Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells
"> Figure 1
<p>Cytotoxicity of B16F10 cells following treatment with TME, TME-A, and TME-EA. The cells were treated with TME (<b>A</b>), TME-A (<b>B</b>), and TME-EA (<b>C</b>) for 24 h without α-MSH or with 10, 50, 100, and 200 µg/mL of TME (<b>D</b>), 100, 250, 500, and 1000 µg/mL of TME-A (<b>E</b>), and 1, 5, 10, and 15 µg/mL of TME-EA (<b>F</b>) with 200 nM α-MSH for 72 h. Arbutin (1 mM) was used as a positive control. The results are expressed as a percentage of the value derived for the control group. Values are presented as means ± SEM ((<b>A</b>–<b>C</b>): n = 6, (<b>D</b>–<b>F</b>): n = 3) and statistical analysis was performed using the Welch ANOVA test with the Games–Howell multiple comparison test ((<b>A</b>–<b>C</b>)) and the Kruskal–Wallis test with Dunn’s multiple comparison test ((<b>D</b>–<b>F</b>)). Statistical significance is indicated as follows: * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 compared to the control group.</p> "> Figure 2
<p>Inhibitory effect of TME, TME-A, and TME-EA on melanin synthesis in B16F10 cells. Cells were treated with α-MSH (200 nM), arbutin (1 mM), TME (<b>A</b>), TME-A (<b>B</b>), or TME-EA (<b>C</b>) for 72 h. Melanin content was measured based on absorbance at 405 nm. Values are expressed as means ± SEM (n = 3) and statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. #### <span class="html-italic">p <</span> 0.0001 versus control group, * <span class="html-italic">p <</span> 0.05, ** <span class="html-italic">p <</span> 0.01, *** <span class="html-italic">p <</span> 0.001, and **** <span class="html-italic">p <</span> 0.0001 versus α-MSH treatment group.</p> "> Figure 3
<p>Effect of TME, TME-A, and TME-EA on intracellular tyrosinase activity. Cells (1.0 × 104 cells/mL) were pre-incubated for 24 h and treated with TME (<b>A</b>), TME-A (<b>B</b>), TME-EA (<b>C</b>), or 200 nM α-MSH for 72 h, and intracellular tyrosinase activity was measured. Values are expressed as means ± SEM (n = 3) and statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. #### <span class="html-italic">p <</span> 0.0001 versus control group, * <span class="html-italic">p <</span> 0.05, ** <span class="html-italic">p <</span> 0.01, *** <span class="html-italic">p <</span> 0.001, and **** <span class="html-italic">p <</span> 0.0001 versus α-MSH treatment group.</p> "> Figure 4
<p>Effect of TME-EA on genes related to melanogenesis. B16F10 cells were treated with TME-EA (1, 5, 10, and 15 µg/mL) and α-MSH (200 nM). mRNA levels of <span class="html-italic">Tyr</span> (<b>A</b>), <span class="html-italic">Dct</span> (<b>B</b>), <span class="html-italic">Trp1</span> (<b>C</b>), <span class="html-italic">Mc1r</span> (<b>D</b>), and <span class="html-italic">Mitf</span> (<b>E</b>) were determined using RT-qPCR. GAPDH was used as a reference gene. Data represent means ± SEM (n = 3) and statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. #### <span class="html-italic">p <</span> 0.0001 versus control group, * <span class="html-italic">p <</span> 0.05, ** <span class="html-italic">p <</span> 0.01, *** <span class="html-italic">p <</span> 0.001, and **** <span class="html-italic">p <</span> 0.0001 versus α-MSH treatment group.</p> "> Figure 5
<p>Effect of TME-EA on melanogenesis-related signaling pathways. B16F10 cells were treated with TME-EA (1, 5, 10, and 15 µg/mL) in the presence of α-MSH (200 nM) for 24 h. MITF and tyrosinase levels (<b>A</b>), MAPK protein phosphorylation (<b>B</b>), CREB phosphorylation (<b>C</b>), and cAMP levels (<b>D</b>) were assessed. Values are presented as means ± SEM (n = 3) and statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. # <span class="html-italic">p <</span> 0.05, ## <span class="html-italic">p</span> < 0.01, #### <span class="html-italic">p <</span> 0.0001 versus control group, * <span class="html-italic">p <</span> 0.05, ** <span class="html-italic">p <</span> 0.01, *** <span class="html-italic">p <</span> 0.001, and **** <span class="html-italic">p <</span> 0.0001 versus α-MSH treatment group.</p> "> Figure 6
