Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches
<p>Scheme of the concentration profiles of cations, <span class="html-italic">c</span><sub>1</sub>, anions, <span class="html-italic">c</span><sub>2</sub>, and their difference, <span class="html-italic">c</span><sub>1</sub> − <span class="html-italic">c</span><sub>2</sub>, in the depleted diffusion layer near the surface of the cation-exchange membrane (CEM). A current of density <span class="html-italic">i</span> passes through the system. The regions of the diffusion layer are indicated by numbers: the electrically neutral region (1), the extended region (2) and the quasi-equilibrium region of the space charge (3). <span class="html-italic">c</span><sub>1m</sub> is the cation concentration at the solution/CEM boundary.</p> "> Figure 2
<p>(<b>a</b>) Concentration profiles of cations, <span class="html-italic">c</span><sub>1</sub>, and anions, <span class="html-italic">c</span><sub>2</sub>, in the diffusion layer near the CEM surface at <span class="html-italic">t</span> = 0, 7.6, 100 s; (<b>b</b>) chronopotentiograms; (<b>c</b>) distribution of concentrations <span class="html-italic">c</span><sub>1</sub> and <span class="html-italic">c</span><sub>2</sub> in the area near the surface of the CEM at <span class="html-italic">t</span> = 7.5, 7.56, 7.6 s; (<b>d</b>) distribution of space charge density, ρ = <span class="html-italic">F</span>(<span class="html-italic">z</span><sub>1</sub><span class="html-italic">c</span><sub>1</sub> + <span class="html-italic">z</span><sub>2</sub><span class="html-italic">c</span><sub>2</sub>), at <span class="html-italic">t</span> = 7.56, 7.6, 7.7, 7.8 s; (<b>e</b>) distribution of space charge density, ρ, at <span class="html-italic">t</span> = 5, 10, …, 30, 100 s; (<b>f</b>) distribution of electric field strength, <span class="html-italic">E</span>, at <span class="html-italic">t</span> = 5, 10, …, 30, 100 s. The results of calculations by NPP (red and blue solid lines) and NPD (dashed black lines) approaches are shown.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Concentration profiles of cations, <span class="html-italic">c</span><sub>1</sub>, and anions, <span class="html-italic">c</span><sub>2</sub>, in the diffusion layer near the CEM surface at <span class="html-italic">t</span> = 0, 7.6, 100 s; (<b>b</b>) chronopotentiograms; (<b>c</b>) distribution of concentrations <span class="html-italic">c</span><sub>1</sub> and <span class="html-italic">c</span><sub>2</sub> in the area near the surface of the CEM at <span class="html-italic">t</span> = 7.5, 7.56, 7.6 s; (<b>d</b>) distribution of space charge density, ρ = <span class="html-italic">F</span>(<span class="html-italic">z</span><sub>1</sub><span class="html-italic">c</span><sub>1</sub> + <span class="html-italic">z</span><sub>2</sub><span class="html-italic">c</span><sub>2</sub>), at <span class="html-italic">t</span> = 7.56, 7.6, 7.7, 7.8 s; (<b>e</b>) distribution of space charge density, ρ, at <span class="html-italic">t</span> = 5, 10, …, 30, 100 s; (<b>f</b>) distribution of electric field strength, <span class="html-italic">E</span>, at <span class="html-italic">t</span> = 5, 10, …, 30, 100 s. The results of calculations by NPP (red and blue solid lines) and NPD (dashed black lines) approaches are shown.</p> "> Figure 3
<p>Distribution of the total current density at <span class="html-italic">t</span> = 15 s. The results of calculations using NPP (red solid line) and NPD (black dashed line) approaches are shown.</p> "> Figure 4
<p>(<b>a</b>) Time taken to calculate the model for <span class="html-italic">t</span> from 0 to 100 s; (<b>b</b>) calculation error in the region I (main part of the diffusion layer), <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>I</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) calculation error in the second region, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>I</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>. The results of calculations using NPP (red markers) and NPD (black markers) approaches are shown. <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>I</mi> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>n</mi> <mrow> <mi>I</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> are the number of elements in regions I and II, respectively.</p> "> Figure 4 Cont.
