Influence of Nitride Coatings on Corrosion Resistance and the Biocompatibility of Titanium Alloy Products
<p>Mapping the distribution of oxygen and carbon (a marker of biological formations) on the surface of the studied coatings.</p> "> Figure 2
<p>Analysis of the content of elements in the putative biological structures on the surface of the uncoated Ti–6Al–4V substrate, after corrosion tests in a 3% NaCl solution with preliminary planting of <span class="html-italic">Staphylococcus aureus</span>.</p> "> Figure 3
<p>Comparison of the average oxygen content (at.%) on the surface of the studied samples with various coatings.</p> "> Figure 4
<p>Structure of the Ti–TiN coating on Ti–6Al–4V alloy after corrosion testing in a 3% NaCl solution at 25 °C for 720 h: (<b>a</b>) view of the sample surface, where the green line indicates the location of the lamella cutout, (<b>b</b>) general view of the lamella across the coating thickness, and (<b>c</b>) biostructure and its adhesion to the coating.</p> "> Figure 5
<p>Distribution of elements in the surface layers of the Ti–TiN coating on Ti–6Al–4V alloy at the boundary with the biological structure after corrosion tests in a 3% NaCl solution at 25 °C for 720 h: (<b>a</b>) oxygen content in the coating surface layers and (<b>b</b>) analysis of the elemental composition of the biostructure.</p> "> Figure 6
<p>Structure of the Zr–ZrN coating on Ti–6Al–4V alloy after corrosion testing in a 3% NaCl solution at 25 °C for 720 h: (<b>a</b>) view of the sample surface, where the green line indicates the location of the lamella cutout and (<b>b</b>) the structure of the coating and biostructure on its surface.</p> "> Figure 7
<p>Oxygen (O) content in the surface layers of the Zr–ZrN coating on Ti–6Al–4V alloy after corrosion testing in 3% NaCl at 25 °C for 720 h: (<b>a</b>) O content in the coating surface layer, (<b>b</b>) study of the elemental composition of the biostructure, and (<b>c</b>) O content across the coating thickness in the area under the biostructure.</p> "> Figure 8
<p>(<b>a</b>) Surface of the Zr–(Zr, Nb)N coating with filiform biostructures and the location of the lamella cut out (green line). (<b>b</b>) Section and structure of the biostructure on the coating surface. (<b>c</b>) Structure of the intermediate layer between the biostructure and coating. (<b>d</b>) Distribution of oxygen by the depth of the Zr–(Zr, Nb)N coating on Ti–6Al–4V alloy after corrosion testing in a 3% NaCl solution at 25 °C for 720 h.</p> "> Figure 9
<p>(<b>a</b>) Surface of the Zr–(Zr, Hf)N coating with biostructures and the location of the lamella cut out (green line). (<b>b</b>) Section and structure of the biostructure on the coating surface. (<b>c</b>) Elemental and phase composition of the biostructure. (<b>d</b>) Distribution of oxygen by the depth of the Zr–(Zr, Hf)N coating on Ti–6Al–4V alloy after corrosion testing in a 3% NaCl solution at 25 °C for 720 h in region <span class="html-italic">A</span> under the biostructure and (<b>e</b>) under the free surface of the coating.</p> "> Figure 9 Cont.
<p>(<b>a</b>) Surface of the Zr–(Zr, Hf)N coating with biostructures and the location of the lamella cut out (green line). (<b>b</b>) Section and structure of the biostructure on the coating surface. (<b>c</b>) Elemental and phase composition of the biostructure. (<b>d</b>) Distribution of oxygen by the depth of the Zr–(Zr, Hf)N coating on Ti–6Al–4V alloy after corrosion testing in a 3% NaCl solution at 25 °C for 720 h in region <span class="html-italic">A</span> under the biostructure and (<b>e</b>) under the free surface of the coating.</p> ">
Abstract
:1. Introduction
- High strength (primarily compression and bending), including fatigue strength;
- High corrosion resistance (including resistance to aggressive acidic and alkaline environments and electrolytic effects);
- Biocompatibility, implying biological inertness and the suppression of undesirable consequences (inflammatory processes, fibrous tissue formation, metallosis, etc.). Ideally, the implant material should prevent the attachment of harmful bacteria (i.e., prevent the formation of biofilm [20,21]) while promoting the attachment of protein and osteoblasts for successful osseointegration [22,23];
- Acceptable cost.
