The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment
<p>Schematic diagram of ScMBR (<b>a</b>); membrane module arrangement (<b>b</b>); on-site photo of ScMBR (<b>c</b>); fouled membrane modules (<b>d</b>).</p> "> Figure 2
<p>Operational performance of ScMBR for COD removal (<b>a</b>), TN removal (<b>b</b>), and ammonia removal (<b>c</b>).</p> "> Figure 3
<p>Total resistance distributions of different membrane modules (<b>a</b>); resistance distributions of different membrane modules (<b>b</b>); resistance proportion distributions of different membrane modules (<b>c</b>).</p> "> Figure 4
<p>SEM images of the outsides and insides of membrane sheets from different modules at different magnifications.</p> "> Figure 5
<p>The 3D-EEM spectra of the membrane chemical cleaning soaks ((<b>a</b>) Module A; (<b>b</b>) Module B; (<b>c</b>) Module C; (<b>d</b>) Module D; (<b>e</b>) Module E; (<b>f</b>) Module F).</p> "> Figure 6
<p>Contents and compositions of extracellular polymeric substances (EPS) in cake layer sludge (<b>a</b>,<b>b</b>); microbial community structures at phylum levels of bulk sludge (<b>c</b>) and foulants sludge (<b>d</b>).</p> "> Figure 7
<p>The simulated air volume fraction of ScMBR (<b>a</b>); the simulated velocity of ScMBR (<b>b</b>); Pearson correlation matrix presenting the correlations between fouling resistances in the contents of EPS (Blue and red colours represent negative and positive correlations, respectively.) (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Wastewater and Seed Sludge Characteristics
2.2. Reactor Setup and Operation
2.3. Membrane Resistance Analysis
2.4. Flow Field Distribution
2.5. Analytical Methods
2.5.1. Sampling
2.5.2. Measurement Methods
2.5.3. Statistical Analysis
3. Results and Discussion
3.1. Pollutant Removal Performance
3.2. Shifts in Microbial Community
3.3. Membrane Fouling Overview
3.4. Membrane Fouling Characterization
3.4.1. Organic Foulants Identification
3.4.2. Biological Foulants Identification
3.5. Membrane Fouling Control
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R.C. Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 2021, 776, 145958. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Livestock and Poultry: World Markets and Trade; United States Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, Q.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2020, 387, 121682. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chen, L.; Song, X.; Wei, D.; Zheng, W.; Qiu, S.; Zhao, Y. Treatment of digested piggery wastewater with a membrane bioreactor. Environ. Eng. Manag. J. 2016, 15, 2181–2188. [Google Scholar]
- Yu, J.; Hu, H.; Wu, X.; Zhou, T.; Liu, Y.; Ruan, R.; Zheng, H. Coupling of biochar-mediated absorption and algal-bacterial system to enhance nutrients recovery from swine wastewater. Sci. Total Environ. 2020, 701, 134935. [Google Scholar] [CrossRef]
- Communique of the Second National Survey of Pollution Sources; Ministry of Ecology and Environment of People’s Republic of China. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html (accessed on 9 June 2020).
