>–<b>d</b>). The decrease in 0.2% yield strength and tensile strength, and the increase in fracture strain after annealing at 400 °C were due to the removal of work hardening. The H24 partial annealing temperature of 260 °C is marked by the dashed red line in graphs (<b>b</b>–<b>d</b>).</p> "> Figure 18
<p>(<b>a</b>) Strain–stress behavior of the high-strength aluminum alloy EN AW-6082-T6, precipitation-hardened (artificial aging) and cut by microwaterjet. (<b>b</b>) The sample (3 mm in width, 1 mm in thickness) after a ductile failure in micro-tensile test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Strain–Stress Behavior of Miniaturized 1.4310 Samples
3.1.1. Influence of Sample Microfabrication on the Strain–Stress Behavior of 1.4310
3.1.2. Influence Annealing Heat Treatments on the Strain–Stress Behavior of 1.4310
3.2. Influence of Carbon Content and Stacking Fault Energy on the Strain–Stress Behavior
3.2.1. Influence of Carbon Content and Inherent Cold Work: 1.4310 vs. 1.4301
3.2.2. Influence of Stacking Fault Energy: 1.4310 vs. Aluminum Alloys
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ai | Fracture strain (index “i” corresponds to a particular sample geometry) |
bcc | Body-centered cubic |
E | Young’s modulus |
EDS | Energy-dispersive x-ray spectroscopy (chemical microanalysis) |
fcc | Face-centered cubic |
HAZ | Heat-affected zone |
MEMS | Micro-electro-mechanical system |
ReH | Upper yield strength |
Rm | Tensile strength |
Rp0.2 | 0.2% yield strength |
SEM | Scanning electron microscope |
SFE | Stacking fault energy |
References
- Schröder, C.; Volkova, O.; Wendler, M. Influence of strain rate on the tensile properties of metastable austenitic stainless CrNi and CrMnNi spring steels. Mater. Sci. Eng. A 2022, 850, 143507. [Google Scholar] [CrossRef]
- El-Danaf, E. Mechanical properties, microstructure and micro-texture evolution for 1050AA deformed by equal channel angular pressing (ECAP) and post ECAP plane strain compression using two loading schemes. Mater. Des. 2012, 34, 793–807. [Google Scholar] [CrossRef]
- Rohatgi, A.; Vecchio, K.; Gray, G. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloy: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 2001, 32, 135–145. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, Y.Y.; Zhu, Y.T. Influence of stacking fault energy on nanostructure under high pressure torsion. Mater. Sci. Eng. A 2005, 410–411, 188–193. [Google Scholar] [CrossRef]
- Jia, N.; Roters, F.; Eisenlohr, P.; Kords, C.; Raabe, D. Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 2012, 60, 1099–1115. [Google Scholar] [CrossRef]
- Talonen, J.; Hänninen, H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007, 55, 6108–6118. [Google Scholar] [CrossRef]
- Kelly, A.; Knowles, K.M. Crystallography and Crystal Defects, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; pp. 269–304. [Google Scholar]
- Hertzberg, R.W.; Vinci, R.P.; Hertzberg, J.L. Deformation and Fracture Mechanics of Engineering Materials, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; p. 80. [Google Scholar]
- Murr, L.E. Interfacial Phenomena in Metals and Alloys, 1st ed.; Addison-Wesley Pub. Co.: Reading, MA, USA, 1975; pp. 1–376. [Google Scholar]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Q.-M.; Johansson, B.; Vitos, L. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater. 2011, 59, 5728–5734. [Google Scholar] [CrossRef]
- Lu, J.; Hultman, L.; Holmström, E.; Antonsson, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Qin, B.; Bhadeshia, H.K.D.H. Plastic strain due to twinning in austenitic twip steels. Mater. Sci. Technol. 2008, 24, 969–973. [Google Scholar] [CrossRef]
- Acidur 4310 (1.4310). Available online: https://www.swisssteel-group.com/content-media/documents/Data-Sheets/Stainless-Steel/1.4310_de.pdf (accessed on 21 December 2024).
- Acidur 4301 (1.4301). Available online: https://www.swisssteel-group.com/content-media/documents/Data-Sheets/Stainless-Steel/1.4301_de.pdf (accessed on 21 December 2024).