2. Materials and Methods
- By washing in a special solution at a temperature of 80 °C with ultrasonic stimulation;
- For washing, neutral detergent EKOSAN 400 (OOO TD “NOVA”, Moscow, Russia) was used. This detergent was chosen because it:
- is biodegradable and safe for the environment
- does not emit harmful substances
- is fire- and explosion-proof
- does not contain phosphates
- By rinsing in purified running water;
- By drying in a stream of hot, purified air.
Corrosion Life Test Method in 3% NaCl with Preliminary Application of Microorganisms to the Coating Surface
3. Results
3.1. TiN Coating
3.2. ZrN Coating
3.3. Zr–(Zr,Nb)N Coating
3.4. Zr–(Zr, Hf)N Coating
4. Conclusions
- Coating deposition can slow and intensify oxidation processes. The O content on the surface of the TiN and (Zr, Nb)N coatings is higher than that of the uncoated Ti sample. Samples with ZrN and, especially, (Zr, Hf)N coatings resist oxidation better.
- In terms of bioactivity with respect to S. aureus, the highest density of biological forms was observed on the surface of the TiN and (Zr, Hf)N coatings, and the lowest was on the surface of uncoated samples and those with a ZrN or (Zr, Nb)N coating.
- On Ti–TiN, Zr–ZrN, and Zr–(Zr, Nb)N coatings, the formation of surface biostructures of a filamentary type was observed. These structures are presumably the remains of filamentary colonies of S. aureus. In this case, the uncoated sample has an island-like biostructure, whereas the sample with the Zr–(Zr, Hf)N coating reveals the formation of extensive biostructure areas.
- A 5 to 15 nm thick layer was observed between the biostructure and TiN and Zr–(Zr, Nb)N coatings, presumably representing the products of chemical interactions of the biostructure with the coating components, affecting the adhesive interaction of S. aureus with the sample surfaces.
- An area of active oxidation to a depth of 700 nm was observed under the biostructure on the Zr–ZrN coating, whereas in the sample with the Zr–(Zr, Hf)N coating, the O content under the biostructure is lower than on the free surface of the coating. This phenomenon may be associated with the peculiarities of the chemical interaction of the biostructure and coating material, requiring additional research.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Todros, S.; Todesco, M.; Bagno, A. Biomaterials and their biomedical applications: From replacement to regeneration. Processes 2021, 9, 1949. [Google Scholar] [CrossRef]
- Malik, N.A.; Sant, P.; Ajmal, T.; Ur-Rehman, M. Implantable antennas for biomedical applications. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 5, 84–96. [Google Scholar] [CrossRef]
- Zare, M.; Ghomi, E.R.; Venkatraman, P.D.; Ramakrishna, S. Silicone-based biomaterials for biomedical applications: Antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 2021, 138, 50969. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Pesode, P.; Barve, S. A review—Metastable β titanium alloy for biomedical applications. J. Eng. Appl. Sci. 2023, 70, 25. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: Prospect development. J. Alloys Compd. 2022, 896, 163072. [Google Scholar] [CrossRef]
- Mohan Agarwal, K.; Singhal, A.; Kapoor, A.; Bhatia, D. Simulated analysis of Ti-6Al 4V processed through equal channel angular pressing for biomedical applications. Mater. Sci. Energy Technol. 2021, 4, 290–295. [Google Scholar] [CrossRef]
- Gautam, S.; Bhatnagar, D.; Bansal, D.; Batra, H.; Goyal, N. Recent advancements in nanomaterials for biomedical implants. Biomed. Eng. Adv. 2022, 3, 100029. [Google Scholar] [CrossRef]
- Stavinoha, J.N. Investigation of Plasma Arc Welding as a Method for the Additive Manufacturing of Ti-6Al-4V Alloy Components; Montana Tech of the University of Montana: Butte, MT, USA, 2012. [Google Scholar]
