Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries
<p>A photo and scheme of a laboratory installation in operation: <span class="html-italic">a</span>—raffinate solution, <span class="html-italic">b</span>—extract solution, <span class="html-italic">c</span>—initial solution with appropriate metal concentration and HCl, <span class="html-italic">d</span>—HDES, P—pump, E—extractor.</p> "> Figure 2
<p>Dependence of density (<b>a</b>) and dynamic viscosity (<b>b</b>) of the HDES composed of TOPO/D2EHPA/menthol in a 4:1:5 ratio on temperature.</p> "> Figure 3
<p>Dependence of the degree of extraction of metal ions on the menthol content in the HDES. HDES phase: χ<sub>TOPO</sub>/χ<sub>D2EHPA</sub> = 1:1. Aqueous phase: [HCl] = 8 mol/L; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1; mixing time was 30 min.</p> "> Figure 4
<p>The dependence of the degree of extraction of metal ions on the content of TOPO and D2EHPA in the HDES. HDES phase: χ<sub>menthol</sub> = 4. Aqueous phase: [HCl] = 8 mol/L, 0.069 g/L Li, 0.589 g/L Co, 0.587 g/L Ni, 0.549 g/L Mn, and 0.479 g/L Ti; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1; mixing time was 30 min.</p> "> Figure 5
<p>Dependence of the degree of metal ion extraction on the molar fraction of D2EHPA. Aqueous phase: [HCl] = 8 mol/L, 0.069 g/L Li, 0.589 g/L Co, 0.587 g/L Ni, 0.549 g/L Mn, and 0.479 g/L Ti. HDES phase: χ<sub>TOPO</sub> = 4; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1; mixing time was 30 min.</p> "> Figure 6
<p>Dependence of the degree of extraction of metal ions on the phase contact time. HDES phase: TOPO/D2EHPA/menthol = 4:1:5. Aqueous phase: [HCl] = 6 mol/L, 0.069 g/L Li, 0.589 g/L Co, 0.587 g/L Ni, 0.549 g/L Mn, and 0.479 g/L Ti; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1.</p> "> Figure 7
<p>The dependence of the degree of extraction of metal ions on the concentration of HCl. HDES phase: TOPO/D2EHPA/menthol = 4:1:5. Aqueous phase: 0.069 g/L Li, 0.589 g/L Co, 0.587 g/L Ni, 0.549 g/L Mn, and 0.479 g/L Ti; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1; mixing time was 30 min.</p> "> Figure 8
<p>Dependence of the degree of extraction of metal ions on the volume ratio of the aqueous and organic phases. HDES phase: TOPO/D2EHPA/menthol = 4:1:5. Aqueous phase: 0.069 g/L Li, 0.589 g/L Co, 0.587 g/L Ni, 0.549 g/L Mn, and 0.479 g/L Ti; mixing time was 30 min.</p> "> Figure 9
<p>Isotherms of the Me extraction with TOPO/D2EHPA/menthol = 4:1:5. Aqueous phase: [HCl] = 1, 6, 9 mol/L for Ti(IV), Co(II), and Mn(II) ions, respectively; V<sub>aq</sub>/V<sub>HDES</sub> = 1/1; mixing time was 30 min.</p> "> Figure 10
<p>Dependence of the degree of stripping of Ti(IV), Co(II), and Mn(II) ions on the phase contact time. Extraction conditions for Ti(IV), Co(II), and Mn(II): [HCl] = 1, 6, and 9 mol/L, respectively. Stripping conditions for Ti(IV): [H<sub>3</sub>PO<sub>4</sub>] = 3 mol/L, 3 vol.% H<sub>2</sub>O<sub>2</sub>; for Co(II) and Mn(II): [HCl] = 1 mol/L.</p> "> Figure 11
<p>The possibility of the reuse of TOPO/D2EHPA/menthol 4:1:5. Conditions for the stripping of Ti(IV): [H<sub>3</sub>PO<sub>4</sub>] = 3 mol/L, 3 vol.% H<sub>2</sub>O<sub>2</sub>; Co(II) and Mn(II) ions: [HCl] = 1 mol/L.</p> "> Figure 12