- Cheng, H.H.; Narindri, B.; Chu, H.; Whang, L.M. Recent Advancement on Biological Technologies and Strategies for Resource Recovery from Swine Wastewater. Bioresour. Technol. 2020, 303, 122861. [Google Scholar] [CrossRef]
- Cheng, D.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Kumar, S.M. Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour. Technol. 2019, 275, 109–122. [Google Scholar] [CrossRef]
- Sui, Q.; Jiang, C.; Yu, D.; Chen, M.; Zhang, J.; Wang, Y.; Wei, Y. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater. J. Hazard. Mater. 2018, 342, 210–219. [Google Scholar] [CrossRef]
- Chen, M.; Kim, J.H.; Yang, M.; Wang, Y.; Kishida, N.; Kawamura, K.; Sudo, R. Foaming control by automatic carbon source adjustment using an ORP profile in sequencing batch reactors for enhanced nitrogen removal in swine wastewater treatment. Bioprocess Biosyst. Eng. 2010, 33, 355. [Google Scholar] [CrossRef]
- Swiatczak, P.; Cydzik-Kwiatkowska, A. Treatment of Ammonium-Rich Digestate from Methane Fermentation Using Aerobic Granular Sludge. Water Air Soil Pollut. 2018, 229, 247. [Google Scholar] [CrossRef]
- Yang, S.; Xu, S.; Mohammed, A.; Guo, B.; Liu, Y. Anammox reactor optimization for the treatment of ammonium rich digestate lagoon supernatant–Step feeding mitigates nitrite inhibition. Int. Biodeterior. Biodegrad. 2019, 143, 104733. [Google Scholar] [CrossRef]
- Rico, C.; Montes, J.A.; Rico, J.L. Evaluation of different types of anaerobic seed sludge for the high rate anaerobic digestion of pig slurry in UASB reactors. Bioresour. Technol. 2017, 238, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Tineo, P.A.; Durán-Hinojosa, U.; Delgadillo-Mirquez, L.R.; Meza-Escalante, E.R.; Serrano-Palacios, D. Performance improvement of an integrated anaerobic-aerobic hybrid reactor for the treatment of swine wastewater. J. Water Process Eng. 2020, 34, 101164. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.C.; Yu, Z.Z.; Ngo, H.H.; Sun, Q.; Zhang, Q. New insight into fouling behavior and foulants accumulation property of cake sludge in a full-scale membrane bioreactor. J. Membr. Sci. 2016, 510, 10–17. [Google Scholar] [CrossRef]
- Zonoozi, M.H.; Moghaddam, M.; Maknoon, R. Operation of integrated sequencing batch membrane bioreactor treating dye-containing wastewater at different SRTs: Study of overall performance and fouling behavior. Environ. Sci. Pollut. Res. 2015, 22, 5931–5942. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Song, Y.; Meng, X.; Pic, J.S. Combination of Fenton oxidation and sequencing batch membrane bioreactor for treatment of dry-spun acrylic fiber wastewater. Environ. Earth Sci. 2015, 73, 4911–4921. [Google Scholar] [CrossRef]
- Ritigala, T.; Chen, Y.; Zheng, J.; Demissie, H.; Wei, Y. Comparison of an integrated short-cut biological nitrogen removal process with magnetic coagulation treating swine wastewater and food waste digestate. Bioresour. Technol. 2021, 329, 124904. [Google Scholar] [CrossRef]
- Asif, M.B.; Zhang, Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem. Eng. J. 2021, 418, 129481. [Google Scholar] [CrossRef]
- Yu, L.; Kanezashi, M.; Nagasawa, H.; Tsuru, T. Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. J. Membr. Sci. 2020, 595, 117477. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Z.; Liu, J.; Zhang, X. Double-win effects of in-situ ozonation on improved filterability of mixed liquor and ceramic UF membrane fouling mitigation in wastewater treatment? J. Membr. Sci. 2017, 533, 112–120. [Google Scholar] [CrossRef]
- Guerra, K.; Pellegrino, J. Development of a Techno-Economic Model to Compare Ceramic and Polymeric Membranes. Sep. Sci. Technol. 2013, 48, 51–65. [Google Scholar] [CrossRef]