<p>(<b>a</b>) Time taken to calculate the model for <span class="html-italic">t</span> from 0 to 100 s; (<b>b</b>) calculation error in the region I (main part of the diffusion layer), <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>I</mi> </msub> </mrow> </semantics></math>; (<b>c</b>) calculation error in the second region, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>I</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>. The results of calculations using NPP (red markers) and NPD (black markers) approaches are shown. <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>I</mi> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>n</mi> <mrow> <mi>I</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> are the number of elements in regions I and II, respectively.</p> "> Figure 5
<p>(<b>a</b>) Concentration profiles of cations, <span class="html-italic">c</span><sub>1</sub>, (solid lines) and anions, <span class="html-italic">c</span><sub>2</sub>, (dashed lines) in the section of the desalination channel; (<b>b</b>) distribution of the space charge density, ρ. The results of calculation using the NPD approach at <span class="html-italic">t</span> = 0, 50, …, 250, 268 s are shown.</p> ">
Abstract
:1. Introduction
2. Ion Transport in the Depleted Diffusion Layer near the Surface of the Ion-Exchange Membrane
2.1. Mathematical Model
2.2. System Parameters
- Region I is the main part of the diffusion layer (with the exception of the thin layer at the solution/membrane interface, it is thick), with a uniform distribution of elements. The main control parameter of the computational mesh in this region is the number of elements (a series of values 1000, 2000, …, 6000 is set).
- Region II is a layer of thickness at the solution/membrane interface, with a linearly decreasing size of computational mesh elements. The main control parameters of the computational mesh in this area are the number of elements (set to 400) and the ratio of the length of the first element to the last (set to 1000).
2.3. Results and Discussion
3. Ion Transport in the Section of the Desalination Channel
3.1. Mathematical Model
- The geometry of the model is the segment with the length equal to the intermembrane distance, H;
- Near the solution/AEM boundary (), the -thick region with a linearly increasing size of computational mesh elements (the number of elements is set to 400 and the ratio of the length of the first element to the last one is equal to 1000), is selected;
- The boundary conditions at are replaced by the conditions:
3.2. System Parameters
3.3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nat. Cell Biol. 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Song, Y.-A.; Han, J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: Theory, fabrication, and applications. Chem. Soc. Rev. 2010, 39, 912–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis Applications in Wastewater Treatment for Environmen-tal Protection and Resources Recovery: A Systematic Review on Progress and Perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Strathmann, H. Ion-Exchange Membrane Processes in Water Treatment. Sustain. Sci. Eng. 2010, 2, 141–199. [Google Scholar] [CrossRef]
- Slouka, Z.; Senapati, S.; Chang, H.C. Microfluidic Systems with Ion-Selective Membranes. Annu. Rev. Anal. Chem. 2014, 7, 317–335. [Google Scholar] [CrossRef] [Green Version]
- Belova, E.I.; Lopatkova, G.Y.; Pismenskaya, N.D.; Nikonenko, V.V.; Larchet, C.; Pourcelly, G. The effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 2006, 110, 13458–13469. [Google Scholar] [CrossRef] [PubMed]
- Titorova, V.D.; Mareev, S.A.; Gorobchenko, A.D.; Gil, V.V.; Nikonenko, V.V.; Sabbatovskii, K.G.; Pismenskaya, N.D. Effect of current-induced coion transfer on the shape of chronopotentiograms of cation-exchange membranes. J. Membr. Sci. 2021, 624, 119036. [Google Scholar] [CrossRef]
- Barros, K.S.; Martí-Calatayud, M.C.; Scarazzato, T.; Bernardes, A.M.; Espinosa, D.C.R.; Pérez-Herranz, V. Investigation of ion-exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose technique. Adv. Colloid Interface Sci. 2021, 293, 102439. [Google Scholar] [CrossRef]