<p>Measurement of active compounds in TME and TME-EA at 254 nm using HPLC-PDA analysis. Luteolin standard (0.1 mg/mL) (<b>A</b>); TME (1 mg/mL) (<b>B</b>); TME-EA (1 mg/mL) (<b>C</b>).</p> "> Figure 7
<p>Effect of luteolin on cytoxicity, melanin synthesis, and intracellular tyrosinase activity. Cells were treated with luteolin or 200 nM α-MSH for 72 h, and cell viability (<b>A</b>), melanin content (<b>B</b>), and intracellular tyrosinase activity (<b>C</b>) was assessed. Values are expressed as means ± SEM (n = 3) and statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparison test. ### <span class="html-italic">p <</span> 0.001, #### <span class="html-italic">p <</span> 0.0001 versus control group and *** <span class="html-italic">p <</span> 0.001, **** <span class="html-italic">p <</span> 0.0001 versus α-MSH treatment group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cell Viability of B16F10 Cells Exposed to T. maritima Extracts
2.2. Effects of T. maritima Extracts on Melanogenesis in α-MSH-Stimulated Melanoma Cells
2.3. Tyrosinase Activity by T. maritima Extract in α-MSH-Induced B16F10 Cells
2.4. Changes in Melanogenesis-Related Gene Expression Induced by TME-EA
2.5. Effects of TME-EA on Melanogenesis-Related Signaling Pathways
2.6. Identification of Active Compounds in T. maritima Extract
2.7. Effect of Luteolin on Melanogenesis in α-MSH-Induced B16F10 Cells
3. Discussion
4. Materials and Methods
4.1. Preparation of T. maritima Extracts
4.2. Cell Culture
4.3. Cell Viability
4.4. Measurement of Melanin Content
4.5. Cellular Tyrosinase Activity Assay
4.6. RNA Isolation and cDNA Synthesis
4.7. Real-Time qPCR Analysis
4.8. Western Blotting
4.9. Enzyme-Linked Immunosorbent Assay (ELISA)
4.10. High-Performance Liquid Chromatography (HPLC) Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoath, S.B.; Leahy, D.G. The organization of human epidermis: Functional epidermal units and phi proportionality. J. Investig. Dermatol. 2003, 121, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, Y.; Coelho, S.G.; Wolber, R.; Miller, S.A.; Wakamatsu, K.; Zmudzka, B.Z.; Ito, S.; Smuda, C.; Passeron, T.; Choi, W.; et al. Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment. Cell Res. 2007, 20, 2–13. [Google Scholar] [CrossRef]
- Kim, S.J.; Na, H.-W.; Jang, Y.; Shin, D.Y.; Choi, H.; Kim, H.-J.; Seo, Y.R. Network analysis to understand side effects of UVB on skin through transcriptomic approach. Mol. Cell. Toxicol. 2022, 18, 457–467. [Google Scholar] [CrossRef]
- Speeckaert, R.; Van Gele, M.; Speeckaert, M.M.; Lambert, J.; van Geel, N. The biology of hyperpigmentation syndromes. Pigment. Cell Melanoma Res. 2014, 27, 512–524. [Google Scholar] [CrossRef]
- Schalka, S. New data on hyperpigmentation disorders. J. Eur. Acad. Dermatol. Venereol. 2017, 31 (Suppl. 5), 18–21. [Google Scholar] [CrossRef] [PubMed]
- Mobasher, P.; Foulad, D.P.; Raffi, J.; Zachary, C.; Fackler, N.; Zohuri, N.; Juhasz, M.; Atanaskova Mesinkovska, N. Catamenial Hyperpigmentation: A Review. J. Clin. Aesthet. Dermatol. 2020, 13, 18–21. [Google Scholar]
- Hida, T.; Kamiya, T.; Kawakami, A.; Ogino, J.; Sohma, H.; Uhara, H.; Jimbow, K. Elucidation of Melanogenesis Cascade for Identifying Pathophysiology and Therapeutic Approach of Pigmentary Disorders and Melanoma. Int. J. Mol. Sci. 2020, 21, 6129. [Google Scholar] [CrossRef] [PubMed]
- Wolf Horrell, E.M.; Boulanger, M.C.; D’Orazio, J.A. Melanocortin 1 Receptor: Structure, Function, and Regulation. Front. Genet. 2016, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Jung, S.H. Downregulation of melanogenesis: Drug discovery and therapeutic options. Drug Discov. Today 2017, 22, 282–298. [Google Scholar] [CrossRef]
