Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Phenolic Content
2.2. Identification of Phenolic Compounds by LC-MS/MS
2.3. Antioxidant Activity
2.4. Antimicrobial Activity
2.5. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activity
2.6. Tyrosinase Inhibitory Activity
2.7. Pancreatic Lipase Inhibitory Activity
3. Materials and Methods
3.1. Plant Materials
3.2. Preparation of Extracts and Fractions
3.3. Determination of Total Phenolic Content
3.4. Identification and Quantification of Phenolic Compounds by LC-MS/MS
3.5. Antioxidant Activity
3.5.1. DPPH Radical Scavenging Assay
3.5.2. Total Antioxidant Capacity Assay
3.6. Antimicrobial Screening
3.6.1. Test Organisms
3.6.2. Antimicrobial Activity Test
3.7. Anticholinesterase Inhibition Assays
3.8. Tyrosinase Inhibition Assay
3.9. Pancreatic Lipase Inhibition Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Bhowmik, P.C.; Hossain, M.A.; Rahman, M.M.; Prasad, M.N.V.; Ozturk, M.; Fujita, M. Potential use of halophytes to remediate saline soils. Biomed. Res. Int. 2014, 589341. [Google Scholar] [CrossRef] [PubMed]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Nan, L.; Junling, S.; Kun, W. Profile and Antioxidant Activity of Phenolic Extracts from 10 Crabapples (Malus Wild Species). J. Agric. Food Chem. 2014, 62, 574–581. [Google Scholar] [CrossRef]
- Guan, R.R.; Le, Q.V.; Yang, H.; Zhang, D.Q.; Gu, H.P.; Yang, Y.F.; Sonne, C.; Lam, S.S.; Zhong, J.T.; Jianguang, Z.; et al. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Soto-Vaca, A.; Gutierrez, A.; Losso, J.N.; Xu, Z.M.; Finley, J.W. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 2012, 60, 6658–6677. [Google Scholar] [CrossRef]
- Doğan, M.; Akaydın, G.; Erdal, J. Phytogeography, ecology and conservation of the genus Limonium (Plumbaginaceae) in Turkey and a taxonomic revision, Plant. Syst. Evol. 2020, 306, 89. [Google Scholar] [CrossRef]
- Tang, X.H.; Yan, L.F.; Gao, J.; Yang, X.L.; Xu, Y.X.; Ge, H.Y.; Yang, H.D. Antitumor and immunomodulatory activity of polysaccharides from the root of Limonium sinense Kuntze. Int. J. Biol. Macromol. 2012, 51, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Jenis, J.; Kim, J.Y.; Uddin, Z.; Song, Y.H.; Lee, H.H.; Park, K.H. Phytochemical profile and angiotensin I converting enzyme (ACE) inhibitory activity of Limonium michelsonii Lincz. J. Nat. Med. 2017, 71, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Blainski, A.; Lopes, G.C.; de Mello, J.C. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [Green Version]
- Aniya, Y.; Miyagi, C.; Nakandakari, A.; Kamiya, S.; Imaizumi, N.; Ichiba, T. Free radical scavenging action of the medicinal herb Limonium wrightii from the Okinawa islands. Phytomedicine 2002, 9, 239–244. [Google Scholar] [CrossRef]
- Kim, N.H.; Heo, J.D.; Rho, J.R.; Yang, M.H.; Jeon, E.J. Anti-obesity Effect of Halophyte Crop, Limonium tetragonum in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes. Biol. Pharm. Bull. 2017, 40, 1856–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.G.; Karadeniz, F.; Seo, Y.; Kong, C.S. Anti-Melanogenic Effects of Flavonoid Glycosides from Limonium tetragonum (Thunb.) Bullock via Inhibition of Tyrosinase and Tyrosinase-Related Proteins. Molecules 2017, 22, 1480. [Google Scholar] [CrossRef] [Green Version]