- Belashova, E.D.; Pismenskaya, N.D.; Nikonenko, V.V.; Sistat, P.; Pourcelly, G. Current-voltage characteristic of anion-exchange membrane in monosodium phosphate solution. Modelling and experiment. J. Membr. Sci. 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Mikhaylin, S.; Nikonenko, V.; Pourcelly, G.; Bazinet, L. Intensification of demineralization process and decrease in scaling by application of pulsed electric field with short pulse/pause conditions. J. Membr. Sci. 2014, 468, 389–399. [Google Scholar] [CrossRef]
- Lemay, N.; Mikhaylin, S.; Mareev, S.; Pismenskaya, N.; Nikonenko, V.; Bazinet, L. How demineralization duration by electrodialysis under high frequency pulsed electric field can be the same as in continuous current condition and that for better performances? J. Membr. Sci. 2020, 603, 117878. [Google Scholar] [CrossRef]
- Kozmai, A.; Sarapulova, V.; Sharafan, M.; Melkonian, K.; Rusinova, T.; Kozmai, Y.; Pismenskaya, N.; Dammak, L.; Nikonenko, V. Electrochemical Impedance Spectroscopy of Anion-Exchange Membrane AMX-Sb Fouled by Red Wine Components. Membranes 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Yaroslavtsev, A.B.; Nikonenko, V.V.; Zabolotsky, V.I. Ion transfer in ion-exchange and membrane materials. Russ. Chem. Rev. 2003, 72, 393–421. [Google Scholar] [CrossRef]
- Strathmann, H. (Ed.) Electrochemical and Thermodynamic Fundamentals. In Membrane Science and Technology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 9, pp. 23–88. [Google Scholar]
- Masliyah, J.; Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Newman, J.; Thomas-Alyea, K.E. Electrochemical Systems, 3rd ed.; John Wiley & Sons: Honoken, NJ, USA, 2004; 647p, ISBN 0-471-47756-7. [Google Scholar]
- Zabolotsky, V.I.; Nikonenko, V.V. Ion Transport in Membranes; Nauka: Moscow, Russia, 1996; p. 390. (In Russian) [Google Scholar]
- Rubinstein, I.; Shtilman, L. Voltage against current curves of cation exchange membranes. J. Chem. Soc. Faraday Trans. 1979, 75, 231–246. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Mareev, S.A.; Pis’menskaya, N.D.; Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Pourcelly, G. Effect of Electroconvection and Its Use in Intensifying the Mass Transfer in Electrodialysis (Review). Russ. J. Electrochem. 2017, 53, 1122–1144. [Google Scholar] [CrossRef]
- Mani, A.; Wang, K.M. Electroconvection Near Electrochemical Interfaces: Experiments, Modeling, and Computation. Annu. Rev. Fluid Mech. 2020, 52, 509–529. [Google Scholar] [CrossRef]
- Manzanares, J.A.; Murphy, W.D.; Mafe, S.; Reiss, H. Numerical Simulation of the Nonequilibrium Diffuse Double Layer in Ion-Exchange Membranes. J. Phys. Chem. 1993, 97, 8524–8530. [Google Scholar] [CrossRef]
- Moya, A.A. Electrochemical impedance of ion-exchange systems with weakly charged membranes. Ionics 2013, 19, 1271–1283. [Google Scholar] [CrossRef]
- Moya, A.A. The differential capacitance of the electric double layer in the diffusion boundary layer of ion-exchange membrane systems. Electrochim. Acta 2015, 178, 249–258. [Google Scholar] [CrossRef]
- Uzdenova, A.; Kovalenko, A.; Urtenov, M.; Nikonenko, V. 1D Mathematical Modelling of Non-Stationary Ion Transfer in the Diffusion Layer Adjacent to an Ion-Exchange Membrane in Galvanostatic Mode. Membranes 2018, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzdenova, A. 2D mathematical modelling of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells in galvanodynamic mode. Membranes 2019, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Uzdenova, A.; Urtenov, M. Potentiodynamic and Galvanodynamic Regimes of Mass Transfer in Flow-Through Electrodialysis Membrane Systems: Numerical Simulation of Electroconvection and Current-Voltage Curve. Membranes 2020, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Mareev, S.A.; Nebavskiy, A.V.; Nichka, V.S.; Urtenov, M.K.; Nikonenko, V.V. The nature of two transition times on chronopotentiograms of heterogeneous ion exchange membranes: 2D modelling. J. Membr. Sci. 2019, 575, 179–190. [Google Scholar] [CrossRef]
- Uzdenova, A.; Kovalenko, A.; Urtenov, M. Theoretical Analysis of Electroconvection in the Electrodialysis Desalination Channel under the Action of Direct Current. Membranes 2022, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Gorobchenko, A.; Mareev, S.; Nikonenko, V. Mathematical Modeling of the Effect of Pulsed Electric Field on the Specific Permselectivity of Ion-Exchange Membranes. Membranes 2021, 11, 115. [Google Scholar] [CrossRef]