<p>Dependence of the degree of extraction of metals from HCl 1 mol/L solution (<b>a</b>) and Co(II) and Mn(II) from HCl 6 mol/L solution (<b>b</b>) on the volume flow rate of the phases.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of HDESs
2.3. Characterisation of HDESs
2.4. Extraction and Stripping Processes
2.5. Laboratory Extraction Plant
3. Results and Discussion
3.1. Physical Properties of HDES TOPO/D2EHPA/Menthol 4:1:5
3.2. Selection of HDES Composition and Investigation of Its Extraction Properties
3.2.1. The Effect of Menthol Content in the HDES
3.2.2. The Impact of TOPO Content in the HDES
3.2.3. The Effect of D2EHPA Content in the HDES
3.2.4. Influence of Phase Contact Time
3.2.5. The Effect of the Acidity of the Medium
3.2.6. The Effect of the Volumetric Phase Ratio
3.2.7. The Influence of the Initial Concentration of Metal Ions
3.2.8. Study of Metal Stripping from the HDES Phase
3.2.9. Stability Assessment of the HDES
3.3. Investigation of Continuous Metal Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kim, D.-W. Sodium-Ion Batteries: New Opportunities beyond Energy Storage by Lithium. J. Power Sources 2018, 395, 336–348. [Google Scholar] [CrossRef]
- Abraham, K.M. How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? ACS Energy Lett. 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Azimi, G.; Chan, K.H. A Review of Contemporary and Emerging Recycling Methods for Lithium-Ion Batteries with a Focus on NMC Cathodes. Resour. Conserv. Recycl. 2024, 209, 107825. [Google Scholar] [CrossRef]
- Steel, Aluminum, Nickel, Rare Earth, New Energy, Copper Prices Charts and News-Shanghai Metals Market. Available online: https://www.metal.com/ (accessed on 27 November 2024).
- Zhou, Y. Advantages and Application of Nano LTO Battery. Highlights Sci. Eng. Technol. 2023, 32, 186–192. [Google Scholar] [CrossRef]
- Kwade, A.; Diekmann, J. (Eds.) Recycling of Lithium-Ion Batteries: The LithoRec Way; Sustainable Production, Life Cycle Engineering and Management; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-70571-2. [Google Scholar]
- Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour. Conserv. Recycl. 2023, 188, 106690. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, M.; Liu, T.; Wang, Y.; Liu, Y.; Nai, J.; Zhang, L.; Zhang, S.; Tao, X. Direct Recovery: A Sustainable Recycling Technology for Spent Lithium-Ion Battery. Energy Storage Mater. 2023, 54, 120–134. [Google Scholar] [CrossRef]
- Petzold, M.; Flamme, S. Recycling Strategies for Spent Consumer Lithium-Ion Batteries. Metals 2024, 14, 151. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Lobovich, D.V.; Milevskii, N.A.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. The Use of Organophosphorus Extractants as a Component of Hydrophobic Deep Eutectic Solvents (HDES) for the Processing of Spent Lithium-iron Phosphate Batteries. Hydrometallurgy 2024, 228, 106369. [Google Scholar] [CrossRef]
- Vasconcelos, D.d.S.; Tenório, J.A.S.; Botelho Junior, A.B.; Espinosa, D.C.R. Circular Recycling Strategies for LFP Batteries: A Review Focusing on Hydrometallurgy Sustainable Processing. Metals 2023, 13, 543. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals 2021, 11, 1999. [Google Scholar] [CrossRef]
