[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Effect of counterion hydration numbers on the development of Electroconvection at the surface of heterogeneous cation-exchange membrane modified with an MF-4SK film

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The transport of sodium, calcium, and magnesium ions through the heterogeneous cationexchange membrane MK-40, surface modified with a thin (about 15 μm) homogeneous film MF-4SK. By using chronopotentiometry and voltammetry techniques, it has been shown that the combination of relatively high hydrophobicity of the film surface with its electrical and geometrical (surface waviness) heterogeneity creates conditions for the development of electroconvection, which considerably enhances mass transfer in overlimiting current regimes. The electroconvection intensity substantially depends on the degree of counterion hydration. Highly hydrated calcium and magnesium ions involve in motion a much larger volume of water as compared with sodium ions. When constant overlimiting direct current is applied to the membrane, electroconvective vortices in 0.02 M CaCl2 and MgCl2 solutions are generated already within 5–8 s, a duration that is the transition time characterizing the change of the transfer mechanism in chronopotentiometry. The generation of vortices is manifested by potential oscillations in the initial portion of chronopotentiograms; no oscillation has been observed in the case of 0.02 M NaCl solution. More intense electroconvection in the case of doubly charged counterions also causes a reduction in the potential drop (Δφ) at both short times corresponding to the initial portion of chronopotentiograms and long times when the quasi-steady state is achieved. At a fixed ratio of current to its limiting value, Δφ decreases in the order Na+ > Ca2+ > Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Strathmann, Desalination 264, 268 (2010).

    Article  CAS  Google Scholar 

  2. V. V. Nikonenko, A. V. Kovalenko, M. K. Urtenov, et al., Desalination 342, 85 (2014).

    Article  CAS  Google Scholar 

  3. R. Kwak, G. Guan, W. K. Peng, and J. Han, Desalination 308, 138 (2013).

    Article  CAS  Google Scholar 

  4. N. A. Mishchuk, Adv. Colloid Interface Sci. 160, 16 (2010).

    Article  CAS  Google Scholar 

  5. V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, et al., Adv. Colloid Interface Sci. 160, 101 (2010).

    Article  CAS  Google Scholar 

  6. N. Pismenskaya, N. Melnik, E. Nevakshenova, et al., Int. J. Chem. Eng. 2012, 528290 (2012).

    Article  Google Scholar 

  7. S. Mikhaylin, V. Nikonenko, N. Pismenskaya, et al., Desalination. (2015) doi.org/10.1016/j.desal.2015.09.011

    Google Scholar 

  8. I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015).

    Article  CAS  Google Scholar 

  9. V. M. Volgin, A. P. Grigin, and A. D. Davydov, Russ. J. Electrochem. 39, 371 (2003).

    Google Scholar 

  10. I. Rubinstein and B. Zaltzman, Adv. Colloid Interface. Sci. 159, 117 (2010).

    Article  CAS  Google Scholar 

  11. V. G. Levich, Physicochemical Hydrodynamics (Prentice Hall, Englewood Cliffs, NJ, 1962).

    Google Scholar 

  12. I. Rubinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 75, 231 (1979).

    Article  CAS  Google Scholar 

  13. M. A.-Kh. Urtenov, E. V. Kirillova, N. M. Seidova, and V. V. Nikonenko, J. Phys. Chem. B 111, 14208 (2007).

    Article  CAS  Google Scholar 

  14. S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).

    Article  CAS  Google Scholar 

  15. N. A. Mishchuk and P. V. Takhistov, Colloids Surf. A 95, 119 (1995).

    Article  CAS  Google Scholar 

  16. S. S. Dukhin and N. A. Mishchuk, Kolloid. Zh. 49, 1197 (1987).

    CAS  Google Scholar 

  17. M. K. Urtenov, A. M. Uzdenova, A. V. Kovalenko, et al., J. Membr. Sci. 447, 190 (2013).

    Article  CAS  Google Scholar 

  18. I. Rubinstein and B. Zaltzman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 62, 2238 (2000).

    Article  CAS  Google Scholar 

  19. S. V. Pham, Z. Li, K. M. Lim, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 86, 046310 (2012).

    Article  Google Scholar 

  20. V. S. Shelistov, E. A. Demekhin, and G. S. Ganchenko, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 90, 013001 (2014).