- González-Orenga, S.; Grigore, M.-N.; Boscaiu, M.; Vicente, O. Constitutive and Induced Salt Tolerance Mechanisms and Potential Uses of Limonium Mill. Species. Agronomy 2021, 11, 413. [Google Scholar] [CrossRef]
- Tuzlacı, E. Wild Edible Plants and Herb Foods of Turkey; Alfa Publications: Istanbul, Turkey, 2011; pp. 29–31, 39, 286. [Google Scholar]
- Ertuğ, F. Wild edible plants of the Bodrum area (Muğla, Turkey). Turk. J. Bot. 2004, 28, 161–174. [Google Scholar]
- Dogan, Y. Traditionally used wild edible greens in the Aegean Region of Turkey. Acta. Soc. Bot. Pol. 2012, 81, 329–342. [Google Scholar] [CrossRef]
- Tardio, H.; Pardo-De-Santayana, M.; Morales, R. Ethnobotanical review of wild edible plants in Spain. Bot. J. Linn. Soc. 2006, 152, 27–71. [Google Scholar] [CrossRef]
- Della, A.; Paraskeva-Hadjichambi, D.; Hadjichambis, A.C. An ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus. J. Ethnobiol. Ethnomed. 2006, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.; Rossi Jr, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Senizza, B.; Zhang, L.; Rocchetti, G.; Zengin, G.; Ak, G.; Yıldıztugay, E.; Elbasan, F.; Jugreet, S.; Mahomoodally, M.F.; Lucini, L. Metabolomic profiling and biological properties of six Limonium species: Novel perspectives for nutraceutical purposes. Food Funct. 2021, 12, 3443. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Medini, F.; Falleh, H.; Ksouri, R.; Abdelly, C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Agar, O.T.; Dikmen, M.; Ozturk, N.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea, L. Species Growing in Turkey. Molecules 2015, 20, 17976–18000. [Google Scholar] [CrossRef] [Green Version]
- Ertas, A.; Yilmaz, M.A.; Firat, M. Chemical profile by LC-MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Nat. Prod. Res. 2015, 29, 529–534. [Google Scholar] [CrossRef]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Phenolic Profile, Antioxidant Activity, and Enzyme Inhibitory Properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 1016208. [Google Scholar] [CrossRef] [Green Version]
- Foddai, M.; Kasabri, V.; Petretto, G.L.; Azara, E.; Sias, A.; Afifi, F.U.; Delagu, G.; Chessa, M.; Pintore, G. In vitro inhibitory effects of Limonium contortirameum and L. virgatum extracts from Sardinia on alpha-amylase, alpha-glucosidase and pancreatic lipase. Nat. Prod. Commun. 2014, 9, 181–184. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT Food. Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jimenez-Escrig, A.; Jimenez-Jimenez, I.; Sanchez-Moreno, C.; Saura-Calixto, F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J. Sci. Food Agric. 2000, 80, 1686–1690. [Google Scholar] [CrossRef]
- Turkmenoglu, F.P.; Agar, O.T.; Akaydin, G.; Hayran, M.; Demirci, B. Characterization of Volatile Compounds of Eleven Achillea Species from Turkey and Biological Activities of Essential Oil and Methanol Extract of A. hamzaoglui Arabacı & Budak. Molecules 2015, 20, 11432–11458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avaz, S.; Korcan, S.E.; Kargioglu, M.; Serteser, A.; Konuk, M.; Erol, I. Antimicrobial activities in root extracts of Limonium spp. growing in Afyonkarahisar, Turkey. J. Environ. Biol. 2013, 34, 561–568. [Google Scholar]
