Corrosion Inhibition of Carbon Steel Immersed in Standardized Reconstituted Geothermal Water and Individually Treated with Four New Biosourced Oxazoline Molecules
<p>Synthesis of decenoxHAm and Decenox (C10:1).</p> "> Figure 2
<p>Temporal evolution of the CS-XC38 electrode’s corrosion potential (E<sub>corr</sub> in mV/SCE) when immersed in SRGW in the presence of each of the four tested oxazolines at 10 mg/L compared to immersion without inhibitor.</p> "> Figure 3
<p>Temporal evolution of IE, obtained via J<sub>corr</sub> (R<sub>p</sub>) deduced from R<sub>p</sub> on new CS-X38 electrodes immersed in SRGW in the presence of each of the four oxazolines, tested at 10 mg/L.</p> "> Figure 4
<p>Temporal evolution of corrosion current density, J<sub>corr</sub>, deduced from R<sub>p</sub> on new CS-XC38 electrodes immersed in SRGW in the absence (without an inhibitor) and in the presence of each of the four oxazolines, tested at 10 mg/L.</p> "> Figure 5
<p>Evolution of Tafel curves of the CS-XC38 electrode immersed in SRGW in the presence of Decenox (C10:1) at concentrations of 5, 10, 20, 40, 80, and 160 mg/L, compared to immersion without inhibitors at immersion times between 43 and 57 min.</p> "> Figure 6
<p>Evolution of Tafel curves of the CS-XC38 electrode immersed in SRGW in the presence of each of the four oxazolines at 10 mg/L compared to immersion without inhibitors at immersion times between 43 and 57 min.</p> "> Figure 7
<p>Polarization curves of CS-XC38 electrode immersed in SRGW in the presence of Decenox (C10:1) (in green) or Decanox (C10:0) (in blue), both at 10 mg/L.</p> "> Figure 8
<p>Polarization curves of CS-XC38 electrode immersed in SRGW in the presence of (<b>A</b>) Decenox (C10:1) on the left and (<b>B</b>) Decanox (C10:0) on the right, both at 10 mg/L, as a function of immersion time.</p> "> Figure 9
<p>Evolution of IE (%) determined from J<sub>corr</sub> based on Tafel curves for CS-XC38 electrode immersed in SRGW in the presence of the four oxazolines at 10 mg/L at immersion times from 0 to 17 h.</p> "> Figure 10
<p>Evolution of electrochemical impedances, both in the Nyquist and in the Bode planes, measured on new CS-XC38 electrodes in the presence of each of the four oxazolines at 10 mg/L compared to without inhibitors as a function of immersion time in SRGW.</p> "> Figure 11
<p>Evolution of electrochemical impedances, in the Nyquist plane, measured on new CS-XC38 electrodes in the presence of Decanox (C10:0) at 10 mg/L compared to without inhibitors as a function of immersion time in SRGW.</p> "> Figure 12
<p>Evolutions of electrochemical impedance, in the Nyquist plane, measured on new CS-XC38 electrodes in the presence of Undecanox (C11:0) at 10 mg/L compared to without inhibitors as a function of immersion time in SRGW.</p> "> Figure 13
<p>Evolution of Tafel curves of new CS-XC38 electrodes in the presence of Undecanox (C11:0) at 10 mg/L as a function of immersion time in SRGW.</p> "> Figure 14
<p>Langmuir, Temkin, Freundlich, Frumkin, and El-Awady adsorption isotherms plotted from the polarization resistance (1st R<sub>p</sub>) of the CS-XC38 electrode in SRGW in the presence of Decenox (C10:1) at 70 °C.</p> "> Figure 15
<p>Langmuir adsorption isotherm, plotted from the average of 5 electrochemical polarization resistances (Rp average) of the CS-XC38 electrode in SRGW in the presence of Decenox (C10:1) at 70 °C.</p> "> Figure 16