- Yao, C.; Oh, J.-h.; Oh, I.G.; Park, C.-h.; Chung, J.H. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway. Acta Pharmacol. Sin. 2013, 34, 289–294. [Google Scholar] [CrossRef]
- Lee, W.R.; Shen, S.C.; Wu, P.R.; Chou, C.L.; Shih, Y.H.; Yeh, C.M.; Yeh, K.T.; Jiang, M.C. CSE1L Links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol. Carcinog. 2016, 55, 1542–1552. [Google Scholar] [CrossRef]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef]
- Seo, G.Y.; Ha, Y.; Park, A.H.; Kwon, O.W.; Kim, Y.J. Leathesia difformis Extract Inhibits α-MSH-Induced Melanogenesis in B16F10 Cells via Down-Regulation of CREB Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 536. [Google Scholar] [CrossRef]
- Fang, C.-L.; Goswami, D.; Kuo, C.-H.; Day, C.H.; Lin, M.-Y.; Ho, T.-J.; Yang, L.-Y.; Hsieh, D.J.-Y.; Lin, T.-K.; Huang, C.-Y. Angelica dahurica attenuates melanogenesis in B16F0 cells by repressing Wnt/β-catenin signaling. Mol. Cell. Toxicol. 2023, 19, 135–143. [Google Scholar] [CrossRef]
- Reed, D.; van Wesenbeeck, B.; Herman, P.M.; Meselhe, E. Tidal flat-wetland systems as flood defenses: Understanding biogeomorphic controls. Estuar. Coast. Shelf Sci. 2018, 213, 269–282. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, F.; Heidari, A.; Farzam, M.; Karimi, A.; Amini, M. Effect of manure and biochar on the aluminum, copper, and iron bioaccumulation by Salicornia species in soil. Toxicol. Environ. Health Sci. 2024, 16, 37–47. [Google Scholar] [CrossRef]
- Davy, A.; Bishop, G. Biological flora of the British Isles. J. Ecol. 1991, 79, 531–555. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Jung, H. Distribution patterns of halophytes in the coastal area in Korea. Sea J. Korean Soc. Oceanogr. 2019, 24, 139–159. [Google Scholar]
- Lellau, T.F.; Liebezeit, G. Activity of ethanolic extracts of salt marsh plants from the Lower Saxonian Wadden Sea Coast against microorganisms. Senckenberg. Maritima 2003, 32, 177–181. [Google Scholar] [CrossRef]
- Lee, J.M.; Yim, M.-J.; Choi, G.; Lee, M.S.; Park, Y.G.; Lee, D.-S. Antioxidant and anti-inflammatory activity of six halophytes in Korea. Nat. Prod. Sci. 2018, 24, 40–46. [Google Scholar] [CrossRef]
- Kim, H.S.; Jeong, E.J.; Lee, S.B.; Rho, J.R. Compounds Isolated from Triglochin maritimum L. and Composition for Preventing, Improving, or Treating Benign Prostatic Hyperplasia Comprising the Same as an Effective Ingredient. Patent No. KR20210054784A, 14 May 2021. [Google Scholar]
- Pillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S.H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61, 7395–7418. [Google Scholar] [CrossRef]
- del Marmol, V.; Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 1996, 381, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Malek, Z.A.; Scott, M.C.; Furumura, M.; Lamoreux, M.L.; Ollmann, M.; Barsh, G.S.; Hearing, V.J. The melanocortin 1 receptor is the principal mediator of the effects of agouti signaling protein on mammalian melanocytes. J. Cell Sci. 2001, 114, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, J.; Li, Y.; Liu, Z.; Lin, Y.; Huang, J.A. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 2020, 145, 104634. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bergami, P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment. Cell Melanoma Res. 2011, 24, 902–921. [Google Scholar] [CrossRef] [PubMed]
- Seong, Z.K.; Lee, S.Y.; Poudel, A.; Oh, S.R.; Lee, H.K. Constituents of Cryptotaenia japonica Inhibit Melanogenesis via CREB- and MAPK-Associated Signaling Pathways in Murine B16 Melanoma Cells. Molecules 2016, 21, 1296. [Google Scholar] [CrossRef]
- Alam, M.B.; Ahmed, A.; Motin, M.A.; Kim, S.; Lee, S.H. Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci. Rep. 2018, 8, 13928. [Google Scholar] [CrossRef]
- Chao, H.C.; Najjaa, H.; Villareal, M.O.; Ksouri, R.; Han, J.; Neffati, M.; Isoda, H. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp. Dermatol. 2013, 22, 131–136. [Google Scholar] [CrossRef]