- Steinemann, S.G.; Perren, S.M. Titanium alloys as metallic biomaterials. In Proceedings of the Fifth World Conference on Titanium, Munich, Germany, 10–14 September 1984; Volume 2, pp. 1327–1334. [Google Scholar]
- Sidelnikov, A.I. Comparative characteristics of materials of the titanium group used in the production of modern dental implants. InfoDENT 2000, 5, 10–12. [Google Scholar]
- Mirza, A.; King, A.; Troakes, C.; Exley, C. Aluminium in brain tissue in familial Alzheimer’s disease. J. Trace Elem. Med. Biol. 2017, 40, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Cremasco, A.; Messias, A.D.; Esposito, A.R.; Duek, E.A.R.; Caram, R. Effects of alloying elements on the cytotoxic response of titanium alloys. Mat. Sci. Eng. C 2011, 31, 833–839. [Google Scholar] [CrossRef]
- Lin, C.-W.; Ju, C.-P.; Lin, J.-H.C. A comparison of the fatigue behavior of cast Ti–7.5Mo with c.p. titanium, Ti–6Al–4V and Ti–13Nb–13Zr alloys. Biomaterials 2005, 26, 2899–2907. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, G.C.; de Almeida, G.S.; Corrêa, D.O.G.; Zambuzzi, W.F.; Buzalaf, M.A.R.; Correa, D.R.N.; Grandini, C.R. Preparation and characterization of novel as-cast Ti-Mo-Nb alloys for biomedical applications. Sci. Rep. 2022, 12, 11874. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Chen, L.-Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef]
- Sotova, C.; Yanushevich, O.; Kriheli, N.; Grigoriev, S.; Evdokimov, V.; Kramar, O.; Nozdrina, M.; Peretyagin, N.; Undritsova, N.; Popelyshkin, E.; et al. Dental Implants: Modern Materials and Methods of Their Surface Modification. Materials 2023, 16, 7383. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 147–148. [Google Scholar] [CrossRef]
- Hook, A.L.; Chang, C.-Y.; Yang, J.; Luckett, J.; Cockayne, A.; Atkinson, S.; Mei, Y.; Bayston, R.; Irvine, D.J.; Langer, R.; et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nat. Biotechnol. 2012, 30, 868. [Google Scholar] [CrossRef]
- Zhao, L.; Chu, P.K.; Zhang, Y.; Wu, Z. Antibacterial Coatings on Titanium Implants. J. Biomed. Mater. Res. B 2009, 91, 470–480. [Google Scholar] [CrossRef]
- Takematsu, E.; Katsumata, K.; Okada, K.; Niinomi, M.; Matsushita, N. Bioactive surface modification of Ti–29Nb–13Ta–4.6 Zr alloy through alkali solution treatments. Mater. Sci. Eng. C 2016, 62, 662–667. [Google Scholar] [CrossRef]
- Dikici, B.; Niinomi, M.; Topuz, M.; Koc, S.G.; Nakai, M. Synthesis of biphasic calcium phosphate (BCP) coatings on beta-type titanium alloys reinforced with rutile-TiO2 compounds: Adhesion resistance and in-vitro corrosion. J. Sol-Gel Sci. Technol. 2018, 87, 713–724. [Google Scholar] [CrossRef]
- Black, J. Biologic performance of tantalum. Clin. Mater. 1994, 16, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Balla, V.K.; Banerjee, S.; Bose, S.; Bandyopadhyay, A. Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 2010, 6, 2329–2334. [Google Scholar] [CrossRef] [PubMed]
- Sovak, G.; Weiss, A.; Gotman, I. Osseointegration of Ti6Al4V alloy implants coated with titanium nitride by a new method. J. Bone Joint Surg. Br. 2000, 82, 290–296. [Google Scholar] [CrossRef]
- Taran, A.V.; Garkusha, I.E.; Taran, V.S.; Pyvovar, N.V.; Muratov, R.M.; Leonovych, A.V.; Nikolaychuk, G.P.; Baturin, A.A. Structure of biocompatible nanocoatings obtained by physical vapor deposition on flexible polyurethane for medical applications. J. Adv. Microsc. Res. 2018, 13, 313–319. [Google Scholar] [CrossRef]
- Hajduga, M.B.; Bobinski, R. TiN, ZrN and DLC nanocoatings—A comparison of the effects on animals, in-vivo study. Mater. Sci. Eng. C 2019, 104, 109949. [Google Scholar] [CrossRef]
- Brunello, G.; Brun, P.; Gardin, C.; Ferroni, L.; Bressan, E.; Meneghello, R.; Zavan, B.; Sivolella, S. Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study. PLoS ONE 2018, 13, e0199591. [Google Scholar] [CrossRef]