<p>SEM photograph of the CS-XC38 electrode’s surface in the presence of Decenox (C10:1), showing that the CS-XC38 sample was electrochemically disturbed at 70 °C.</p> "> Figure 17
<p>Variation in coverage rate θ and corrosion current density J<sub>corr</sub> of CS-XC38 electrode in SRGW at 70 °C as a function of log (concentration) of Decenox (C10:1).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Steel, Corrosive Medium, and Electrochemical Methodology Used for BS-CIC Evaluation
2.2. Synthesis of Decenox (C10:1)
3. Results and Discussion
3.1. Temporal Evolution of the OCP, or Ecorr, of the CS-XC38 Electrode
3.2. Temporal Evolution of the Rp of CS-XC38 Electrode
3.3. Temporal Evolution of the Jcorr of the CS-XC38 Electrode, Deduced from Linear Polarization (Tafel Plots)
3.3.1. Cathodic Side Activity
3.3.2. Anodic Side Activity
3.4. Temporal Evolution of the Jcorr of CS-XC38 Deduced from Impedance Measurement
3.5. Study of the Adsorption and Adsorption Isotherms of Decenox (C10:1)
3.6. Discussion on the Role of Chain Length and the Presence of Unsaturation on IE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Immersion Time (h) | 1 | 5 | 9 | 13 | 17 | 1 | 5 | 9 | 13 | 17 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inhibitor Name | Content (mg/L) | Icorr (Tafel) (µA) After 17 h of Immersion | IE on New Electrode via Jcorr (Rp) (%) | IE (%) Starting from the 1st Icorr Measured via Tafel Versus the 1st Jcorr (WI) over 44 min | Cathodic Constant of Tafel βc (mV) | Cathodic Constant of Tafel βa(mV) | ||||||||
WI | 0 | 137 | 0.0 | 0.0 | 171 | 210 | 189 | 303 | 424 | 54 | 69 | 70 | 83 | 99 |
C(10:1) | 10 | 29 | 58 | 34 | 118 | 81 | 859 | 80 | 78 | 73 | 87 | 76 | 69 | 661 |
C(10:0) | 10 | 52 | 26 | 73 | 234 | 405 | 202 | 145 | 163 | 53 | 84 | 73 | 53 | 59 |
C(11:0) | 10 | 62 | 10 | 94 | 152 | 122 | 223 | 178 | 240 | 91 | 83 | 70 | 72 | 88 |
C(13:0) * | 10 | 11 | 84 | 92 | 132 | 144 | 152 | Nd | Nd | 74 | 91 | 80 | Nd | Nd |
References
- Rojas, J.; Giot, D.; Le Nindre, Y.M.; Criaud, A.; Fouillac, C.; Brach, M.; Menjoz; Martin, J.C.; Lambert, M.; Chiles, J.P.; et al. Caractérisation et Modélisation du Réservoir Géothermique du Dogger, Bassin Parisien, France, Rapport Final; BRGM R 30169 IRG SGN 89; BRGM: Orléans, France, 1989; p. 249. [Google Scholar]
- Castillo, C.; Ignatiadis, I. Sulfate-Reduction State of the Geothermal Dogger Aquifer, Paris Basin (France) after 35 Years of Exploitation: Analysis and Consequences of Bacterial Proliferation in Casings and Reservoir. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 30 January–1 February 2012; Curran Associates, Inc., Ed.; Stanford Geothermal Program, Stanford University: Stanford, CA, USA, 2012. [Google Scholar]
- Fardeau, M.-L.; Goulhen, F.; Bruschi, M.; Khelifi, N.; Cayol, J.-L.; Ignatiadis, I.; Guyot, F.; Ollivier, B. Archaeoglobus fulgidus and Thermotoga elfii, Thermophilic Isolates from Deep Geothermal Water of the Paris Basin. Geomicrobiol. J. 2009, 26, 119–130. [Google Scholar] [CrossRef]
- Lopez, S.; Hamm, V.; Le Brun, M.; Schaper, L.; Boissier, F.; Cotiche, C.; Giuglaris, E. 40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geothermics 2010, 39, 339–356. [Google Scholar] [CrossRef]
- Peter, F.; Ellis, I. A Geothermal Corrosivity Classification System. Trans.-Geotherm. Resour. Counc. 1981, 5, 463–472. [Google Scholar]
- Amalhay, M.; Akar, A.A.; Ignatiadis, I. Study of scale deposition phenomena Geothermal Wells in the Paris Basin. In Proceedings of the International Symposium, Geothermics 94 in Europe, from Research to Development, Orleans, France, 8–9 February 1994; BRGM, Ed.; BRGM: Orléans, France, 1998; pp. 223–232. [Google Scholar]