- Lerchbammer, R.; Gerold, E.; Antrekowitsch, H. Gluconic Acid Leaching of Spent Lithium-Ion Batteries as an Environmentally Friendly Approach to Achieve High Leaching Efficiencies in the Recycling of NMC Active Material. Metals 2023, 13, 1330. [Google Scholar] [CrossRef]
- Wang, R.-C.; Lin, Y.-C.; Wu, S.-H. A Novel Recovery Process of Metal Values from the Cathode Active Materials of the Lithium-Ion Secondary Batteries. Hydrometallurgy 2009, 99, 194–201. [Google Scholar] [CrossRef]
- Liu, T.; Chen, J.; Li, H.; Li, K. An Integrated Process for the Separation and Recovery of Valuable Metals from the Spent LiNi0.5Co0.2Mn0.3O2 Cathode Materials. Sep. Purif. Technol. 2020, 245, 116869. [Google Scholar] [CrossRef]
- Chen, W.-S.; Ho, H.-J. Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals 2018, 8, 321. [Google Scholar] [CrossRef]
- Liang, Z.; Cai, C.; Peng, G.; Hu, J.; Hou, H.; Liu, B.; Liang, S.; Xiao, K.; Yuan, S.; Yang, J. Hydrometallurgical Recovery of Spent Lithium Ion Batteries: Environmental Strategies and Sustainability Evaluation. ACS Sustain. Chem. Eng. 2021, 9, 5750–5767. [Google Scholar] [CrossRef]
- Jung, J.C.-Y.; Sui, P.-C.; Zhang, J. A Review of Recycling Spent Lithium-Ion Battery Cathode Materials Using Hydrometallurgical Treatments. J. Energy Storage 2021, 35, 102217. [Google Scholar] [CrossRef]
- Castillo, J.; Toro, N.; Hernández, P.; Navarro, P.; Vargas, C.; Gálvez, E.; Sepúlveda, R. Extraction of Cu(II), Fe(III), Zn(II), and Mn(II) from Aqueous Solutions with Ionic Liquid R4NCy. Metals 2021, 11, 1585. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Zinov’eva, I.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Complex Extraction of Rare Earth Elements from Nitrate Solutions with a Tri-n-Octylamine-Octanoic Acid Bifunctional Ionic Liquid. J. Mol. Liq. 2023, 390, 123073. [Google Scholar] [CrossRef]
- Morina, R.; Merli, D.; Mustarelli, P.; Ferrara, C. Lithium and Cobalt Recovery from Lithium-Ion Battery Waste via Functional Ionic Liquid Extraction for Effective Battery Recycling. ChemElectroChem 2023, 10, e202201059. [Google Scholar] [CrossRef]
- Nguyen, V.-N.; Song, S.-J.; Lee, M.-S. Recovery of Pure Pd(II) from Spent Electroplating Solutions by Solvent Extraction with Ionic Liquids from Sulfuric Acid Leaching Solution of Cemented Pd. Metals 2021, 11, 1320. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, Y.; Wang, Y.; Wang, X. Viscosity of Typical Room-Temperature Ionic Liquids: A Critical Review. J. Phys. Chem. Ref. Data 2019, 48, 033101. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef]
- Riaño, S.; Petranikova, M.; Onghena, B.; Vander Hoogerstraete, T.; Banerjee, D.; Foreman, M.R.; Ekberg, C.; Binnemans, K. Separation of Rare Earths and Other Valuable Metals from Deep-Eutectic Solvents: A New Alternative for the Recycling of Used NdFeB Magnets. RSC Adv. 2017, 7, 32100–32113. [Google Scholar] [CrossRef]
