Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings
<p>Optical microscopy image showing the dimensions of the sample (<b>a</b>) and the coating process (<b>b</b>).</p> "> Figure 2
<p>Optical microscopy images showing general view of the samples with the (<b>a</b>) Ti-TiN, (<b>b</b>) Zr-ZrN, (<b>c</b>) Cr-CrN, (<b>d</b>) Mo-MoN coatings under consideration.</p> "> Figure 3
<p>Surface morphology (<b>top</b>) and structural features (<b>right</b>—TEM, <b>left</b>—SEM) (<b>bottom</b>) of the samples with the (<b>a</b>) Ti-TiN, (<b>b</b>) Zr-ZrN, (<b>c</b>) Cr-CrN, (<b>d</b>) Mo-MoN coatings.</p> "> Figure 4
<p>Diffraction patterns of the samples with the (<b>a</b>) Ti-TiN, (<b>b</b>) Zr-ZrN, (<b>c</b>) Cr-CrN, and (<b>d</b>) Mo-MoN coatings.</p> "> Figure 5
<p>Relationship between the adhesive component of friction coefficient <b><span class="html-italic">f<sub>adh</sub></span></b> and the temperature for the uncoated samples and the samples with the Ti-TiN, Zr-ZrN, Cr-CrN, Mo-MoN coatings.</p> "> Figure 6
<p>Alignment of potentiodynamic curves of the considered coatings of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN on the substrate of Ti-6Al-4V alloy which were obtained in the 3 wt.% aqueous solution of NaCl (the potential sweep rate V<sub>p</sub> = 1 mV/s).</p> "> Figure 7
<p>Polarization curves of the electrode made of Ti-6Al-4V titanium alloy (a) with the Zr-ZrN coating and (b) without coating in the 3 wt.% solution of NaCl: points—experimental data, straight lines—extrapolation of Tafel sections, curved line—results of mathematical modeling by the iteration method.</p> "> Figure 8
<p>Comparative diagram of the corrosion current density values for the plates made of Ti-6Al-4V alloy and coated with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN in the 3 wt.% solution of NaCl, calculated by mathematical modeling of the corrosion process by the methods of iteration, polarization resistance, and Tafel extrapolation.</p> "> Figure 9
<p>Comparative diagram of the polarization corrosion resistance values for the plates made of Ti-6Al-4V alloy and coated with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings in the 3 wt.% solution of NaCl, defined by mathematical modeling of the corrosion process by the iteration methods.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The maximum hardness (31.7 ± 1.8 GPa) was detected for the Zr-ZrN coating, while the lowest hardness (20.9 ± 1.1 GPa) was observed for the Mo-MoN coating.
- The phase analysis reveals the presence of an fcc phase in all coatings: c-TiN, c-ZrN, c-CrN, or c-MoN, respectively.
- In the temperature range of 20–400 °C, the minimum value of the adhesive component of the friction coefficient fadh was detected for the sample with the Zr-ZrN coating and in the temperature range of 700–900 °C for the sample with the Mo-MoN coating. Over the whole temperature range, all coatings, except Cr-CrN, lead to a reduction in fadh compared to the uncoated sample.
- From the comparison of the corrosion properties of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings in a 3 wt.% NaCl solution, it was found that the most acceptable method for evaluating the rate of the corrosion process from the analysis of the polarization curves of these coatings is the polarization resistance calculation method. This is due to the formation of dielectric oxide films during the corrosion process of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings, which is accompanied by a strong increase in the electrical resistance of the coating–electrolyte interface.
- The minimum corrosion currents in the 3% NaCl solution were observed for the Zr-ZrN (0.123 μA/cm2) and Cr-CrN (0.248 μA/cm2) coatings. However, the Mo-MoN coating stands out with an increase in corrosion current (2.310 μA/cm2) compared to the uncoated Ti-6Al-4V alloy (0.372 μA/cm2), and this phenomenon is probably due to the oxidative activity of the molybdenum compounds formed during the corrosion process.