- Amalhay, M.; Ignatiadis, I. Comparative Study of the Effectiveness of Various Organic Surfactants in Inhibiting Carbon Steel Corrosion in a Natural Geothermal Environment by Using Rapid Electrochemical Tests. Mater. Sci. Forum 1998, 289–292, 169–180. [Google Scholar] [CrossRef]
- Hassan, A.; Numin, M.S.; Jumbri, K.; Kee, K.E.; Borhan, N.; Daud, N.M.R.N.M.; Nor, A.M.; Suhor, M.F.; Wahab, R.A. Density Functional Theory Studies on New Possible Biobased Gemini Corrosion Inhibitors Derived from Fatty Hydrazide Derivatives. ACS Omega 2023, 8, 23945–23952. [Google Scholar] [CrossRef] [PubMed]
- Österberg, M.; Henn, K.A.; Farooq, M.; Valle-Delgado, J.J. Biobased Nanomaterials—The Role of Interfacial Interactions for Advanced Materials. Chem. Rev. 2023, 123, 2200–2241. [Google Scholar] [CrossRef] [PubMed]
- Valentin, R.; Mouloungui, Z. Superhydrophilic surfaces from short and medium chain solvo-surfactants. Oléagineux Corps Gras Lipides 2013, 20, 33–44. [Google Scholar] [CrossRef]
- Shenoy, P.; Kedimar, N.; Rao, S.A. A comprehensive review on anticorrosive behaviour of surfactants across diverse metals using multiple techniques: Current insights and future horizons. Chem. Eng. J. Adv. 2024, 20, 100645. [Google Scholar] [CrossRef]
- Betelu, S.; Helali, C.; Ignatiadis, I. Laboratory-Scale Implementation of Standardized Reconstituted Geothermal Water for Electrochemical Investigations of Carbon Steel Corrosion. Metals 2024, 14, 1216. [Google Scholar] [CrossRef]
- Helali, C. Sélection de Tensioactifs Biosourcés Pour L’inhibition de la Corrosion-Dépôt en Géothermie par L’évaluation Comparative de leur Action sur le Comportement Électrochimique de L’acier au Carbone: Du Laboratoire au Démonstrateur In Situ. Ph.D. Thesis, University of Toulouse ENSIACET-INP, Orléans, France, 2024; p. 358. [Google Scholar]
- Wiley, R.H.; Bennett, L.L. The Chemistry of the Oxazolines. Chem. Rev. 1949, 44, 447–476. [Google Scholar] [CrossRef]
- Frump, J.A. Oxazolines. Their preparation, reactions and applications. Chem. Rev. 1949, 44, 483–505. [Google Scholar] [CrossRef]
- Gant, T.G.; Meyers, A.I. The chemistry of 2-oxazolines (1985–present). Tetrahedron 1994, 50, 2297–2360. [Google Scholar] [CrossRef]
- Vračar, L.M.; Dražić, D.M. Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid. Corros. Sci. 2002, 44, 1669–1680. [Google Scholar] [CrossRef]
- Chauhan, D.S.; Verma, C.; Quraishi, M.A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J. Mol. Struct. 2021, 1227, 129374. [Google Scholar] [CrossRef]
- Lin, B.; Zuo, Y. Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution. RSC Adv. 2019, 9, 7065–7077. [Google Scholar] [CrossRef] [PubMed]
- Porcayo-Calderon, J.; Regla, I.; Vazquez-Velez, E.; de la Escalera, L.M.M.; Canto, J.; Casales-Diaz, M. Effect of the Unsaturation of the Hydrocarbon Chain of Fatty-Amides on the CO2 Corrosion of Carbon Steel Using EIS and Real-Time Corrosion Measurement. J. Spectrosc. 2015, 2015, 184140. [Google Scholar] [CrossRef]
- Alrefaee, S.H. Effect of alkyl chain length and halide ions on the corrosion inhibition potential of imidazolium and pyridinium based ionic liquids: Computational studies. J. Mol. Liq. 2021, 344, 117848. [Google Scholar] [CrossRef]
- Frignani, A.; Zucchi, F.; Trabanelli, G.; Grassi, V. Protective action towards aluminium corrosion by silanes with a long aliphatic chain. Corros. Sci. 2006, 48, 2258–2273. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci. 2014, 79, 5–15. [Google Scholar] [CrossRef]