- Pateli, I.M.; Abbott, A.P.; Binnemans, K.; Rodriguez Rodriguez, N. Recovery of Yttrium and Europium from Spent Fluorescent Lamps Using Pure Levulinic Acid and the Deep Eutectic Solvent Levulinic Acid–Choline Chloride. RSC Adv. 2020, 10, 28879–28890. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, W.; Aldana-González, J.; Le Manh, T.; Romero-Romo, M.; Mejía-Caballero, I.; Ramírez-Silva, M.T.; Arce-Estrada, E.M.; Mugica-Álvarez, V.; Palomar-Pardavé, M. A Deep Eutectic Solvent as Leaching Agent and Electrolytic Bath for Silver Recovery from Spent Silver Oxide Batteries. J. Electrochem. Soc. 2021, 168, 016508. [Google Scholar] [CrossRef]
- Peeters, N.; Binnemans, K.; Riaño, S. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-Eutectic Solvents. Green Chem. 2020, 22, 4210–4221. [Google Scholar] [CrossRef]
- Ketegenov, T.; Kamunur, K.; Mussapyrova, L.; Batkal, A.; Nadirov, R. Enhanced Recovery of Lithium and Cobalt from Spent Lithium-Ion Batteries Using Ultrasound-Assisted Deep Eutectic Solvent Leaching. Metals 2024, 14, 1052. [Google Scholar] [CrossRef]
- Van Osch, D.J.G.P.; Zubeir, L.F.; Van Den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants. Green Chem. 2015, 17, 4518–4521. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol. Theor. Found. Chem. Eng. 2022, 56, 221–229. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Salomatin, A.M.; Kozhevnikova, A.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Mn(II) and Co(II) from Chloride Solutions with the Di(2-Ethylhexyl)Phosphoric Acid/Menthol Deep Eutectic Solvent. Theor. Found. Chem. Eng. 2023, 57, 442–449. [Google Scholar] [CrossRef]
- Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. New Hydrophobic Eutectic Solvent Based on Bis(2,4,4-Trimethylpentyl)Phosphinic Acid and Menthol: Properties and Application. Eng. Proc. 2023, 37, 68. [Google Scholar] [CrossRef]
- Ushizaki, S.; Kanemaru, S.; Sugamoto, K.; Baba, Y. Selective Extraction Equilibria of Sc(III), Y(III), Fe(III) and Al(III) from Acidic Media with Toluene Mixture of Deep Eutectic Solvent (DES) Composed of TOPO and Isostearic Acid. Anal. Sci. 2023, 39, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.J.R.; Pérez-Sánchez, G.; Schaeffer, N.; Coutinho, J.A.P. Solvent Extraction in Extended Hydrogen Bonded Fluids—Separation of Pt(iv) from Pd(ii) Using TOPO-Based Type V DES. Green Chem. 2021, 23, 4540–4550. [Google Scholar] [CrossRef]
- Hanada, T.; Goto, M. Synergistic Deep Eutectic Solvents for Lithium Extraction. ACS Sustain. Chem. Eng. 2021, 9, 2152–2160. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Xu, K.; Wen, Q.; Ding, X.; Zhang, H.; Yang, Q. High-Performance of Deep Eutectic Solvent Based Aqueous Bi-Phasic Systems for the Extraction of DNA. RSC Adv. 2016, 6, 84406–84414. [Google Scholar] [CrossRef]
- Li, J.; Xiao, H.; Tang, X.; Zhou, M. Green Carboxylic Acid-Based Deep Eutectic Solvents as Solvents for Extractive Desulfurization. Energy Fuels 2016, 30, 5411–5418. [Google Scholar] [CrossRef]
- Prusty, S.; Pradhan, S.; Mishra, S. Extraction and Separation Studies of Nd/Fe and Sm/Co by Deep Eutectic Solvent Containing Aliquat 336 and Glycerol. J. Chem. Technol. Biotechnol. 2023, 98, 1631–1641. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Uvarova, E.S.; Maltseva, V.E.; Ananyev, I.V.; Milevskii, N.A.; Fedulov, I.S.; Zakhodyaeva, Y.A.; Voshkin, A.A. Design of Eutectic Solvents with Specified Extraction Properties Based on Intermolecular Interaction Energy. Molecules 2024, 29, 5022. [Google Scholar] [CrossRef] [PubMed]