- The Zr-ZrN coating is best suited to improve the tribological and anti-corrosion properties of titanium friction pairs used in media with properties such as those of the 3 wt.% NaCl solution. The improvement of the mechanical and corrosion resistance properties of the materials can be achieved by depositing multi-component coatings based on the ZrN system on their surfaces, as well as by using coatings with nanolayer structures. The properties of these coatings should be investigated further.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, M.; Singh, K. Review on titanium and titanium-based alloys as biomaterials for orthopaedical applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Chen, L.-Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium Alloys for Dental Implants: A Review. Prosthesis 2020, 2, 100–116. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, S.; Qiu, D.; Gibson, M.A.; Dargusch, M.S.; Brandt, M.; Qian, M.; Easton, M. Metal Alloys for Fusion-Based Additive Manufacturing. Adv. Eng. Mater. 2018, 20, 1700952. [Google Scholar] [CrossRef]
- Pierce, D.; Haynes, A.; Hughes, J.; Graves, R.; Maziasz, P.; Muralidharan, G.; Shyam, A.; Wang, B.; England, R.; Daniel, C. High temperature materials for heavy duty diesel engines: Historical and future trends. Prog. Mater. Sci. 2019, 103, 109–179. [Google Scholar] [CrossRef]
- Qiu, G.; Guo, Y. Current situation and development trend of titanium metal industry in China. Int. J. Miner. Met. Mater. 2022, 29, 599–610. [Google Scholar] [CrossRef]
- Xue, T.; Attarilar, S.; Liu, S.; Liu, J.; Song, X.; Li, L.; Zhao, B.; Tang, Y. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: Thematic review. Front. Bioeng. Biotechnol. 2020, 8, 603072. [Google Scholar] [CrossRef]
- Berthaud, M.; Popa, I.; Chassagnon, R.; Heintz, O.; Lavková, J.; Chevalier, S. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 °C: Effect of oxygen dissolution on lattice parameters. Corros. Sci. 2020, 164, 108049. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, J.; Chen, C.; Weng, F. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloy. Compd. 2016, 685, 784–798. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, R.; Sun, J.; Liu, C. Oxidation Mechanism of Biomedical Titanium Alloy Surface and Experiment. Int. J. Corros. 2020, 2020, 1678615. [Google Scholar] [CrossRef]
- Chaze, A.M.; Coddet, C. Influence of alloying elements on the dissolution of oxygen in the metallic phase during the oxidation of titanium alloys. J. Mater. Sci. 1987, 22, 1206–1214. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Hanawa, T. Titanium-tissue interface reaction and its control with surface treatment. Front. Bioeng. Biotechnol. 2019, 7, 170. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, S.S.; Singh, H.; Gepreel, M.A.-H. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater. Sci. Eng. C 2021, 121, 111661. [Google Scholar] [CrossRef] [PubMed]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-C.; Chen, L.-Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mater. 2020, 22, 1901258. [Google Scholar] [CrossRef]