- EN-AW-5005 (3.3315). Available online: https://facts.kloeckner.de/werkstoffe/aluminium/en-aw-5005/ (accessed on 21 December 2024).
- EN-AW-6082 (3.2315). Available online: https://facts.kloeckner.de/werkstoffe/aluminium/3-2315/ (accessed on 21 December 2024).
- ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.dinmedia.de/de/norm/din-en-iso-6892-1/317931281 (accessed on 21 December 2024).
- ASTM E8/E8M-24; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/e0008_e0008m-24.html (accessed on 28 January 2025).
- Kämmerer, B. Chemical Composition in Stainless Steel Surfaces (Oberflächenzusammensetzung von Chromstählen). Ph.D. Thesis, University of Augsburg, Augsburg, Germany, 2012; p. 69. [Google Scholar]
- Schütze, M.; Roche, M.; Bender, R. Corrosion Resistance of Steels, Nickel Alloys, and Zinc in Aqueous Media, 1st ed.; Wiley-VCH: Weinheim, Germany, 2015; p. 301. [Google Scholar]
- Engler, O. Texture and anisotropy in the Al–Mg alloy AA 5005—Part I: Texture evolution during rolling and recrystallization. Mater. Sci. Eng. A 2014, 618, 654–662. [Google Scholar] [CrossRef]
- Mao, W.; Gao, S.; Gong, W.; Kawasaki, T.; Ito, T.; Harjo, S.; Tsuji, N. Martensitic transformation-governed Lüders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures. Acta Mater. 2024, 278, 120233. [Google Scholar] [CrossRef]
- Steineder, K.; Krizan, D.; Schneider, R.; Béal, C.; Sommitsch, C. On the microstructural characteristics influencing the yielding behavior of ultra-ne grained medium-Mn steels. Acta Mater. 2017, 139, 39–50. [Google Scholar] [CrossRef]
- Rechsteiner, A. Personal Communication; Victorinox: Ibach, Switzerland, 2022. [Google Scholar]
- Trillo, E.; Murr, L. Effects of carbon content, deformation, and interfacial energetics on carbide precipitation and corrosion sensitization in 304 stainless steel. Acta Mater. 1999, 47, 235–245. [Google Scholar] [CrossRef]
- Yae Kina, A.; Tavares, S.S.M.; Pardal, J.M.; Souza, J.A. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service. Mater. Charact. 2008, 59, 651–655. [Google Scholar] [CrossRef]
- Mayo, E.W. Predicting IGSCC/IGA susceptibility of Ni–Cr–Fe alloys by modeling of grain boundary chromium depletion. Mater. Sci. Eng. A 1997, 232, 129–139. [Google Scholar] [CrossRef]
- Tavares, S.S.M.; Moura, V.; da Costa, V.C.; Ferreira, M.L.R.; Pardal, J.M. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600–800 °C. Mater. Charact. 2009, 60, 573–578. [Google Scholar] [CrossRef]
- Kaiser, M.; Kumkar, M.; Russ, S.; Auerswald, J.; Mielke, M. Single pass laser cutting of high-precision components: Femtosecond versus picosecond pulses. In Proceedings of the 34th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Atlanta, GA, USA, 18–22 October 2015; pp. 155–164. [Google Scholar]
- Ackerl, N.; Fisch, G.; Auerswald, J.; Wegener, K. Evolution of microstructures on stainless steel induced by ultra-short pulsed laser ablation. Springer Nat. Appl. Sci. 2020, 2, 652. [Google Scholar] [CrossRef]
- Auerswald, J.; Ruckli, A.; Gschwilm, T.; Weber, P.; Diego-Vallejo, D.; Schlüter, H. Taper Angle Correction in Cutting of Complex Micro-mechanical Contours with Ultra-Short Pulse Laser. J. Mech. Eng. Autom. 2016, 6, 334–338. [Google Scholar] [CrossRef]