- Tereshatov, E.E.; Volia, M.F.; Folden III, C.M. Menthol-Based Eutectic Solvent for Indium and Thallium Partition from Hydrochloric Acid Media. J. Mol. Liq. 2023, 391, 123339. [Google Scholar] [CrossRef]
- Milevskii, N.A.; Zinov’eva, I.V.; Kozhevnikova, A.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide. Int. J. Mol. Sci. 2023, 24, 14032. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Yao, H.; Wang, X.; Liang, X.; Li, B.; Liu, H.; Li, Y. Selective Recovery of Lithium from Mother Liquor of Li2CO3 by Synergistic Hydrophobic Deep Eutectic Solvents: Performance and Mechanistic Insight. Sep. Purif. Technol. 2023, 313, 123353. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Ji, L.; Li, L. Separation of Lithium from Alkaline Solutions with Hydrophobic Deep Eutectic Solvents Based on β-Diketone. J. Mol. Liq. 2021, 344, 117729. [Google Scholar] [CrossRef]
- Ni, S.; Gao, Y.; Yu, G.; Zhang, S.; Zeng, Z.; Sun, X. Tailored Ternary Hydrophobic Deep Eutectic Solvents for Synergistic Separation of Yttrium from Heavy Rare Earth Elements. Green Chem. 2022, 24, 7148–7161. [Google Scholar] [CrossRef]
- Vellaichamy, S.; Palanivelu, K. Preconcentration and Separation of Copper, Nickel and Zinc in Aqueous Samples by Flame Atomic Absorption Spectrometry after Column Solid-Phase Extraction onto MWCNTs Impregnated with D2EHPA-TOPO Mixture. J. Hazard. Mater. 2011, 185, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Girgin, S.; Acarkan, N.; Sirkeci, A.A. The Uranium(VI) Extraction Mechanism of D2EHPA-TOPO from a Wet Process Phosphoric Acid. J. Radioanal. Nucl. Chem. 2002, 251, 263–271. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Zinov’eva, I.V.; Zakhodyaeva, Y.A.; Baranovskaya, V.B.; Voshkin, A.A. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries. Processes 2022, 10, 2671. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Zinov’eva, I.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. New Hydrophobic Deep Eutectic Solvent Based on Di-(2-Ethylhexyl)Phosphoric Acid and Trioctylphosphine Oxide: Properties and Application. Eng. Proc. 2023, 37, 42. [Google Scholar] [CrossRef]
- Kozhevnikova, A.V.; Uvarova, E.S.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Isolation of Ti(IV) Concentrate from Spent Lithium-Ion Batteries. Theor. Found. Chem. Eng. 2023, 57, 835–843. [Google Scholar] [CrossRef]
- Lobovich, D.V.; Solov’eva, S.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Denitrogenation of Light Hydrocarbon Fractions with Natural Deep Eutectic Solvents Using Commercial Extraction Equipment. Theor. Found. Chem. Eng. 2023, 57, 1276–1291. [Google Scholar] [CrossRef]
- Sato, T.; Yamatake, M. The Extraction of Divalent Cobalt, Copper, Zinc, and Cadmium from Hydrochloric Acid Solutions by Tri-n-octyl Phosphine Oxide. Z. Anorg. Allge Chem. 1972, 391, 174–182. [Google Scholar] [CrossRef]
- Kumbasar, R.A.; Tutkun, O. Separation and Concentration of Gallium from Acidic Leach Solutions Containing Various Metal Ions by Emulsion Type of Liquid Membranes Using TOPO as Mobile Carrier. Hydrometallurgy 2004, 75, 111–121. [Google Scholar] [CrossRef]