    Article  CAS  Google Scholar 

  21. R. Kwak, V. S. Pham, K. M. Lim, and J. Han, Phys. Rev. Lett. 110, 114501 (2013).

    Article  Google Scholar 

  22. J.-H. Choi, H.-J. Lee, and S.-H. Moon, J. Colloid Interface Sci. 238, 188 (2001).

    Article  CAS  Google Scholar 

  23. E. D. Belashova, N. A. Melnik, N. D. Pismenskaya, et al., Electrochim. Acta 59, 412 (2012).

    Article  CAS  Google Scholar 

  24. N. D. Pismenskaya, V. V. Nikonenko, N. A. Melnik, et al., J. Phys. Chem. B 116, 2145 (2012).

    Article  CAS  Google Scholar 

  25. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Dover, New York, 2003), 2nd Ed.

    Google Scholar 

  26. T. Badessa and V. Shaposhnik, J. Membr. Sci. 498, 86 (2016).

    Article  CAS  Google Scholar 

  27. M. Pavlov, P. E. M. Siegbahn, and M. Sandstrom, J. Phys. Chem. A 102, 219 (1998).

    Article  CAS  Google Scholar 

  28. H.-W. Rösler, F. Maletzki, and E. Staude, J. Membr. Sci. 72, 171 (1992).

    Article  Google Scholar 

  29. C. Larchet, S. Nouri, B. Auclair, et al., Adv. Colloid Interface Sci. 139, 45 (2008).

    Article  CAS  Google Scholar 

  30. H. J. S. Sand, Philos. Mag., 1 (1), 45 (1901).

    Article  CAS  Google Scholar 

  31. Z. Galus, Teoretyczne podstawy elektroanalizy chemicznej (Panstwowe Wydawnictwo naukowe, Warsaw, 1971).

    Google Scholar 

  32. D. Lerche and H. Wolf, Bioelectrochem. Bioenerg. 2, 293 (1975).

    Article  CAS  Google Scholar 

  33. J. J. Krol, M. Wessling, and H. Strathmann, J. Membr. Sci. 162, 155 (1999).

    Article  CAS  Google Scholar 

  34. S. A. Mareev, D. Yu. Butylskii, N. D. Pismenskaya, and V. V. Nikonenko, J. Membr. Sci. 500, 171 (2016).

    Article  CAS  Google Scholar 

  35. J. S. Newman, Electrochemical Systems (Prentice Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  36. A. V. Zhil’tsova, V. I. Vasil’eva, M. D. Malykhin, et al., Vestn. Voronezhsk. Gos. Univ., No. 2, 35 (2013).

    Google Scholar 

  37. S. R. Maduar, A. V. Belyaev, V. Lobaskin, and O. I. Vinogradova, Phys. Rev. Lett. 114, 118301 (2015).

    Article  CAS  Google Scholar 

  38. I. Rubinstein, B. Zaltzman, and T. Pundik, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Interdiscip. Top. 65, 041507 (2002).

    Article  Google Scholar 

  39. A. M. Uzdenova, A. V. Kovalenko, M. K. Urtenov, and V. V. Nikonenko, Electrochem. Commun. 51, 1 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Pismenskaya.

Additional information

Original Russian Text © V.V. Gil, M.A. Andreeva, N.D. Pismenskaya, V.V. Nikonenko, C. Larchet, L. Dammak, 2016, published in Membrany i Membrannye Tekhnologii, 2016, Vol. 6, No. 2, pp. 181–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, V.V., Andreeva, M.A., Pismenskaya, N.D. et al. Effect of counterion hydration numbers on the development of Electroconvection at the surface of heterogeneous cation-exchange membrane modified with an MF-4SK film. Pet. Chem. 56, 440–449 (2016). https://doi.org/10.1134/S0965544116050066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544116050066

Keywords

Navigation