- Spriano, S.; Yamaguchi, S.; Baino, F.; Ferraris, S. A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater. 2018, 79, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Andreev, N.; Bublikov, J.; Sitnikov, N.; Sotova, C.; Kutina, N. Investigation of wear mechanisms of multilayer nanostructured wear-resistant coatings during turning of steel. Part 2: Diffusion, oxidation processes and cracking in Ti-TiN-(Ti,Cr,Mo,Al)N coating. Wear 2021, 486–487, 204096. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Oganyan, G.; Andreev, N.; Milovich, F. Investigation of wear dynamics for cutting tools with multilayer composite nanostructured coatings in turning constructional steel. Wear 2019, 420–421, 17–37. [Google Scholar] [CrossRef]
- Stein, T.; Ein-Eli, Y. Proton exchange membrane (PEM) fuel cell bipolar plates prepared from a physical vapor deposition (PVD) titanium nitride (TiN) coated AISI416 stainless-steel. SN Appl. Sci. 2019, 1, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrog. Energy 2017, 42, 9135–9148. [Google Scholar] [CrossRef]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy 2010, 35, 3632–3647. [Google Scholar] [CrossRef]
- Ho, W.Y.; Pan, H.J.; Chang, C.L.; Wang, D.Y.; Hwang, J.J. Corrosion and electrical properties of multi-layered coatings on stainless steel for PEMFC bipolar plate applications. Surf. Coat. Technol. 2007, 202, 1297–1301. [Google Scholar] [CrossRef]
- Kahraman, H.; Cevik, I.; Dündar, F.; Ficici, F. The corrosion resistance behaviors of metallic bipolar plates for PEMFC coated with physical vapor deposition (PVD): An experimental study. Arab. J. Sci. Eng. 2016, 41, 1961–1968. [Google Scholar] [CrossRef]
- Wang, Y.; Northwood, D.O. Effect of substrate material on the corrosion of TiN-coated stainless steels in simulated anode and cathode environments of proton exchange membrane fuel cells. J. Power Sources 2009, 191, 483–488. [Google Scholar] [CrossRef]
- Wang, H.; Turner, J.A. Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 2004, 128, 193–200. [Google Scholar] [CrossRef]
- Zhang, D.; Duan, L.; Guo, L.; Wang, Z.; Zhao, J.; Tuan, W.H.; Niihara, K. TiN-coated titanium as the bipolar plate for PEMFC by multi–arc ion plating. Int. J. Hydrogen Energy 2011, 36, 9155–9161. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, D.; Wang, Z. Stacks with TiN/titanium as the bipolar plate for PEMFCs. Energy 2012, 48, 577–581. [Google Scholar] [CrossRef]
- Wang, H.; Turner, J.A. Reviewing metallic PEMFC bipolar plates. Fuel Cells 2010, 10, 510–519. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Pu, J.; Zhou, D.; Yu, M.; Wei, Y.; Guo, W. Study of NaCl-induced hot-corrosion behavior of TiN single-layer and TiN/Ti multilayer coatings at 500 °C. Corros. Sci. 2021, 192, 109838. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.; Zhou, D.; Pu, J.; Yu, M.; Guo, W. A new insight into the NaCl-induced hot corrosion mechanism of TiN coatings at 500 °C. Corros. Sci. 2020, 174, 108794. [Google Scholar] [CrossRef]
- Vega, J.; Scheerer, H.; Andersohn, G.; Oechsner, M. Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods. Corros. Sci. 2018, 133, 240–250. [Google Scholar] [CrossRef]
- Zhou, D.P.; Peng, H.; Zhu, L.; Guo, H.B.; Gong, S.K. Microstructure, hardness and corrosion behaviour of TiN/Ti multilayer coatings produced by plasma activated EB-PVD. Surf. Coat. Technol. 2014, 258, 102–107. [Google Scholar] [CrossRef]
- Shukla, K.; Rane, R.; Alphonsa, J.; Maity, P.; Mukherjee, S. Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surf. Coat. Technol. 2017, 324, 167–174. [Google Scholar] [CrossRef]