- Yang, J.; Heogh, W.; Ju, H.; Kang, S.; Jang, T.S.; Jung, H.D.; Jahazi, M.; Han, S.C.; Park, S.J.; Kim, H.S.; et al. Functionally graded structure of a nitride-strengthened Mg2Si-based hybrid composite. J. Magnes. Alloys 2024, 12, 1239–1256. [Google Scholar] [CrossRef]
- Anand, L.; Su, C. A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater. 2007, 55, 3735–3747. [Google Scholar] [CrossRef]
- Su, C.; Anand, L. Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation. Acta Mater. 2006, 54, 179–189. [Google Scholar] [CrossRef]
- Kumar, A.; Li, D.Y. Clarification of the Puzzled Effects of Cold Work on Wear of Metals from the Viewpoint of Wearing Energy Consumption. Tribol. Lett. 2022, 70, 3. [Google Scholar] [CrossRef]
- Yoshida, F.; Uemori, T.; Fujiwara, K. Elastic–plastic behavior of steel sheets under in-plane cyclic tension–compression at large strain. Int. J. Plast. 2002, 18, 633–659. [Google Scholar] [CrossRef]
- Li, Q.; Hua, G.; Lu, H.; Yu, B.; Li, D.Y. Understanding the Effect of Plastic Deformation on Elastic Modulus of Metals Based on a Percolation Model with Electron Work Function. J. Miner. Met. Mater. Soc. 2018, 70, 1130–1135. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Mo | P | S | |
---|---|---|---|---|---|---|---|---|
1.4310 | 0.05 0.15 | - 2 | - 2 | 16 19 | 6 9.5 | - 0.8 | - 0.045 | - 0.015 |
1.4301 | - 0.07 | - 1 | - 2 | 17.5 19.5 | 8 10.5 | - - | - 0.045 | - 0.03 |
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | |
---|---|---|---|---|---|---|---|---|
5005 | - 0.30 | - 0.70 | - 0.20 | - 0.20 | 0.50 1.10 | - 0.10 | - 0.25 | - 0.015 |
6082 | 0.70 1.30 | - 0.50 | - 0.10 | 0.40 1.00 | 0.60 1.20 | - 0.25 | - 0.20 | - 0.10 |
Alloy | a0 | b0 | L0 | Lc | B | H | Lt | R |
---|---|---|---|---|---|---|---|---|
1.4310 | 0.1 | 2.5 | 10 | 10.65 | 5.0 | 6.0 | 40.0 | 20.0 |
1.4301 | 0.1 | 2.5 | 10 | 10.65 | 5.0 | 6.0 | 40.0 | 20.0 |
5005 | 0.5 | 3.0 | 11 | 19.84 | 8.0 | 9.0 | 60.0 | 20.0 |
6082 | 1.0 | 3.0 | 11 | 15.79 | 8.0 | 8.4 | 52.0 | 20.0 |
Material | E [GPa] | Rp0.2 [MPa] | Rm [MPa] | A10mm [%] |
---|---|---|---|---|
1.4310 | 168 ± 5 | 1140 ± 80 | 1413 ± 16 | 25.5 ± 0.6 |
1.4301 | 177 ± 14 | 270 ± 14 | 678 ± 7 | 52 ± 4 |
Thickness t Diameter D | E [GPa] | Rp0.2 [MPa] | Rm [MPa] | A11mm|A5.65 [%] |
---|---|---|---|---|
t = 1 mm | 66 ± 2 | 343 ± 3 | 374 ± 3 | 8.4 ± 0.5 1 |
D = 5 mm | 68.3 ± 1.2 | 299 ± 3 | 325 ± 3 | 13.3 ± 0.9 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auerswald, J.; Tenisch, J.; Fallegger, C.; Seifert, M. The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines 2025, 16, 309. https://doi.org/10.3390/mi16030309
Auerswald J, Tenisch J, Fallegger C, Seifert M. The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines. 2025; 16(3):309. https://doi.org/10.3390/mi16030309
Chicago/Turabian StyleAuerswald, Janko, Joel Tenisch, Christoph Fallegger, and Markus Seifert. 2025. "The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests" Micromachines 16, no. 3: 309. https://doi.org/10.3390/mi16030309
APA StyleAuerswald, J., Tenisch, J., Fallegger, C., & Seifert, M. (2025). The Influence of Sample Microfabrication and Annealing on the Mechanical Strain–Stress Behavior of Stainless Steels and Corrosion Resistant Aluminum Alloys in Micro-Tensile Tests. Micromachines, 16(3), 309. https://doi.org/10.3390/mi16030309