- Al-Madhagi, W.M.; Hashim, N.M.; Ali, N.A.A.; Othman, R. Phytochemical screening, cytotoxic and antimicrobial activities of Limonium socotranum and Peperomia blanda extracts. Trop. Biomed. 2019, 36, 11–21. [Google Scholar] [PubMed]
- Mandrone, M.; Bonvicini, F.; Lianza, M.; Sanna, C.; Maxia, A.; Gentilomi, G.A.; Poli, F. Sardinian plants with antimicrobial potential. Biological screening with multivariate data treatment of thirty-six extracts. Ind. Crops Prod. 2019, 137, 557–565. [Google Scholar] [CrossRef]
- Sahli, R.; Riviere, C.; Neut, C.; Bero, J.; Sahuc, M.E.; Smaoui, A.; Beaufay, C.; Roumy, V.; Hennebelle, T.; Rouille, Y. An ecological approach to discover new bioactive extracts and products: The case of extremophile plants. J. Pharm. Pharmacol. 2017, 69, 1041–1055. [Google Scholar] [CrossRef]
- Natarajan, S.; Shanmugiahthevar, K.P.; Kasi, P.D. Cholinesterase inhibitors from Sargassum and Gracilariagracilis: Seaweeds inhabiting. South Indian coastal areas (Hare Island, Gulf of Mannar). Nat. Prod. Res. 2009, 23, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Pinho, B.R.; Ferreres, F.; Valentão, P.; Andrade, P.B. Nature as a source of metabolites with cholinesterase-inhibitory activity: An approach to Alzheimer’s disease treatment. J. Pharm. Pharmacol. 2013, 65, 1681–1700. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Oliveira, M.; Neves, V.; Ovelheiro, A.; Pereira, C.A.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; Barreira, L.; Custódio, L. Coupling sea lavender (Limonium algarvense Erben) and green tea (Camellia sinensis (L.) Kuntze) to produce an innovative herbal beverage with enhanced enzymatic inhibitory properties. S. Afr. J. Bot. 2019, 120, 87–94. [Google Scholar] [CrossRef]
- Mazouz, W.; Haouli, N.E.; Gali, L.; Vezza, T.; Bensouici, C.; Mebrek, S.; Hamel, T.; Galvez, J.; Djeddi, S. Antioxidant, anti-alzheimer, anti-diabetic, and anti-inflammatory activities of the endemic halophyte Limonium spathulatum (Desf.) kuntze on LPS-stimulated RAW264 macrophages. S. Afr. J. Bot. 2020, 135, 101–108. [Google Scholar] [CrossRef]
- Szwajgier, D. Anticholinesterase activity of selected phenolic acids and flavonoids—Interaction testing in model solutions. Ann. Agric. Environ. Med. 2015, 22, 690–694. [Google Scholar] [CrossRef]
- Mikayoulou, M.; Mayr, F.; Temml, V.; Pandian, A.; Vermaak, I.; Chen, W.; Komane, B.; Stuppner, H.; Viljoen, A. Anti-tyrosinase activity of South African Aloe species and isolated compounds plicataloside and aloesin. Fitoterapia 2021, 150, 104828. [Google Scholar] [CrossRef]
- Song, X.; Ni, M.; Zhang, Y.; Zhang, G.; Pan, J.; Gong, D. Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid. Food Chem. 2021, 349, 129172. [Google Scholar] [CrossRef] [PubMed]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Cho, H.W.; Jung, W.S.; An, B.G.; Cho, J.H.; Jung, S.Y. Isolation of compounds having inhibitory activity toward trosinase from receptaculum Nelumbinis. Kor. J. Pharmacogn. 2013, 44, 1–5. [Google Scholar]