- Park, S.H.; Yong, G.P.; Lim, J.L.; Kim, S. Evaluation of ceramic membrane applications for water treatment plants with a life cycle cost analysis. Desalination Water Treat. 2014, 54, 973–979. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Lu, S.; Wang, J.; Liu, J. Pilot study on ceramic flat membrane bioreactor in treatment of coal chemical wastewater. Chemosphere 2024, 347, 140701. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Jin, Y. Pilot Scale Application of a Ceramic Membrane Bioreactor for Treating High-Salinity Oil Production Wastewater. Membranes 2022, 12, 473. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Kimura, K.; Sato, T.; Kakuda, T.; Kaneda, M.; Hafuka, A.; Tsuchiya, T. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: Tests with real domestic wastewater under low-temperature conditions. Water Res. 2020, 181, 115881. [Google Scholar] [CrossRef]
- Balcıoğlu, G.; Yilmaz, G.; Gönder, Z.B. Evaluation of anaerobic membrane bioreactor (AnMBR) treating confectionery wastewater at long-term operation under different organic loading rates: Performance and membrane fouling. Chem. Eng. J. 2021, 404, 126261. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, S.F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007, 41, 1022–1030. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, H.; Liu, J.; Zuo, D.; Deng, L. Sequencing batch reactor (SBR) and anoxic and oxic process (A/O) display opposite performance for pollutant removal in treating digested effluent of swine wastewater with low and high COD/N ratios. J. Clean. Prod. 2022, 372, 133643. [Google Scholar] [CrossRef]
- Li, W.-M.; Liao, X.-W.; Guo, J.-S.; Zhang, Y.-X.; Chen, Y.-P.; Fang, F.; Yan, P. New insights into filamentous sludge bulking: The potential role of extracellular polymeric substances in sludge bulking in the activated sludge process. Chemosphere 2020, 248, 126012. [Google Scholar] [CrossRef]
- Huang, X.; Lee, P.-H. Shortcut nitrification/denitrification through limited-oxygen supply with two extreme COD/N-and-ammonia active landfill leachates. Chem. Eng. J. 2021, 404, 126511. [Google Scholar] [CrossRef]
- Zhou, S.; Song, Z.; Sun, Z.; Shi, X.; Zhang, Z. The effects of undulating seasonal temperature on the performance and microbial community characteristics of simultaneous anammox and denitrification (SAD) process. Bioresour. Technol. 2021, 321, 124493. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gong, X.; Peng, Y. Simultaneous anammox-denitrification process and its emerging extensions. Chem. Eng. J. 2021, 415, 128380. [Google Scholar] [CrossRef]
- Tabraiz, S.; Shamurad, B.; Petropoulos, E.; Quintela-Baluja, M.; Charlton, A.; Dolfing, J.; Sallis, P.J. Mitigation of membrane biofouling in membrane bioreactor treating sewage by novel quorum quenching strain of Acinetobacter originating from a full-scale membrane bioreactor. Bioresour. Technol. 2021, 334, 125242. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, H.; Chae, S.; Kimura, K.; Watanabe, Y. Transition in fouling mechanism in microfiltration of a surface water. Water Res. 2007, 41, 3812–3822. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liao, B.; Liang, S.; Yang, F.; Zhang, H.; Song, L. Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs). J. Membr. Sci. 2010, 361, 1–14. [Google Scholar] [CrossRef]