- Zhang, M.M.; Xin, L.; Ding, X.Y.; Zhu, S.L.; Wang, F.H. Effects Ti/TiAlN composite multilayer coatings on corrosion resistance of titanium alloy in solid NaCl-H2O-O2 at 600 °C. J. Alloy. Compd. 2017, 734, 307–317. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, Y.; Xin, L.; Su, J.; Li, Y.; Wu, T.; Zhao, H.; Zhang, Y.; Xie, W.; Zhu, S.; et al. Studies on corrosion resistance of thick Ti/TiN multilayer coatings under solid NaCl-H2O-O2 at 450 °C. Ceram. Int. 2020, 46, 19274–19284. [Google Scholar] [CrossRef]
- Li, R.; Cai, Y.; Wippermann, K.; Lehnert, W. Bilayer CrN/Cr coating-modified 316L stainless steel bipolar plates for high temperature polymer electrolyte fuel cells. J. Power Sources 2019, 434, 226718. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Maza, M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Sources 2011, 196, 4283–4289. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Chen, F.; Xiang, Z.D. Cr2N coated martensitic stainless steels by pack cementation process as materials for bipolar plates of proton exchange membrane fuel cells. J. Power Sources 2019, 414, 167–173. [Google Scholar] [CrossRef]
- Guan, X.Y.; Wang, Y.X.; Zhang, G.G.; Jiang, X.; Wang, L.P.; Xue, Q.J. Microstructures and properties of Zr/CrN multilayer coatings fabricated by multi-arc ion plating. Tribol. Int. 2017, 106, 78–87. [Google Scholar] [CrossRef]
- Cai, F.; Yang, Q.; Huang, X.; Wei, R. Microstructure, and corrosion behavior of CrN and CrSiCN coatings. J. Mater. Eng. Perform. 2010, 19, 721–727. [Google Scholar] [CrossRef]
- Chun, S.-Y. The structure and properties of inductively coupled plasma assisted magnetron sputtered nanocrystalline CrN coatings in corrosion protective die casting molds. J. Nanosci. Nanotechnol. 2015, 15, 5354–5357. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, C.; Chen, Q.; Yang, J.; Liu, J.; Yang, H.; Zhang, W.; Zhang, R.; He, L.; Long, J.; et al. Microstructure, high-temperature corrosion and steam oxidation properties of Cr/CrN multilayer coatings prepared by magnetron sputtering. Corros. Sci. 2021, 191, 109755. [Google Scholar] [CrossRef]
- Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X. Study of the oxidation behavior of CrN coating on Zr alloy in air. J. Nucl. Mater. 2019, 515, 354–369. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, N.; Sproul, W.D.; Moore, J.J. A comparison of the oxidation behavior of CrN films deposited using continuous dc, pulsed dc and modulated pulsed power magnetron sputtering. Surf. Coat. Technol. 2012, 206, 3283–3290. [Google Scholar] [CrossRef]
- Liu, C.; Leyland, A.; Bi, Q.; Matthews, A. Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings. Surf. Coat. Technol. 2001, 141, 164–173. [Google Scholar] [CrossRef]
- Liu, C.; Bi, Q.; Leyland, A.; Matthews, A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling. Corros. Sci. 2003, 45, 1243–1256. [Google Scholar] [CrossRef]
- Gilewicz, A.; Chmielewska, P.; Murzynski, D.; Dobruchowska, E.; Warcholinski, B. Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer’s and Hank’s solutions. Surf. Coat. Technol. 2016, 299, 7–14. [Google Scholar] [CrossRef]
- Close, T.F.; Lia, T.M.; Liu, H.M.; Wei, S.H.; Hussaina, J.X.; Wang, W.; Zeng, X.H.; Peng, Z.C. Wang. First-principles calculations of the twin boundary energies and adhesion energies of interfaces for cubic face-centered transition-metal nitrides and carbides. Appl. Surf. Sci. 2015, 355, 1132–1135. [Google Scholar]