- Desai, P.D.; Pawar, C.B.; Avhad, M.S.; More, A.P. Corrosion inhibitors for carbon steel: A review. Vietnam J. Chem. 2023, 61, 15–42. [Google Scholar] [CrossRef]
- Viramontes-Gamboa, G.; Rivera-Vasquez, B.F.; Dixon, D.G. The Active-Passive Behavior of Chalcopyrite: Comparative Study Between Electrochemical and Leaching Responses. J. Electrochem. Soc. 2007, 154, C299. [Google Scholar] [CrossRef]
- Gabrielli, C.; Takenouti, H. Méthodes électrochimiques appliquées à la corrosion–Techniques dynamiques. Tech. L’ingénieur 2010, 810, 1–16. [Google Scholar] [CrossRef]
- Caldona, E.B.; Zhang, M.; Liang, G.; Hollis, T.K.; Webster, C.E.; Smith, D.W.; Wipf, D.O. Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J. Electrochem. Soc. 2021, 880, 114858. [Google Scholar] [CrossRef]
- Srisuwan, N. Propriétés Inhibitrices D’un Mélange D’amines Grasses et de Sébaçate de Sodium Vis-à-Vis de La Corrosion D’un Acier Au Carbone; Institut National Polytechnique: Toulouse, France, 2008; p. 274. [Google Scholar]
- Reboul, M. Corrosion des alliages d’aluminium. Tech. L’ingénieur 2005, 325, 1–19. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv. Colloid Interface Sci. 2022, 306, 102723. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Free, M.L.; Woollam, R.; Durnie, W. A review of surfactants as corrosion inhibitors and associated modeling. Prog. Mater. Sci. 2017, 90, 159–223. [Google Scholar] [CrossRef]
- Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros. Sci. 2003, 45, 33–58. [Google Scholar] [CrossRef]
- de Damborenea, J.; Bastidas, J.M.; Vázquez, A.J. Adsorption and inhibitive properties of four primary aliphatic amines on mild steel in 2 M hydrochloric acid. Electrochim. Acta 1997, 42, 455–459. [Google Scholar] [CrossRef]
- Li, X.; Xie, X.; Deng, S.; Du, G. Two phenylpyrimidine derivatives as new corrosion inhibitors for cold rolled steel in hydrochloric acid solution. Corros. Sci. 2014, 87, 27–39. [Google Scholar] [CrossRef]
- Hong, T.; Jepson, W.P. Corrosion inhibitor studies in large flow loop at high temperature and high pressure. Corros. Sci. 2001, 43, 1839–1849. [Google Scholar] [CrossRef]
- Saji, V.S. A review on recent patents in corrosion inhibitors. Recent Pat. Corros. Sci. 2010, 2, 6–12. [Google Scholar] [CrossRef]
- Buyuksagis, A.; Dilek, M.; Kargioglu, M. Corrosion inhibition of st37 steel in geothermal fluid by Quercus robur and pomegranate peels extracts. Prot. Met. Phys. Chem. Surf. 2015, 51, 861–872. [Google Scholar] [CrossRef]
- Aristia, G.; Hoa, L.Q.; Bäßler, R. Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C. Materials 2019, 12, 3801. [Google Scholar] [CrossRef] [PubMed]
- El Brahim, I.; Lei, G. Azole-Based Compounds as Corrosion Inhibitors for Metallic Materials. In Azoles; Aleksey, K., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 5. [Google Scholar]
- Gutiérrez, E.; Rodríguez, J.A.; Cruz-Borbolla, J.; Alvarado-Rodríguez, J.G.; Thangarasu, P. Development of a predictive model for corrosion inhibition of carbon steel by imidazole and benzimidazole derivatives. Corros. Sci. 2016, 108, 23–35. [Google Scholar] [CrossRef]
- Gutig, C.; Grady, B.P.; Striolo, A. Experimental Studies on the Adsorption of Two Surfactants on Solid−Aqueous Interfaces: Adsorption Isotherms and Kinetics. Langmuir 2008, 24, 4806–4816. [Google Scholar] [CrossRef] [PubMed]