- Liu, J.; Liu, Y.; He, X.; Teng, B.; McRae, J.M. Valonea tannin: Tyrosinase inhibition activity, structural elucidation and insights into the inhibition mechanism. Molecules 2021, 26, 2747. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food. Res. Int. 2017, 100, 226–233. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A compherensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Jawed, A.; Singh, G.; Kohli, S.; Sumera, A.; Haque, S.; Prasad, R.; Paul, D. Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. S. Afr. J. Bot. 2019, 120, 25–32. [Google Scholar] [CrossRef]
- De la Garza, A.L.; Milagro, F.I.; Boque, N.; Campion, J.; Martinez, J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011, 77, 773–785. [Google Scholar] [CrossRef] [Green Version]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res. 2020, 155, 104681. [Google Scholar] [CrossRef]
- Arıtuluk, Z.C.; Koçak, C.Ö.; Renda, G.; Ekizoğlu, M.; Ezer, N. Antimicrobial activity of three Scutellaria, L. species from Turkey. J. Res. Pharm. 2019, 23, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Ellman, G.L.; Courtney, D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K.; Sritularak, B. A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. J. Nat. Prod. 2001, 64, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
Sample | Total Phenolic Content | DPPH Scavenging Assay | Total Antioxidant Capacity | |
---|---|---|---|---|
mg GAE/g Extract 1 | IC50 (µg/mL) | UAE 2 (mM) | CRE 3 (µM) | |
L. effusum | ||||
n-Hexane | 109.08 ± 4.26 c | 13.92 ± 0.06 a | 0.287 ± 0.007 f | 629.32 ± 15.44 f |
Dichloromethane | 111.31 ± 3.17 c | 227.97 ± 15.83 e | 0.131 ± 0.006 b | 287.62 ± 13.81 b |
Ethyl acetate | 522.82 ± 5.67 h | 30.15 ± 0.82 b | 0.453 ± 0.007 g | 990.75 ± 14.86 g |
Water | 88.37 ± 3.12 b | 144.16 ± 7.26 c | 0.136 ± 0.001 bc | 296.94 ± 2.35 bc |
Methanol | 210.91 ± 2.68f | 28.72 ± 0.79 b | 0.226 ± 0.003 e | 495.07 ± 6.17 e |
L. sinuatum | ||||
n-Hexane | 93.68 ± 3.41 b | 180.50 ± 6.89 d | 0.153 ± 0.004 c | 335.80 ± 8.06 c |
Dichloromethane | 124.11 ± 4.27 d | 174.06 ± 5.14 d | 0.193 ± 0.002 d | 421.55 ± 4.76 d |
Ethyl acetate | 274.87 ± 1.87 g | 5.27 ± 0.002 a | 0.836 ± 0.016 j | 1829.47 ± 35.27 j |
Water | 75.98 ± 0.88 a | 160.79 ± 8.02 d | 0.041 ± 0.002 a | 89.43 ± 3.63 a |
Methanol | 189.62 ± 1.43 e | 30.79 ± 0.75 b | 0.176 ± 0.005 d | 384.65 ± 11.47 d |
BHT * | - | 32.63 ± 0.63 b | 0.540 ± 0.022 h | 1182.99 ± 48.37 h |
No | Analytes | RT a | Parent Ion (m/z) b | Ionization Mode | R2 c | RSD% d | Linearity Range (mg/L) | LOD/LOQ (µg/L) e | Recovery (%) | U f | Quantification (µg/g Extract) g | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L. effusum | L. sinuatum | |||||||||||
1 | Quinic acid | 3.32 | 190.95 | Neg | 0.9927 | 0.0388 | 250–10,000 | 22.3/74.5 | 103.3 | 4.8 | 636.08 ± 30.5 | D.h |
2 | Malic acid | 3.54 | 133.05 | Neg | 0.9975 | 0.1214 | 250–10,000 | 19.2/64.1 | 101.4 | 5.3 | 1007.66 ± 53.3 | 410.69 ± 21.7 |
3 | trans-Aconitic acid | 4.13 | 172.85 | Neg | 0.9933 | 0.3908 | 250–10,000 | 15.6/51.9 | 102.8 | 4.9 | D. | N.D. h |