- Roman, D.; Bernardi, J.; de Amorim, C.L.; de Souza, F.S.; Spinelli, A.; Giacomelli, C.; Figueroa, C.A.; Baumvol, I.J.; Basso, R.L. Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering. Mater. Chem. Phys. 2011, 130, 147–153. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Wu, R.; Liu, L.; Pan, B.; Liu, C. Structural and corrosion resistance properties of sputtered zirconium nitride thin films as electrode material for supercapacitor. J. Alloy. Compd. 2022, 900, 163506. [Google Scholar] [CrossRef]
- Jin, W.; Zhou, H.; Li, J.; Ruan, Q.; Li, J.; Peng, X.; Li, W.; Chu, P.K. Zirconium-based nanostructured coating on the Mg-4Y-3Re alloy for corrosion retardation. Chem. Phys. Lett. 2020, 756, 137824. [Google Scholar] [CrossRef]
- Sarioglu, C.; Demirler, U.; Kazmanli, M.K.; Urgen, M. Measurement of residual stresses by X-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate. Surf. Coat. Technol. 2005, 190, 238–243. [Google Scholar] [CrossRef]
- Lunarska, E. Corrosion resistance of TiN and MoN coated grey cast iron in acid solutions. Mater. Corros. Werkst. Und Korrosion. 1997, 48, 101–109. [Google Scholar] [CrossRef]
- Lee, S.H.; Kakati, N.; Maiti, J.; Jee, S.H.; Kalita, D.J.; Yoon, Y.S. Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells. Thin Solid Film. 2013, 529, 374–379. [Google Scholar] [CrossRef]
- Suo, X.; Guo, C.; Kong, D.; Wang, L. Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy. Int. J. Electrochem. Sci. 2019, 14, 826–837. [Google Scholar] [CrossRef]
- Nam, N.D.; Kim, M.J.; Jo, D.S.; Kim, J.G.; Yoon, D.H. Corrosion protection of Ti/TiN, Cr/TiN, Ti/CrN, and Cr/CrN multi-coatings in simulated proton exchange membrane fuel cell environment. Thin Solid Film. 2013, 545, 380–384. [Google Scholar] [CrossRef]
- Chim, Y.C.; Ding, X.Z.; Zeng, X.T.; Zhang, S. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Film. 2009, 517, 4845–4849. [Google Scholar] [CrossRef]
- Ma, Z.-K.; Gao, Y.; Cai, H.-W.; Wang, C.; Yuan, L.; Zhang, Y.; Wu, W.-Q. Corrosion resistance of TiN and CrN coatings with arc ion plating on 201 stainless steel surfaces. Corros. Prot. 2013, 34, 670–672. [Google Scholar]
- Yi, P.; Zhu, L.; Dong, C.; Xiao, K. Corrosion and interfacial contact resistance of 316L stainless steel coated with magnetron sputtered ZrN and TiN in the simulated cathodic environment of a proton-exchange membrane fuel cell. Surf. Coat. Technol. 2019, 363, 198–202. [Google Scholar] [CrossRef]
- Blanco, D.; Viesca, J.L.; Mallada, M.T.; Ramajo, B.; González, R.; Battez, A.H. Wettability and corrosion of [NTf2] anion-based ionic liquids on steel and PVD (TiN, CrN, ZrN) coatings. Surf. Coat. Technol. 2016, 302, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Samim, P.M.; Fattah-Alhosseini, A.; Elmkhah, H.; Imantalab, O. A study on the corrosion resistance of ZrN/CrN multilayer nanostructured coating applied on AISI 304 stainless steel using Arc-PVD method in 3.5 wt% NaCl solution. Mater. Res. Express 2019, 6, 126426. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, K.H.; Shao, Z.; Wang, F.; Zhao, S.; Suo, N. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells. J. Power Sources 2014, 253, 201–204. [Google Scholar] [CrossRef]