- Resende, G.O.; Teixeira, S.F.; Figueiredo, I.F.; Godoy, A.A.; Lougon, D.J.F.; Cotrim, B.A.; Souza, F.C. Synthesis of 1,2,3-Triazole Derivatives and Its Evaluation as Corrosion Inhibitors for Carbon Steel. Int. J. Electrochem. 2019, 2019, 6759478. [Google Scholar] [CrossRef]
- Srivastava, V.; Salman, M.; Chauhan, D.S.; Abdel-Azeim, S.; Quraishi, M.A. (E)-2-styryl-1H-benzo[d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. J. Mol. Liq. 2021, 324, 115010. [Google Scholar] [CrossRef]
- Martinez, S.; Stern, I. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system. Appl. Surf. Sci. 2002, 199, 83–89. [Google Scholar] [CrossRef]
- Sliem, M.H.; Afifi, M.; Radwan, A.B.; Fayyad, E.M.; Shibl, M.F.; Heakal, F.E.-T.; Abdullah, A.M. AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Sci. Rep. 2019, 9, 2319. [Google Scholar] [CrossRef] [PubMed]
- Fragoza-Mar, L.; Olivares-Xometl, O.; Domínguez-Aguilar, M.A.; Flores, E.A.; Arellanes-Lozada, P.; Jiménez-Cruz, F. Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution. Corros. Sci. 2012, 61, 171–184. [Google Scholar] [CrossRef]
- Zhu, Y.; Free, M.L.; Yi, G. The effects of surfactant concentration, adsorption, aggregation, and solution conditions on steel corrosion inhibition and associated modeling in aqueous media. Corros. Sci. 2016, 102, 233–250. [Google Scholar] [CrossRef]
- Malik, M.A.; Hashim, M.A.; Nabi, F.; Al-Thabaiti, S.A.; Khan, Z. Anti-corrosion Ability of Surfactants: A Review. Int. J. Electrochem. Sci. 2011, 6, 1927–1948. [Google Scholar] [CrossRef]
- Kern, P.; Landolt, D. Adsorption of organic corrosion inhibitors on iron in the active and passive state. A replacement reaction between inhibitor and water studied with the rotating quartz crystal microbalance. Electrochim. Acta 2001, 47, 589–598. [Google Scholar] [CrossRef]
- Öztürk, S.; Gerengi, H.; Solomon, M.M.; Gece, G.; Yıldırım, A.; Yıldız, M. A newly synthesized ionic liquid as an effective corrosion inhibitor for carbon steel in HCl medium: A combined experimental and computational studies. Mater. Today Commun. 2021, 29, 102905. [Google Scholar] [CrossRef]
- Ignatiadis, I.; Garnier, F.; Betelu, S. Étude Comparative de l’action de Différents Inhibiteurs de Corrosion-Dépôts Sur Le Comportement Électrochimique d’un Acier Au Carbone Dans Un Fluide Géothermal Reconstitué; Représentatif Du Dogger Du Bassin Parisien; Final BRGM/RP-64364-FR; BRGM: Orléans, France, 2015; p. 146. [Google Scholar]
- Hackerman, N.; Makrides, A.C. Action of Polar Organic Inhibitors in Acid Dissolution of Metals. Ind. Eng. Chem. 1954, 46, 523–527. [Google Scholar] [CrossRef]
- Yoon, S.K.; Choban, E.; Kane, C.; Tzedakis, T.; Kenis, P. Laminar flow based electrochemical microreactor for efficient regeneration of Nicotinamide cofactors for biocatalysis. J. Am. Chem. Soc. 2005, 127, 10466–10467. [Google Scholar] [CrossRef]
BSCIC 2-Oxazoline Family | Aliphatic Chain Length | Presence of Double Bond on Aliphatic Chain | Expanded Structure |
---|---|---|---|
Decenox (C10:1) | 10 | 1 | |
Decanox (C10:0) | 10 | 0 | |
Undecanox (C11:0) | 11 | 0 | |
Tridecanox (C13:0) | 13 | 0 |
Parameter | Without Inhibitor (WI) | Decenox (C10:1) | Decanox (C10:0) | Undecanox (C11:0) | Tridecanox (C13:0) |
---|---|---|---|---|---|
Content (mg/L) | 0 | 10 | 10 | 10 | 10 |
Ecorr (0.33h) (mV/SCE) | −775.03 | −727.66 | −667.22 | −682.75 | −704.45 |
ΔE1 (4h00) | −1.11 | −19.73 | −103.77 | −13.79 | 2.13 |
ΔE2 (7h40) | 2.45 | −27.79 | −106.79 | −30.47 | −9.56 |
ΔE3 (10h59) | 4.20 | −28.93 | −99.59 | −69.98 | −11.09 |
ΔE | 0.00 | 47.37 | 107.81 | 92.28 | 70.58 |