- Prachar, P.; Bartakova, S.; Brezina, V.; Cvrcek, L.; Vanek, J. Cytocompatibility of implants coated with titanium nitride and zirconium nitride. Bratisl. Med. J. 2015, 116, 154–156. [Google Scholar] [CrossRef]
- Ramoul, C.; Beliardouh, N.E.; Bahi, R.; Nouveau, C.; Djahoudi, A.; Walock, M.J. Surface performances of PVD ZrN coatings in biological environments. Tribology—Mater. Surf. Interfaces 2019, 13, 12–19. [Google Scholar] [CrossRef]
- Tao, H.; Zhylinski, V.; Vereschaka, A.; Chayeuski, V.; Yuanming, H.; Milovich, F.; Sotova, C.; Seleznev, A.; Salychits, O. Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings. Coatings 2023, 13, 750. [Google Scholar] [CrossRef]
- Noori, M.; Atapour, M.; Ashrafizadeh, F.; Elmkhah, H.; di Confiengo, G.G.; Ferraris, S.; Perero, S.; Cardu, M.; Spriano, S. Nanostructured multilayer CAE-PVD coatings based on transition metal nitrides on Ti6Al4V alloy for biomedical applications. Ceram. Int. 2023, 49, 23367–23382. [Google Scholar] [CrossRef]
- Samim, P.M.; Fattah-alhosseini, A.; Elmkhah, H.; Imantalab, O. Nanoscale architecture of ZrN/CrN coatings: Microstructure, composition, mechanical properties and electrochemical behavior. J. Mater. Res. Technol. 2021, 15, 542–560. [Google Scholar] [CrossRef]
- Fazel, Z.A.; Elmkhah, H.; Fattah-Alhosseini, A.; Babaei, K.; Meghdari, M. Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN singlelayer coatings deposited by CAE-PVD method. J. Asian Ceram. Soc. 2020, 8, 510–518. [Google Scholar] [CrossRef]
- Samim, P.M.; Fattah-alhosseini, A.; Elmkhah, H.; Imantalab, O.; Nouri, M. A study on comparing surface characterization and electrochemical properties of single-layer CrN coating with nanostructured multilayer ZrN/CrN coating in 3.5 wt.% NaCl solution. Surf. Interfaces 2020, 21, 100721. [Google Scholar] [CrossRef]
- Vladescu, A.; Kiss, A.; Braic, M.; Cotrut, C.M.; Drob, P.; Balaceanu, M.; Vasilescu, C.; Braic, V. Vacuum arc deposition of nanostructured multilayer coatings for biomedical applications. J. Nanosci. Nanotechnol. 2008, 8, 733–738. [Google Scholar] [CrossRef]
- Zambrano, D.F.; Hernández-Bravo, R.; Ruden, A.; Espinosa-Arbelaez, D.G.; González-Carmona, J.M.; Mujica, V. Mechanical, tribological and electrochemical behavior of Zr-based ceramic thin films for dental implants. Ceram. Int. 2023, 49, 2102–2114. [Google Scholar] [CrossRef]
- Aslan, N.; Aksakal, B.; Cihangir, S.; Cetin, F.; Yilmazer, Y. ZrN and ta-C coatings on titanium for biomedical applications: Improved adhesion, corrosion, antibacterial activity, and cytotoxicity properties. J. Mater. Res. 2023, 38, 3923–3936. [Google Scholar] [CrossRef]
- Cui, X.; Jin, G.; Hao, J.; Li, J.; Guo, T. The influences of Si content on biocompatibility and corrosion resistance of Zr-Si-N films. Surf. Coat. Technol. 2013, 228 (Suppl. S1), S524–S528. [Google Scholar] [CrossRef]
- Ramírez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J. Niobium based coatings for dental implants. Appl. Surf. Sci. 2011, 257, 2555–2559. [Google Scholar] [CrossRef]
- Xu, Z.; Yate, L.; Qiu, Y.; Aperador, W.; Coy, E.; Jiang, B.; Moya, S.; Wang, G.; Pan, H. Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements. Mater. Sci. Eng. C 2019, 96, 166–175. [Google Scholar] [CrossRef]
- Subramanian, B. Enhancement of biocompatibility of metal implants by nanoscale TiN/NbN multilayer coatings. J. Nanosci. Nanotechnol. 2013, 13, 4565–4572. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zalnezhad, E.; Musharavati, F.; Jahanshahi, P. Investigation of the tribological and biomechanical properties of CrAlTiN and CrN/NbN coatings on SST 304. Ceram. Int. 2017, 43, 7992–8003. [Google Scholar] [CrossRef]
- Abdullin, I.S.; Mironov, M.M.; Garipova, G.I. Bactericidal and biologically stable coatings for medical implants and instruments. Med. Tekh. 2004, 4, 20–22. [Google Scholar]