- Jin, J.; Liu, H.; Zheng, D.; Zhu, Z. Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment. Int. J. Hydrogen Energy 2018, 43, 10048–10060. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Sitnikov, N.; Andreev, N.; Bublikov, J.; Kutina, N. Investigation of the properties of the Cr,Mo-(Cr,Mo,Zr,Nb)N-(Cr,Mo,Zr,Nb,Al)N multilayer composite multicomponent coating with nanostructured wear-resistant layer. Wear 2021, 468–469, 203597. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Tabakov, V.; Sitnikov, N.; Andreev, N.; Sviridova, T.; Bublikov, J. Investigation of multicomponent nanolayer coatings based on nitrides of Cr, Mo, Zr, Nb, and Al. Surf. Coat. Technol. 2020, 401, 126258. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Sotova, C.; Kutina, N. Investigation of the influence of the thickness of nanolayers in wear-resistant layers of Ti-TiN-(Ti,Cr,Al)N coating on destruction in the cutting and wear of carbide cutting tools. Surf. Coat. Technol. 2020, 385, 125402. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Bublikov, J.I.; Sitnikov, N.N.; Oganyan, G.V.; Sotova, C.S. Influence of nanolayer thickness on the performance properties of multilayer composite nano-structured modified coatings for metal-cutting tools. Int. J. Adv. Manuf. Technol. 2018, 95, 2625–2640. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Milovich, F.; Andreev, N.; Bublikov, J. Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr-CrN-(Ti,Cr,Al,Si)N coating in high-speed steel turning. Wear 2019, 438–439, 203069. [Google Scholar] [CrossRef]
- Vereschaka, A.; Tabakov, V.; Grigoriev, S.; Sitnikov, N.; Andreev, N.; Milovich, F. Investigation of wear and diffusion processes on rake faces of carbide inserts with Ti-TiN-(Ti,Al,Si)N composite nanostructured coating. Wear 2018, 416–417, 72–80. [Google Scholar] [CrossRef]
- Vereschaka, A.A.; Vereschaka, A.S.; Grigoriev, S.N.; Kirillov, A.K.; Khaustova, O.U. Development and research of environmentally friendly dry technological machining system with compensation of physical function of cutting fluids. Procedia CIRP 2013, 7, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.; Vereschaka, A.; Uglov, V.; Milovich, F.; Cherenda, N.; Andreev, N.; Migranov, M.; Seleznev, A. Influence of tribological properties of Zr-ZrN-(Zr,Cr,Al)N and Zr-ZrN-(Zr,Mo,Al)N multilayer nanostructured coatings on the cutting properties of coated tools during dry turning of Inconel 718 alloy. Wear 2023, 512–513, 204521. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Andreev, N.; Bublikov, J.; Seleznev, A.; Kutina, N. Influence of Mo content on the properties of multilayer nanostructured coatings based on the (Mo,Cr,Al)N system. Tribol. Int. 2022, 174, 107741. [Google Scholar] [CrossRef]
- Vereschaka, A.; Milovich, F.; Andreev, N.; Sotova, C.; Alexandrov, I.; Muranov, A.; Mikhailov, M.; Tatarkanov, A. Investigation of the structure and phase composition of the microdroplets formed during the deposition of PVD coatings. Surf. Coat. Technol. 2022, 441, 128574. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Mustafaev, E. Specific features of the structure and properties of arc–PVD coatings depending on the spatial arrangement of the sample in the chamber. Vacuum 2022, 200, 111047. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Zelenkov, V.; Sitnikov, N.; Bublikov, J.; Milovich, F.; Andreev, N.; Sotova, C. Investigation of the influence of the features of the deposition process on the structural features of microparticles in PVD coatings. Vacuum 2022, 202, 111144. [Google Scholar] [CrossRef]
- Shuster, L.S. Adhesive Interaction of the Cutting Tool with the Material Being Processed; Mashinostroenije: Moscow, Russia, 1988; p. 96. [Google Scholar]