4 | Gallic acid | 4.29 | 169.05 | Neg | 0.9901 | 0.4734 | 25–1000 | 4.8/15.9 | 102.3 | 5.1 | 5798.56 ± 295.6 | 4237.76 ± 216.1 |
5 | Chlorogenic acid | 5.43 | 353 | Neg | 0.9932 | 0.1882 | 250–10,000 | 7.3/24.3 | 99.7 | 4.9 | D. | N.D. |
6 | Protocatechuic acid | 5.63 | 152.95 | Neg | 0.9991 | 0.5958 | 100–4000 | 25.8/85.9 | 100.2 | 5.1 | 685.93 ± 34.9 | 185.14 ± 9.4 |
7 | Tannic acid | 6.46 | 182.95 | Neg | 0.9955 | 0.9075 | 100–4000 | 10.2/34.2 | 97.8 | 5.1 | 71,439.56 ± 3643.3 | 105,453.5 ± 5328.1 |
8 | trans-caffeic acid | 7.37 | 178.95 | Neg | 0.9942 | 1.0080 | 25–1000 | 4.4/14.7 | 98.6 | 5.2 | 237.24 ± 12.3 | 476.49 ± 24.75 |
9 | Vanillin | 8.77 | 151.05 | Neg | 0.9995 | 0.4094 | 250–10,000 | 10.1/33.7 | 99.2 | 4.9 | N.D. | N.D. |
10 | p-Coumaric acid | 9.53 | 162.95 | Neg | 0.9909 | 1.1358 | 100–4000 | 15.2/50.8 | 98.4 | 5.1 | 743.06 ± 37.9 | 236.02 ± 12.1 |
11 | Rosmarinic acid | 9.57 | 358.9 | Neg | 0.9992 | 0.5220 | 250–10,000 | 10.4/34.8 | 101.7 | 4.9 | N.D. | N.D. |
12 | Rutin | 10.18 | 609.1 | Neg | 0.9971 | 0.8146 | 250–10,000 | 17.0/56.6 | 102.2 | 5.0 | N.D. | 60.74 ± 3.1 |
13 | Hesperidin | 9.69 | 611.1 | Poz | 0.9973 | 0.1363 | 250–10,000 | 21.6/71.9 | 100.2 | 4.9 | N.D. | N.D. |
14 | Hyperoside | 10.43 | 463.1 | Neg | 0.9949 | 0.2135 | 100–4000 | 12.4/41.4 | 98.5 | 4.9 | 14,006.90 ± 686.1 | 1708.51 ± 83.6 |
15 | 4-OH Benzoic acid | 11.72 | 136.95 | Neg | 0.9925 | 1.4013 | 25–1000 | 3.0/10.0 | 106.2 | 5.2 | 126.60 ± 6.5 | 124.04 ± 6.4 |
16 | Salicylic acid | 11.72 | 136.95 | Neg | 0.9904 | 0.6619 | 25–1000 | 4/13.3 | 106.2 | 5.0 | 119.34 ± 5.9 | 121.59 ± 6.0 |
17 | Myricetin | 11.94 | 317 | Neg | 0.9991 | 2.8247 | 100–4000 | 9.9/32.9 | 106.0 | 5.9 | 1646.93 ± 97.1 | N.D. |
18 | Fisetin | 12.61 | 284.95 | Neg | 0.9988 | 2.4262 | 100–4000 | 10.7/35.6 | 96.9 | 5.5 | N.D. | N.D. |
19 | Coumarin | 12.52 | 146.95 | Poz | 0.9924 | 0.4203 | 100–4000 | 9.1/30.4 | 104.4 | 4.9 | N.D. | N.D. |
20 | Quercetin | 14.48 | 300.9 | Neg | 0.9995 | 4.3149 | 25–1000 | 2.0/6.8 | 98.9 | 7.1 | 975.24 ± 69.2 | 94.23 ± 6.7 |
21 | Naringenin | 14.66 | 270.95 | Neg | 0.9956 | 2.0200 | 25–1000 | 2.6/8.8 | 97.0 | 5.5 | 9.30 ± 0.5 | 15.61 ± 0.8 |
22 | Hesperetin | 15.29 | 300.95 | Neg | 0.9961 | 1.0164 | 25–1000 | 3.3/ 11.0 | 102.4 | 5.3 | N.D. | N.D. |
23 | Luteolin | 15.43 | 284.95 | Neg | 0.9992 | 3.9487 | 25–1000 | 5.8/19.4 | 105.4 | 6.9 | 67.16 ± 4.6 | 61.55 ± 4.2 |
24 | Kaempferol | 15.43 | 284.95 | Neg | 0.9917 | 0.5885 | 25–1000 | 2.0/6.6 | 99.1 | 5.2 | 68.17 ± 3.5 | 59.97 ± 3.1 |
25 | Apigenin | 17.31 | 268.95 | Neg | 0.9954 | 0.6782 | 25–1000 | 0.1/0.3 | 98.9 | 5.3 | 751.20 ± 39.8 | 7.49 ± 0.4 |
26 | Rhamnetin | 18.94 | 314.95 | Neg | 0.9994 | 2.5678 | 25–1000 | 0.2/0.7 | 100.8 | 6.1 | N.D. | N.D. |
27 | Chrysin | 21.18 | 253 | Neg | 0.9965 | 1.5530 | 25–1000 | 0.05/0.17 | 102.2 | 5.3 | N.D. | N.D. |
Sample | MIC (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bacteria | Fungi | ||||||||
S. aureus ATCC 29213 | MRSA ATCC 43300 | S. epidermidis ATCC 35984 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | P. aeruginosa ATCC 15442 | C. albicans ATCC 90028 | C. krusei ATCC 6258 | C. parapsilosis ATCC 90018 | |
L. effusum | |||||||||