- Ma, D.; Gao, Y.; Gao, B.; Wang, Y.; Yue, Q.; Li, Q. Impacts of powdered activated carbon addition on trihalomethane formation reactivity of dissolved organic matter in membrane bioreactor effluent. Chemosphere 2014, 117, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Shi, Q.; Wu, M.; Ma, J.; Wang, Y. Fouling behavior and mechanism of hydrophilic modified membrane in anammox membrane bioreactor: Role of gel layer. J. Membr. Sci. 2021, 620, 118988. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Niu, Z.; Guo, H.; Zhou, Y.; Xia, S. Unraveling membrane fouling in anoxic/oxic membrane bioreactors treating anaerobically digested piggery wastewater. J. Environ. Chem. Eng. 2021, 9, 104985. [Google Scholar] [CrossRef]
- Wang, C.; Ng, T.C.A.; Ng, H.Y. Comparison between novel vibrating ceramic MBR and conventional air-sparging MBR for domestic wastewater treatment: Performance, fouling control and energy consumption. Water Res. 2021, 203, 117521. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, C.; Zhen, G.; Tan, Y.; Zhou, Y.; Zhang, Z.; Niu, C.; Li, W.; Kudisi, D.; Wang, Y.; et al. Roles of colloidal particles and soluble biopolymers in long-term performance and fouling behaviors of submerged anaerobic membrane bioreactor treating methanolic wastewater. J. Clean. Prod. 2021, 290, 125816. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Li, J.; Ngo, H.H.; Guo, W.; Hu, J.; Gao, M.-t.; Wang, Q.; Hou, Y. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment. Bioresour. Technol. 2018, 249, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, E.-S.; Ahn, Y. Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. Bioresour. Technol. 2017, 227, 133–141. [Google Scholar] [CrossRef]
- Chen, C.; Gan, Z.; Xu, R.; Meng, F. Cellulose-induced shifts in microbial communities and microbial interactions in an anoxic/aerobic membrane bioreactor. J. Water Process Eng. 2021, 42, 102106. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, K.; Field, R.W. Novel aeration of a large-scale flat sheet MBR: A CFD and experimental investigation. AIChE J. 2018, 64, 2721–2736. [Google Scholar] [CrossRef]
- Liu, M.; Yang, M.; Chen, M.; Yu, D.; Zheng, J.; Chang, J.; Wang, X.; Ji, C.; Wei, Y. Numerical optimization of membrane module design and operation for a full-scale submerged MBR by computational fluid dynamics. Bioresour. Technol. 2018, 269, 300–308. [Google Scholar] [CrossRef] [PubMed]
Membrane Module | Indicators Based on Peak Intensity Ratios | FRI Results of Five Regions (106) | FRI Proportion (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FI | HIX | BIX | I | II | III | IV | V | I | II | III | IV | V | |
A | 1.87 | 0.50 | 0.82 | 10.1 | 15.2 | 5.7 | 5.9 | 3.2 | 0.25 | 0.38 | 0.14 | 0.15 | 0.08 |
B | 1.92 | 0.39 | 0.85 | 15.1 | 13.9 | 5.8 | 8.6 | 3.0 | 0.33 | 0.30 | 0.12 | 0.19 | 0.06 |
C | 2.15 | 0.40 | 0.94 | 17.4 | 24.0 | 8.9 | 14.4 | 5.0 | 0.25 | 0.34 | 0.13 | 0.21 | 0.07 |
D | 2.01 | 0.27 | 0.89 | 25.3 | 24.0 | 7.2 | 15.0 | 3.7 | 0.34 | 0.32 | 0.10 | 0.20 | 0.05 |
E | 2.12 | 0.31 | 0.99 | 22.9 | 16.1 | 5.8 | 10.4 | 2.8 | 0.39 | 0.28 | 0.10 | 0.18 | 0.05 |
F | 1.83 | 0.53 | 1.04 | 7.1 | 13.2 | 7.8 | 9.6 | 5.7 | 0.16 | 0.31 | 0.18 | 0.22 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Chen, Y.; Sui, Q.; Zheng, L.; Ritigala, T.; Wei, Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. Membranes 2024, 14, 142. https://doi.org/10.3390/membranes14060142
Yue W, Chen Y, Sui Q, Zheng L, Ritigala T, Wei Y. The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. Membranes. 2024; 14(6):142. https://doi.org/10.3390/membranes14060142
Chicago/Turabian StyleYue, Wenhui, Yanlin Chen, Qianwen Sui, Libing Zheng, Tharindu Ritigala, and Yuansong Wei. 2024. "The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment" Membranes 14, no. 6: 142. https://doi.org/10.3390/membranes14060142
APA StyleYue, W., Chen, Y., Sui, Q., Zheng, L., Ritigala, T., & Wei, Y. (2024). The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment. Membranes, 14(6), 142. https://doi.org/10.3390/membranes14060142