- Cui, X.; Hao, J.; Wang, Y.; Dong, M.; Jin, G. The effect of Si content on the performance of magnetron sputtering Hf-Si-N films. Phys. Procedia 2013, 50, 427–432. [Google Scholar] [CrossRef]
- He, T.; Zhylinski, V.; Vereschaka, A.; Keshin, A.; Huo, Y.; Milovich, F.; Sotova, C.; Seleznev, A. Influence of niobium and hafnium doping on the wear and corrosion resistance of coatings based on ZrN. J. Mater. Res. Technol. 2023, 27, 6386–6399. [Google Scholar] [CrossRef]
- Cotrut, C.-M.; Braic, V.; Balaceanu, M.; Titorencu, I.; Braic, M.; Parau, A.C. Corrosion resistance, mechanical properties and biocompatibility of Hf-containing ZrCN coatings. Thin Solid Films 2013, 538, 48–55. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Bublikov, J.I.; Sitnikov, N.N.; Oganyan, G.V.; Sotova, C.S. Influence of nanolayer thickness on the performance properties of multilayer composite nano-structured modified coatings for metal-cutting tools. Int. J. Adv. Manuf. Technol. 2018, 95, 2625–2640. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Migranov, M.; Andreev, N.; Bublikov, J.; Sitnikov, N.; Oganyan, G. Investigation of the tribological properties of Ti-TiN-(Ti,Al,Nb,Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools. Tribol. Int. 2021, 164, 107236. [Google Scholar] [CrossRef]
- Vereschaka, A.; Grigoriev, S.; Milovich, F.; Sitnikov, N.; Migranov, M.; Andreev, N.; Bublikov, J.; Sotova, C. Investigation of tribological and functional properties of Cr,Mo-(Cr,Mo)N-(Cr,Mo,Al)N multilayer composite coating. Tribol. Int. 2021, 155, 106804. [Google Scholar] [CrossRef]
- Vereschaka, A.; Milovich, F.; Andreev, N.; Seleznev, A.; Alexandrov, I.; Muranov, A.; Mikhailov, M.; Tatarkanov, A. Comparison of properties of ZrHf-(Zr,Hf)N-(Zr,Hf,Cr,Mo,Al)N and Ti-TiN-(Ti,Cr,Al)N nanostructured multilayer coatings and cutting properties of tools with these coatings during turning of nickel alloy. J. Manuf. Processes 2023, 88, 184–201. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Seleznev, A.; Sotova, C.; Bublikov, J. Influence of the yttrium cathode arc current on the yttrium content in the (Ti,Y,Al)N coating and the coating properties. Vacuum 2024, 222, 113028. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Volosova, M.A.; Fedorov, S.V.; Migranov, M.S.; Mosyanov, M.; Gusev, A.; Okunkova, A.A. The Effectiveness of Diamond-like Carbon a-C:H:Si Coatings in Increasing the Cutting Capability of Radius End Mills When Machining Heat-Resistant Nickel Alloys. Coatings 2022, 12, 206. [Google Scholar] [CrossRef]
- Staphylococcus aureus subsp. aureus Rosenbach. Available online: https://www.atcc.org/products/6538 (accessed on 2 August 2024).
- Pyanko, A.V.; Sergievich, D.S.; Chernik, A.A.; Makarova, I.V.; Kharitonov, D.S.; Makeeva, I.S. Physicochemical and biocidal properties of nickel–TiN and nickel–TiN-titania coatings. Prot. Met. Phys. Chem. Surf. 2021, 57, 88–95. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 22nd ed.; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- GOST 9.308-85 (Russia). Unified System of Protection against Corrosion and Aging. Metallic and Non-Metallic Inorganic Coatings. Methods of Accelerated Corrosion Tests. Available online: https://internet-law.ru/gosts/gost/20202/ (accessed on 2 August 2024).
- Hamadi, F.; Latrache, H.; Zahir, H.; El Abed, S.; Ellouali, M.; Saad, I.K. The Relation Between the Surface Chemical Composition of Escherichia coli and their Electron Donor/Electron Acceptor (Acid-base) Properties. Res. J. Microbiol. 2012, 7, 32–40. [Google Scholar] [CrossRef]
- Kenneth, T. The Good, the Bad, and the Deadly: Online Textbook of Bacteriology; Bacteria and Archaea and the Cycles of Elements in the Environment (Page 1). Available online: https://www.academia.edu/download/48563182/Todars_Online_Textbook_of_Bacteriology.pdf (accessed on 30 August 2024).