- Vereschaka, A.; Grigoriev, S.; Tabakov, V.; Migranov, M.; Sitnikov, N.; Milovich, F.; Andreev, N. Influence of the nanostructure of Ti-TiN-(Ti,Al,Cr)N multilayer composite coating on tribological properties and cutting tool life. Tribol. Int. 2020, 150, 106388. [Google Scholar] [CrossRef]
- Grigoriev, S.; Vereschaka, A.; Milovich, F.; Migranov, M.; Andreev, N.; Bublikov, J.; Sitnikov, N.; Oganyan, G. Investigation of the tribological properties of Ti-TiN-(Ti, Al, Nb, Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools. Tribol. Int. 2021, 164, 107236. [Google Scholar] [CrossRef]
- Vereschaka, A.; Milovich, F.; Migranov, M.; Andreev, N.; Alexandrov, I.; Muranov, A.; Mikhailov, M.; Tatarkanov, A. Investigation of the tribological and operational properties of (Mex,Moy,Al1−(x+y))N (Me–Ti, Zr or Cr) coatings. Tribol. Int. 2022, 165, 107305. [Google Scholar] [CrossRef]
- Vereschaka, A.; Grigoriev, S.; Milovich, F.; Sitnikov, N.; Migranov, M.; Andreev, N.; Bublikov, J.; Sotova, C. Investigation of tribological and functional properties of Cr, Mo-(Cr, Mo)N-(Cr, Mo, Al)N multilayer composite coating. Tribol. Int. 2021, 155, 106804. [Google Scholar] [CrossRef]
- Poorqasemi, E.; Abootalebi, O.; Peikari, M.; Haqdar, F. Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corros. Sci. 2009, 51, 1043–1054. [Google Scholar] [CrossRef]
- Mansfeld, F.; Fontana, G.; Staehle, R.W. The Polarization Resistance Technique for Measuring Corrosion Currents. Adv. Corros. Sci. Technol. 1976, 6, 163–175. [Google Scholar]
- Rybalka, K.V.; Beketaeva, L.A.; Davydov, A.D. Estimation of corrosion current by the analysis of polarization curves: Electrochemical kinetics mode. Russ. J. Electrochem. 2014, 50, 108. [Google Scholar] [CrossRef]
- Sinkeviciute, D.; Baltrusaitis, J.; Dukstiene, N. Layered molybdenum oxide thin films electrodeposited from sodium citrate electrolyte solution. J. Solid-State Electrochem. 2011, 15, 711–723. [Google Scholar] [CrossRef]
- de Castro, I.A.; Datta, R.S.; Ou, J.Z.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar Zadeh, K. Molybdenum Oxides—From Fundamentals to Functionality. Adv. Mater. 2017, 29, 1701619. [Google Scholar] [CrossRef]
- Chayeuski, V.; Taleb, A.; Zhylinski, V.; Kuleshov, A.; Shtempliuk, R. Preparation and Characterization of the Cr-Nanodiamonds/MoN Coatings with Performant Mechanical Properties. Coatings 2022, 12, 1012. [Google Scholar] [CrossRef]
- Chayeuski, V.; Zhylinski, V.; Grishkevich, A.; Rudak, P.; Barcik, S. Influence of high energy treatment on wear of edges knives of wood–cutting tools. MM Sci. J. 2016, 12, 1519–1523. [Google Scholar] [CrossRef] [Green Version]
- Chayeuski, V.; Zhylinski, V.; Cernashejus, O.; Visniakov, N.; Mikalauskas, G. Structural and Mechanical Properties of the ZrC/Ni-Nanodiamond Coating Synthesized by the PVD and Electroplating Processes for the Cutting Knifes. J. Mater. Eng. Perform. 2019, 28, 1278–1285. [Google Scholar] [CrossRef]
- Zhylinski, V.; Chayeuski, V.; Kuleshov, A.; Koleda, P.; Barcik, S. Investigation of adhesion and wear of ZrC coating on woodcutting tools. Acta Fac. Tech. 2019, XXIV, 53–59. [Google Scholar]
- Chayeuski, V.V.; Zhylinski, V.V.; Rudak, P.V.; Rusalsky, D.P.; Višniakov, N.; Cernašejus, O. Characteristics of ZrC/Ni-UDD coatings for a tungsten carbide cutting tool. Appl. Surf. Sci. 2018, 446, 18–26. [Google Scholar] [CrossRef]
- Thakur, A.; Kaya, S.; Abousalem, A.S.; Kumar, A. Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment. Sustain. Chem. Pharm. 2022, 29, 100785. [Google Scholar] [CrossRef]
- Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent Advancements in Surface Modification,Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants. Coatings 2022, 12, 1459. [Google Scholar] [CrossRef]
Elements | Fe | C | Si | V | Ti | Al | Zr | Others |
---|---|---|---|---|---|---|---|---|
Partition, wt.% | ~0.6 | ~0.1 | ~0.1 | 3.5–5.3 | 86.5–90.9 | 5.3–6.8 | ~0.3 | ~0.6 |
Cathode | Ti | Zr | Cr | Mo |
---|---|---|---|---|
Arc current (A) | 75 | 65 | 78 | 80 |
Coating | Hardness (GPa) | Elastic Modulus (GPa) | Critical Load LC2 (N) |
---|---|---|---|
Ti-TiN | 24.9 ± 1.3 | 266.7 ± 26.2 | >40 |
Zr-ZrN | 31.7 ± 1.8 | 248.5 ± 37.4 | >40 |
Cr-CrN | 29.9 ± 1.3 | 217.2 ± 28.2 | 32 |
Mo-MoN | 20.9 ± 1.1 | 226.6 ± 31.4 | 38 |
Coating | Corrosion Potential (V) | Corrosion Current Density (μA/cm2) | Corrosion Penetration (μm/year) | Tafel Coef-Ficient bc, (V) | Tafel Coef-Ficient ba (V) | Calculated Corrosion Potential (V) | Polarization Resistance (kOhm) |
---|---|---|---|---|---|---|---|
Cr-CrN | −0.026 | 0.38 | 3.4 | 0.201 | 0.208 | −0.027 | 115.8 |
Mo-MoN | 0.095 | 8.19 | 72.2 | 0.403 | 0.421 | 0.098 | 10.9 |
Ti-TiN | −0.078 | 1.48 | 13.0 | 0.233 | 2.493 | −0.096 | 62.6 |
Zr-ZrN | −0.017 | 0.34 | 3.0 | 0.281 | 0.367 | −0.021 | 202.9 |
uncoated | −0.045 | 0.69 | 6.0 | 0.146 | 1.201 | −0.062 | 82.5 |
Coating | Corrosion Potential (V) | Corrosion Current Density (μA/cm2) | Corrosion Penetration (μm/year) | Tafel Coef-Ficient bc, (V) | Tafel Coef-Ficient ba (V) | Calculated Corrosion Potential (V) | Polarization Resistance (kOhm) |
---|---|---|---|---|---|---|---|
Cr-CrN | −0.026 | 0.218 | 1.93 | 0.1552 | 0.1670 | −0.028 | 29.427 |
Mo-MoN | 0.095 | 8.190 | 72.48 | 0.2055 | 0.2047 | 0.098 | 0.783 |
Ti-TiN | −0.078 | 1.480 | 13.10 | 0.1268 | 0.4140 | −0.096 | 4.334 |
Zr-ZrN | −0.017 | 0.341 | 3.02 | 0.1986 | 0.2610 | −0.021 | 18.812 |
uncoated | −0.045 | 0.390 | 3.45 | 0.0969 | 0.5814 | −0.062 | 16.449 |
Coating | Corrosion Potential (V) | Corrosion Current Density (μA/cm2) | Corrosion Penetration (μm/year) | Polarization Resistance (kOhm) |
---|---|---|---|---|
Cr-CrN | −0.026 | 0.248 | 2.19 | 105.0 |
Mo-MoN | 0.095 | 2.310 | 20.40 | 11.2 |
Ti-TiN | −0.078 | 0.411 | 3.63 | 63.3 |
Zr-ZrN | −0.017 | 0.123 | 1.09 | 210.9 |
Uncoated | −0.045 | 0.372 | 3.28 | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Zhylinski, V.; Vereschaka, A.; Chayeuski, V.; Yuanming, H.; Milovich, F.; Sotova, C.; Seleznev, A.; Salychits, O. Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings. Coatings 2023, 13, 750. https://doi.org/10.3390/coatings13040750
Tao H, Zhylinski V, Vereschaka A, Chayeuski V, Yuanming H, Milovich F, Sotova C, Seleznev A, Salychits O. Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings. Coatings. 2023; 13(4):750. https://doi.org/10.3390/coatings13040750
Chicago/Turabian StyleTao, He, Valery Zhylinski, Alexey Vereschaka, Vadzim Chayeuski, Huo Yuanming, Filipp Milovich, Catherine Sotova, Anton Seleznev, and Olga Salychits. 2023. "Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings" Coatings 13, no. 4: 750. https://doi.org/10.3390/coatings13040750
APA StyleTao, H., Zhylinski, V., Vereschaka, A., Chayeuski, V., Yuanming, H., Milovich, F., Sotova, C., Seleznev, A., & Salychits, O. (2023). Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings. Coatings, 13(4), 750. https://doi.org/10.3390/coatings13040750