- Biswas, R.K.; Begum, D.A. Solvent Extraction of Fe3+ from Chloride Solution by D2EHPA in Kerosene. Hydrometallurgy 1998, 50, 153–168. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, W.; Cheng, C.Y. A Literature Review of Titanium Solvent Extraction in Chloride Media. Hydrometallurgy 2011, 105, 304–313. [Google Scholar] [CrossRef]
- He, S.; Zuo, Q.; Shi, H.; Geng, Z.; Liu, C.; Ding, L.; Li, X.; Shao, P.; Yang, L.; Luo, X. Direct Recovery of High-Purity Lithium via Nanofiltration Membranes from Leaching Solution of Spent Lithium Batteries. Resour. Conserv. Recycl. 2024, 210, 107846. [Google Scholar] [CrossRef]
- Fontana, D.; Kulkarni, P.; Pietrelli, L. Extraction of Titanium (IV) from Acidic Media by 2-Ethylhexyl Phosphonic Acid Mono-2-Ethylhexyl Ester. Hydrometallurgy 2005, 77, 219–225. [Google Scholar] [CrossRef]
- Ismael, M.H.; Mohammed, H.S.; El Hussaini, O.M.; El-Shahat, M.F. Electrosynthesis of Titanium Dioxide from Sulfate Leach Liquors Using Solvent Extraction/Electrochemical Deposition Process. Sep. Sci. Technol. 2022, 57, 238–255. [Google Scholar] [CrossRef]
- Singh, R.; Dhadke, P. Extraction and Separation of Titanium(IV) with D2EHPA and PC-88A from Aqueous Perchloric Acid Solutions. J. Serbian Chem. Soc. 2002, 67, 507–521. [Google Scholar] [CrossRef]
Reagent | Supplier | CAS | Purity, wt% * |
---|---|---|---|
TOPO | Macklin, Shanghai, China | 78-50-2 | 98 |
D2EHPA | Macklin, Shanghai, China | 298-07-7 | 98 |
L-Menthol | Acros, Geel, Belgium | 2216-51-5 | 99.5 |
MnCl2·4H2O | Acros, Geel, Belgium | 13446-34-9 | ≥99 |
CoCl2·6H2O | Acros, Geel, Belgium | 7646-79-9 | ≥98 |
NiCl2·4H2O | Acros, Geel, Belgium | 7791-20-0 | ≥98 |
LiCl | Macklin, Shanghai, China | 7447-41-8 | ≥98 |
TiOSO4 | Macklin, Shanghai, China | 13825-74-6 | ≥95 |
H3PO4 | Acros, Geel, Belgium | 7664-38-2 | ≥85 |
H2SO4 | Acros, Geel, Belgium | 7664-93-9 | 96 |
H2O2 | Merck, Darmstadt, Germany | 7722-84-1 | 37 |
HCl | Aldosa, Moscow, Russia | 7647-01-0 | 37 |
Solvent | Hydranal Honeywell, Seelze, Germany | - | - |
Titrant 5 | Hydranal Honeywell, Seelze, Germany | - | - |
Coulomat A | Hydranal Honeywell, Seelze, Germany | - | - |
Coulomat CG | Hydranal Honeywell, Seelze, Germany | - | - |
Metals | Ti | Co | Mn | Ni | Li |
---|---|---|---|---|---|
E, % | 99.9 | 90.9 | 40.8 | 1.2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhevnikova, A.V.; Milevskii, N.A.; Lobovich, D.V.; Zakhodyaeva, Y.A.; Voshkin, A.A. Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries. Metals 2024, 14, 1441. https://doi.org/10.3390/met14121441
Kozhevnikova AV, Milevskii NA, Lobovich DV, Zakhodyaeva YA, Voshkin AA. Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries. Metals. 2024; 14(12):1441. https://doi.org/10.3390/met14121441
Chicago/Turabian StyleKozhevnikova, Arina V., Nikita A. Milevskii, Dmitriy V. Lobovich, Yulia A. Zakhodyaeva, and Andrey A. Voshkin. 2024. "Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries" Metals 14, no. 12: 1441. https://doi.org/10.3390/met14121441
APA StyleKozhevnikova, A. V., Milevskii, N. A., Lobovich, D. V., Zakhodyaeva, Y. A., & Voshkin, A. A. (2024). Deep Eutectic Solvent (TOPO/D2EHPA/Menthol) for Extracting Metals from Synthetic Hydrochloric Acid Leachates of NMC-LTO Batteries. Metals, 14(12), 1441. https://doi.org/10.3390/met14121441