- Seltmann, G.; Beer, W. Chemical composition of the capsule material of Staphylococcus aureus strain 1193/74. Z. Allg. Mikrobiol. 1976, 16, 445–452. [Google Scholar]
- Christian, J.H.B.; Waltho, J.A. The Composition of Staphylococcus aureus in Relation to the Water Activity of the Growth Medium. J. Gen. Microbial. 1964, 35, 205–213. [Google Scholar] [CrossRef]
- Hamadi, F.; Latrache, H.; Mabrrouki, M.; Elghmari, A.; Outzourhit, A.; Ellouali, M.; Chtaini, A. Effect of pH on distribution and adhesion of Staphylococcus aureus to glass. J. Adhes. Sci. Technol. 2005, 19, 73–85. [Google Scholar] [CrossRef]
- Zmantar, T.; Bettaieb, F.; Chaieb, K.; Ezzili, B.; Mora-Ponsonnet, L.; Othmane, A.; Jaffrézic, N.; Bakhrouf, A. Atomic force microscopy and hydrodynamic characterization of the adhesion of Staphylococcus aureus to hydrophilic and hydrophobic substrata at different pH values. World J. Microbiol. Biotechnol. 2011, 27, 887–896. [Google Scholar] [CrossRef]
- Azelmad, K.; Hamadi, F.; Mimouni, R.; Amzil, K.; Latrache, H.; Mabrouki, M.; El Boulani, A. Adhesion of Staphylococcus aureus and Staphylococcus xylosus to materials commonly found in catering and domestic kitchens. Food Control 2017, 73, 156–163. [Google Scholar] [CrossRef]
C | O | N | P | S | K | Na | Mg | Ca | |
---|---|---|---|---|---|---|---|---|---|
wt.% | 50.0 | 20.0 | 14.0 | 3.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 |
at.% (a) | 63.21 | 20.22 | 15.17 | 1.71 | 0.47 | 0.68 | 0.68 | 0.31 | 0.35 |
wt.% | 47.78–53.44 | 17.05–26.37 | NA | 2.75–11.24 | 1.08–2.57 | 2.25–4.13 | 1.80–2.10 | 0.24–0.72 | 1.7–8.81 |
at.% (b) | 60.41–67.56 | 17.24–25.67 | NA | 1.57–6.41 | 0.51–1.21 | 1.53–2.81 | 1.23–1.41 | 0.15–0.45 | 1.19–6.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotova, C.; Yanushevich, O.; Krikheli, N.; Kramar, O.; Vereschaka, A.; Shehtman, S.; Milovich, F.; Zhylinski, V.; Seleznev, A.; Peretyagin, P. Influence of Nitride Coatings on Corrosion Resistance and the Biocompatibility of Titanium Alloy Products. Metals 2024, 14, 1200. https://doi.org/10.3390/met14111200
Sotova C, Yanushevich O, Krikheli N, Kramar O, Vereschaka A, Shehtman S, Milovich F, Zhylinski V, Seleznev A, Peretyagin P. Influence of Nitride Coatings on Corrosion Resistance and the Biocompatibility of Titanium Alloy Products. Metals. 2024; 14(11):1200. https://doi.org/10.3390/met14111200
Chicago/Turabian StyleSotova, Catherine, Oleg Yanushevich, Natella Krikheli, Olga Kramar, Alexey Vereschaka, Semen Shehtman, Filipp Milovich, Valery Zhylinski, Anton Seleznev, and Pavel Peretyagin. 2024. "Influence of Nitride Coatings on Corrosion Resistance and the Biocompatibility of Titanium Alloy Products" Metals 14, no. 11: 1200. https://doi.org/10.3390/met14111200
APA StyleSotova, C., Yanushevich, O., Krikheli, N., Kramar, O., Vereschaka, A., Shehtman, S., Milovich, F., Zhylinski, V., Seleznev, A., & Peretyagin, P. (2024). Influence of Nitride Coatings on Corrosion Resistance and the Biocompatibility of Titanium Alloy Products. Metals, 14(11), 1200. https://doi.org/10.3390/met14111200