- Lee, S.G.; Karadeniz, F.; Seo, Y.; Kong, C.S. Anti-Melanogenic Effects of Flavonoid Glycosides from Limonium tetragonum (Thunb.) Bullock via Inhibition of Tyrosinase and Tyrosinase-Related Proteins. Molecules 2017, 22, 1480. [Google Scholar] [CrossRef]
- Mitra, A.; Zaman, S. Basics of Marine and Estuarine Ecology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Faustino, M.V.; Faustino, M.A.F.; Pinto, D. Halophytic Grasses, a New Source of Nutraceuticals? A Review on Their Secondary Metabolites and Biological Activities. Int. J. Mol. Sci. 2019, 20, 1067. [Google Scholar] [CrossRef] [PubMed]
- Baysal, I.; Ekizoglu, M.; Ertas, A.; Temiz, B.; Agalar, H.G.; Yabanoglu-Ciftci, S.; Temel, H.; Ucar, G.; Turkmenoglu, F.P. Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules 2021, 26, 4040. [Google Scholar] [CrossRef]
- Oueslati, S.; Ksouri, R.; Falleh, H.; Pichette, A.; Abdelly, C.; Legault, J. Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem. 2012, 132, 943–947. [Google Scholar] [CrossRef]
- Romanová, D.; Vachálková, A.; Cipák, L.; Ovesná, Z.; Rauko, P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma 2001, 48, 104–107. [Google Scholar]
- Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef]
- Jang, T.Y.; Jung, A.Y.; Kyung, T.S.; Kim, D.Y.; Hwang, J.H.; Kim, Y.H. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Cent. Eur. J. Immunol. 2017, 42, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.R.; Sharma, S.; Mandal, S.; Goswami, A.; Mukhopadhyay, S.; Majumder, H.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J. 2002, 366, 653–661. [Google Scholar] [CrossRef]
- An, S.M.; Kim, H.J.; Kim, J.E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200–1207. [Google Scholar] [CrossRef]
- Choi, M.Y.; Song, H.S.; Hur, H.S.; Sim, S.S. Whitening activity of luteolin related to the inhibition of cAMP pathway in alpha-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 2008, 31, 1166–1171. [Google Scholar] [CrossRef]
- Calvo, M.M.; López-Caballero, M.E.; Martínez-Alvarez, O. Identification of Polyphenols in Sea Fennel (Crithmum maritimum) and Seaside Arrowgrass (Triglochin maritima) Extracts with Antioxidant, ACE-I, DPP-IV and PEP-Inhibitory Capacity. Foods 2023, 12, 3886. [Google Scholar] [CrossRef]
Target Gene | Sequence (5′–3′) | |
---|---|---|
Tyr | Forward | AAG AAT GCT GCC CAC CAT GG |
Reverse | CAC GGT CAT CCA CCC CTT TG | |
Trp1 | Forward | CAG TGC AGC GTC TTC CTG AG |
Reverse | TTC CCG TGG GAG CAC TGT AA | |
Dct | Forward | GAT GGC GTG CTG AAC AAG GA |
Reverse | ATA AGG GCC ACT CCA GGG TC | |
Mitf | Forward | ATC CCA TCC ACC GGT CTC TG |
Reverse | CCG TCC GTG AGA TCC AGA GT | |
Mc1r | Forward | TCA TCG TCC TCT GCC CTC AG |
Reverse | GCA GCA CCT CCT TGA GTG TC | |
Gapdh | Forward | TTG GCA TTG TGG AAG GGC TC |
Reverse | ACC AGT GGA TGC AGG GAT GA |
Time | A (0.1% formic acid in H2O) % | B (acetonitrile) % |
---|---|---|
0 min | 10 | 90 |
20 min | 90 | 10 |
30 min | 90 | 10 |
35 min | 10 | 90 |
45 min | 10 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-H.; Ha, Y.; Park, J.-I.; Joh, W.B.; Park, M.; Kim, J.K.; Jeon, H.-K.; Kim, Y.-J. Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells. Mar. Drugs 2024, 22, 532. https://doi.org/10.3390/md22120532
Lee W-H, Ha Y, Park J-I, Joh WB, Park M, Kim JK, Jeon H-K, Kim Y-J. Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells. Marine Drugs. 2024; 22(12):532. https://doi.org/10.3390/md22120532
Chicago/Turabian StyleLee, Won-Hwi, Yuna Ha, Jeong-In Park, Won Bae Joh, Mira Park, Jang Kyun Kim, Hee-Kyung Jeon, and Youn-Jung Kim. 2024. "Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells" Marine Drugs 22, no. 12: 532. https://doi.org/10.3390/md22120532
APA StyleLee, W. -H., Ha, Y., Park, J. -I., Joh, W. B., Park, M., Kim, J. K., Jeon, H. -K., & Kim, Y. -J. (2024). Triglochin maritima Extracts Exert Anti-Melanogenic Properties via the CREB/MAPK Pathway in B16F10 Cells. Marine Drugs, 22(12), 532. https://doi.org/10.3390/md22120532