n-Hexane | 512 | 512 | 128 | 64 | 256 | 256 | 128 | 128 | 64 |
Dichloromethane | 1024 | 1024 | 256 | 512 | 512 | 256 | 256 | 128 | 64 |
Ethyl acetate | 512 | 512 | 128 | 128 | 512 | 256 | 256 | 128 | 64 |
Water | 256 | 512 | 256 | 256 | 512 | 256 | 128 | 128 | 64 |
Methanol | 256 | 512 | 256 | 256 | 512 | 256 | 128 | 128 | 128 |
L. sinuatum | |||||||||
n-Hexane | 16 | 32 | 16 | 16 | 512 | 256 | 128 | 64 | 64 |
Dichloromethane | 512 | 1024 | 256 | 512 | 512 | 256 | 128 | 128 | 64 |
Ethyl acetate | 64 | 128 | 64 | 32 | 512 | 256 | 64 | 64 | 32 |
Water | 1024 | 512 | 256 | 256 | 512 | 256 | 256 | 128 | 64 |
Methanol | 256 | 512 | 256 | 64 | 512 | 256 | 128 | 64 | 64 |
Gentamicin | <1 | - | - | 4 | <1 | 0.5 | - | - | - |
Fluconazole | - | - | - | - | - | - | 1 | 32 | 4 |
Sample | IC50 (µg/mL) | Selectivity Index (AChE/BChE) | |
---|---|---|---|
AChE | BChE | ||
L. effusum | |||
n-Hexane | 7.353 ± 1.15 b | 224.03 ± 25.78 a | 0.032 |
Dichloromethane | 6.081 ± 0.87 b | 1943.00 ± 418.61 ab | 0.003 |
Ethyl acetate | 35.594 ± 2.13 c | 1521.00 ± 359.21 ab | 0.023 |
Water | 38.697 ± 3.56 c | - | - |
Methanol | 2.808 ± 0.58 ab | 2741.50 ± 478.71 ab | 0.001 |
L. sinuatum | |||
n-Hexane | 5.987 ± 0.65 b | 308.72 ± 9.65 a | 0.019 |
Dichloromethane | 39.209 ± 3.26 c | >1000 c | >0.040 |
Ethyl acetate | 5.634 ± 0.93 b | 4022.00 ± 889.54 b | 0.001 |
Water | 0.199 ± 0.009 a | 14,882.50 ± 2689.13 d | 1.33 × 10−5 |
Methanol | 6.544 ± 1.09 b | 14,666.00 ± 2029.39 d | 4.46 × 10−4 |
Donepezil * | 0.0035 ± 0.0007 a | 0.0027 ± 0.0005 a | 1.27 |
Sample | IC50 (µg/mL) | |
---|---|---|
Tyrosinase | Pancreatic Lipase | |
L. effusum | ||
n-Hexane | 148.27 ± 3.33 b | - |
Dichloromethane | - | - |
Ethyl acetate | 245.56 ± 3.6 d | - |
Water | - | - |
Methanol | - | - |
L. sinuatum | ||
n-Hexane | - | - |
Dichloromethane | - | - |
Ethyl acetate | 295.18 ± 10.57 e | 83.76 ± 4.19 b |
Water | - | - |
Methanol | - | 162.2 ± 7.29 c |
Kojic acid * | 14.28 ± 0.6 a | - |
Orlistat * | - | 4.23 ± 0.2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baysal, I.; Ekizoglu, M.; Ertas, A.; Temiz, B.; Agalar, H.G.; Yabanoglu-Ciftci, S.; Temel, H.; Ucar, G.; Turkmenoglu, F.P. Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules 2021, 26, 4040. https://doi.org/10.3390/molecules26134040
Baysal I, Ekizoglu M, Ertas A, Temiz B, Agalar HG, Yabanoglu-Ciftci S, Temel H, Ucar G, Turkmenoglu FP. Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules. 2021; 26(13):4040. https://doi.org/10.3390/molecules26134040
Chicago/Turabian StyleBaysal, Ipek, Melike Ekizoglu, Abdulselam Ertas, Burak Temiz, Hale Gamze Agalar, Samiye Yabanoglu-Ciftci, Hamdi Temel, Gulberk Ucar, and Fatma Pinar Turkmenoglu. 2021. "Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum" Molecules 26, no. 13: 4040. https://doi.org/10.3390/molecules26134040
APA StyleBaysal, I., Ekizoglu, M., Ertas, A., Temiz, B., Agalar, H. G., Yabanoglu-Ciftci, S., Temel, H., Ucar, G., & Turkmenoglu, F. P. (2021). Identification of Phenolic Compounds by LC-MS/MS and Evaluation of Bioactive Properties of Two Edible Halophytes: Limonium effusum and L. sinuatum. Molecules, 26(13), 4040. https://doi.org/10.3390/molecules26134040