- Rubinstein, I.; Zaltzman, B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 2000, 62, 2238–2251. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Cooley, J.W. The numerical solution of the time-dependent Nernst–Planck equations. Biophys. J. 1965, 5, 145–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brumleve, T.R.; Buck, R.P. Numerical solution of the Nernst–Planck and Poisson equation system with applications to membrane electrochemistry and solid state physics. J. Electroanal. Chem. 1978, 90, 1–31. [Google Scholar] [CrossRef]
- Nikonenko, V.V.; Kovalenko, A.V.; Urtenov, M.K.; Pismenskaya, N.D.; Han, J.; Sistat, P.; Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination 2014, 342, 85–106. [Google Scholar] [CrossRef]
- Urtenov, M.A.K.; Kirillova, E.V.; Seidova, N.M.; Nikonenko, V.V. Decoupling of the Nernst–Planck and Poisson equations, Application to a membrane system at overlimiting currents. J. Phys. Chem. B 2007, 11151, 14208–14222. [Google Scholar] [CrossRef]
- Urtenov, M.K.; Uzdenova, A.M.; Kovalenko, A.V.; Nikonenko, V.V.; Pismenskaya, N.D.; Vasil’eva, V.I.; Sistat, P.; Pourcelly, G. Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells. J. Membr. Sci. 2013, 447, 190–202. [Google Scholar] [CrossRef]
- Uzdenova, A.M.; Kovalenko, A.V.; Urtenov, M.K.; Nikonenko, V.V. Theoretical analysis of the effect of ion concentration in solution bulk and at membrane surface on the mass transfer at overlimiting currents. Russ. J. Electrochem. 2017, 53, 1254–1265. [Google Scholar] [CrossRef]
- Pham, S.V.; Kwon, H.; Kim, B.; White, J.K.; Lim, G.; Han, J. Helical vortex formation in three-dimensional electrochemical systems with ion-selective membranes. Phys. Rev. E 2016, 93, 033114. [Google Scholar] [CrossRef] [Green Version]
- Demekhin, E.A.; Amiroudine, S.G.; Ganchenko, S.; Khasmatulina, N.Y. Thermoelectroconvection near charge-selective surfaces. Phys. Rev. E 2015, 91, 063006. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, Y.; Shi, P. Critical selection of shear sheltering in electroconvective flow from chaotic to steady state. J. Fluid Mech. 2022, 946, A3. [Google Scholar] [CrossRef]
- Larchet, C.; Nouri, S.; Auclair, B.; Dammak, L.; Nikonenko, V. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection. Adv. Colloid Interface Sci. 2008, 139, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Nikonenko, V.V.; Vasil’eva, V.I.; Akberova, E.M.; Uzdenova, A.M.; Urtenov, M.K.; Kovalenko, A.V.; Pismenskaya, N.D.; Mareev, S.A.; Pourcelly, G. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes. Adv. Colloid Interface Sci. 2016, 235, 233–246. [Google Scholar] [CrossRef]
- Krol, J.J.; Wessling, M.; Strathmann, H. Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J. Membr. Sci. 1999, 162, 155–164. [Google Scholar] [CrossRef]
- Gil, V.V.; Andreeva, M.A.; Pismenskaya, N.D.; Nikonenko, V.V.; Larchet, C.; Dammak, L. Effect of counterion hydration numbers on the development of Electroconvection at the surface of heterogeneous cation-exchange membrane modified with an MF-4SK film. Pet. Chem. 2016, 56, 440–449. [Google Scholar] [CrossRef]
- Uzdenova, A.; Urtenov, M. Mathematical Modeling of the Phenomenon of Space-Charge Breakdown in the Galvanostatic Mode in The Section of the Electromembrane Desalination Channel. Membranes 2021, 11, 873. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uzdenova, A. Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches. Membranes 2023, 13, 421. https://doi.org/10.3390/membranes13040421
Uzdenova A. Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches. Membranes. 2023; 13(4):421. https://doi.org/10.3390/membranes13040421
Chicago/Turabian StyleUzdenova, Aminat. 2023. "Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches" Membranes 13, no. 4: 421. https://doi.org/10.3390/membranes13040421
APA StyleUzdenova, A. (2023). Ion Transport in Electromembrane Systems under the Passage of Direct Current: 1D Modelling Approaches. Membranes, 13(4), 421. https://doi.org/10.3390/membranes13040421