Name of Compound | Content (mg/L) | CCD Jcorr (Rp) (µA) | Average IE via Jcorr (Rp) (%) on New CS-X38 Electrode | IE (%) from Jcorr (Rp) Versus the 1st Jcorr (WI) at 44 min |
---|---|---|---|---|
Without inhibitor (WI) | 0 | 51.14 | 0.00 | 0.00 |
C(10:1) | 160 | 3.79 | 92.6 | 97.9 |
C(10:1) | 10 | 15.87 | 68.9 | 34.8 |
C(10:0) | 10 | 24.73 | 51.6 | 84.0 |
C(11:0) | 10 | 23.42 | 54.1 | 98.3 |
C(13:0) (3 loops only) | 10 | 4.05 | 92.0 | 93.5 |
Name of Compound | Content (mg/L) | Jcorr(Rw) Average at 17 h of Immersion (µA) | IE on CS-XC38 Electrode via Jcorr(Rw) at 17 h of Immersion (%) | IE on CS-XC38 Electrode via Jcorr(Rw) at 2 h17′ of Immersion (%) |
---|---|---|---|---|
Without inhibitor (WI) | 0 | 96.72 | 0.0 | 0.0 |
Decenox (C10:1) | 10 | 29.7 | 69.29 | 85.06 |
Decanox (C10:0) | 10 | 53.09 | 45.11 | 80.58 |
Undecanox (C11:0) | 10 | 50.03 | 48.27 | 96.07 |
Tridecanox (C13:0) (3 loops only) | 10 | 6.69 | 93.08 | 95.12 |
Content (mg·L−1) | 1er Rp (Ohm) | θ | Kads (M−1) | R² | ΔG° (kJ/mol) | Rp (Average) (Ohm) | θ | Kads (M−1) | R² | ΔG° (kJ/mol) |
---|---|---|---|---|---|---|---|---|---|---|
10 | 454.6 | 0.48 | 0.21 | 0.99 | −7.0 | 1115.1 | 0.78 | 0.31 | 0.99 | −7.53 |
20 | 912.5 | 0.74 | 1240.4 | 0.81 | ||||||
40 | 15,622 | 0.98 | 2266.8 | 0.89 | ||||||
80 | 28,643 | 0.99 | 4106.6 | 0.94 | ||||||
160 | 30,984 | 0.99 | 4732.0 | 0.95 |
BSCIC Oxazoline Family (CHON) | Length of Aliphatic Chain | Presence of Double Bond on the Aliphatic Chain | Average IE (%) on New Electrode via Jcorr (Rp) over 17 h | IE (%) Starting from the First Jcorr Measured via Rp (Versus the First Jcorr(wi)) over 44 min |
---|---|---|---|---|
C10:1 | 10 | 1 | 68.9 | 34.8 |
C10:0 | 10 | 0 | 51.6 | 84.0 |
C11:0 | 11 | 0 | 54.1 | 98.3 |
C13:0 (3 loops only) | 13 | 0 | 92.0 | 93.5 |
Name of BSCIC | Content (mg/L) | Average IE (%) on New Electrodes via the Three Corrosion Currents, Jcorr(Rp), Jcorr(Tafel), Jcorr(Rw), over 17 h | Average IE (%) on New Electrodes via the Three Corrosion Currents, Jcorr(Rp), Jcorr(Tafel), Jcorr(Rw), over the First Hours of Immersion |
---|---|---|---|
C10:1 | 10 | 65.31 | 51.25 |
C10:0 | 10 | 40.88 | 79.28 |
C11:0 | 10 | 37.61 | 96.04 |
C13:0 (3 loops only) | 10 | 89.80 | 93.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helali, C.; Betelu, S.; Valentin, R.; Thiebaud-Roux, S.; Ignatiadis, I. Corrosion Inhibition of Carbon Steel Immersed in Standardized Reconstituted Geothermal Water and Individually Treated with Four New Biosourced Oxazoline Molecules. Metals 2024, 14, 1439. https://doi.org/10.3390/met14121439
Helali C, Betelu S, Valentin R, Thiebaud-Roux S, Ignatiadis I. Corrosion Inhibition of Carbon Steel Immersed in Standardized Reconstituted Geothermal Water and Individually Treated with Four New Biosourced Oxazoline Molecules. Metals. 2024; 14(12):1439. https://doi.org/10.3390/met14121439
Chicago/Turabian StyleHelali, Chahinez, Stephanie Betelu, Romain Valentin, Sophie Thiebaud-Roux, and Ioannis Ignatiadis. 2024. "Corrosion Inhibition of Carbon Steel Immersed in Standardized Reconstituted Geothermal Water and Individually Treated with Four New Biosourced Oxazoline Molecules" Metals 14, no. 12: 1439. https://doi.org/10.3390/met14121439
APA StyleHelali, C., Betelu, S., Valentin, R., Thiebaud-Roux, S., & Ignatiadis, I. (2024). Corrosion Inhibition of Carbon Steel Immersed in Standardized Reconstituted Geothermal Water and Individually Treated with Four New Biosourced Oxazoline Molecules. Metals, 14(12), 1439. https://doi.org/10.3390/met14121439