Gesture-Controlled Robotic Arm for Small Assembly Lines
<p>Schematic representation of our proposed gesture-controlled robotic arm system.</p> "> Figure 2
<p>Proposed setup for controlling a robotic arm through human gestures. The frames considered for reference are depicted in red for the <span class="html-italic">x</span>-axis, green for the <span class="html-italic">y</span>-axis, and blue for the <span class="html-italic">z</span>-axis.</p> "> Figure 3
<p>The 21 estimated hand joints from the work presented in [<a href="#B42-machines-13-00182" class="html-bibr">42</a>,<a href="#B50-machines-13-00182" class="html-bibr">50</a>].</p> "> Figure 4
<p>Direct vectors computed between the index PIP joint and the wrist (blue), pinky MCP, and index MCP joints (red). These vectors are used as references for computing the orientation of the operator’s hand (frame <math display="inline"><semantics> <msub> <mi>h</mi> <mi>r</mi> </msub> </semantics></math>).</p> "> Figure 5
<p>Rotations of the user’s chest frame of reference (<span class="html-italic">c</span>) in order to align its axes with those of the camera’s coordinate frame (<span class="html-italic">s</span>).</p> "> Figure 6
<p>The two categories of studied hand poses for controlling the robotic arm. (<b>a</b>) Pose 1, the palm’s surface is perpendicular to the camera; (<b>b</b>) Pose 2, where palm appears parallel relatively to the camera.</p> "> Figure 7
<p>Snapshots of the developed system’s operation.</p> "> Figure 8
<p>The two boundary conditions for the gripper’s opening <span class="html-italic">w</span> values.</p> "> Figure 9
<p>The trajectory of the user’s hand, with respect to the frame of reference <span class="html-italic">c</span>, and the end effector, with respect to <span class="html-italic">b</span>. 33 points are depicted with blue for the human hand and orange for the Panda arm. The left graph is a side-view comparison of the movements, while the right one illustrates the same sequence from a top view.</p> ">
Abstract
:1. Introduction
- 3-Dimensional Gesture Control: We present a complete robotic arm control system for object manipulation that mimics the motion, the orientation of the operator’s arm, and hand gestures in the 3D space to effectively grip objects in a production line.
- AI-Driven Hands-Free Control: The introduction of AI and ML allows a user-friendly control scheme without the need for any additional devices equipped by the operator.
- Affordability: The proposed system provides a cost-effective solution that solely requires the addition of a depth camera sensor to control a robotic arm.
- Versatility and Adaptability: The proposed work offers a versatile approach that can be adapted to various environments, operations, and robotic arm models as it decouples the robot’s control from the gesture recognition pipeline.
2. Related Work
3. Methodology
3.1. Hand Joint Estimation
3.2. Transforming Hand Pose Coordinates to Camera Coordinates
3.3. Calculating Hand’s Orientation
3.4. Transforming Hand Coordinates to Chest Coordinates
3.5. Scaling to Robotic Arm
- and are the maximum reach of the robotic arm along each axis in its base reference frame (b), “max” corresponds to the positive direction while “min” corresponds to the negative direction of the respective axis.
- and is the furthest extent of the human arm with respect to the coordinate system c, where “max” is dedicated to the positive direction while “min” refers to the negative direction of the respective axis.
3.6. Controlling the Gripper’s Opening Width
4. Expirements
4.1. Experimental Setup
4.2. Results
4.2.1. Hand Reference Pose Selection
4.2.2. Fine-Tuning the Gripper Opening Width
4.3. Overall System Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
I4.0 | Industry 4.0 |
I5.0 | Industry 5.0 |
AI | Artificial Intelligence |
ML | Machine Learning |
RF | Radio Frequency |
DOF | Degree of Freedom |
CNN | Convolutional Neural Network |
SSD | Single-shot Detector |
PIP | Proximal Interphalangeal |
MCP | Metacarpophalangeal |
References
- Barua, R.; Datta, S. Modernization of Robotics Application in the 21st Century: A Review. J. Mech. Robot. 2020, 5, 26–36. [Google Scholar] [CrossRef]
- Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. Int. J. 2019, 22, 899–919. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016. [Google Scholar] [CrossRef]
- Humayun, M. Industrial Revolution 5.0 and the Role of Cutting Edge Technologies. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 605–615. [Google Scholar] [CrossRef]
- Lei, Z.; Shi, J.; Luo, Z.; Cheng, M.; Wan, J. Intelligent Manufacturing from the Perspective of Industry 5.0: Application Review and Prospects. IEEE Access 2024, 12, 167436–167451. [Google Scholar] [CrossRef]
- Masoomi, B.; Sahebi, I.G.; Ghobakhloo, M.; Mosayebi, A. Do Industry 5.0 Advantages Address the Sustainable Development Challenges of the Renewable Energy Supply Chain? Sustain. Prod. Consum. 2023, 43, 94–112. [Google Scholar] [CrossRef]
- Almurib, H.A.F.; Al-Qrimli, H.F.; Kumar, N. A Review of Application Industrial Robotic Design. In Proceedings of the 2011 Ninth International Conference on ICT and Knowledge Engineering, Bangkok, Thailand, 12–13 January 2012. [Google Scholar] [CrossRef]
- Agelli, M.; Corona, N.; Maggio, F.; Moi, P.V. Unmanned Ground Vehicles for Continuous Crop Monitoring in Agriculture: Assessing the Readiness of Current ICT Technology. Machines 2024, 12, 750. [Google Scholar] [CrossRef]
- Peck, C.J.; Langedock, K.; Boone, W.; Fourie, F.; Moulaert, I.; Semeraro, A.; Sterckx, T.; Geldhof, R.; Groenendaal, B.; Ponsoni, L. The Use of Autonomous Underwater Vehicles for Monitoring Aquaculture Setups in a High-Energy Shallow Water Environment: Case Study Belgian North Sea. Front. Mar. Sci. 2024, 11, 1386267. [Google Scholar] [CrossRef]
- Pisla, D.; Al Hajjar, N.; Gherman, B.; Radu, C.; Antal, T.; Tucan, P.; Literat, R.; Vaida, C. Development of a 6-DOF Parallel Robot for Potential Single-Incision Laparoscopic Surgery Application. Machines 2023, 11, 978. [Google Scholar] [CrossRef]
- Rathor, T.; Ali, T.; Khan, M.F.; Kumar, S.; Khan, Z.Z. Domestic Household Multi-Purpose Robot. Int. J. Res. Publ. Rev. 2024, 5, 6021–6028. [Google Scholar]
- Wrede, K.; Zarnack, S.; Lange, R.; Donath, O.; Wohlfahrt, T.; Feldmann, U. Curriculum Design and Sim2Real Transfer for Reinforcement Learning in Robotic Dual-Arm Assembly. Machines 2024, 12, 682. [Google Scholar] [CrossRef]
- Xu, M.; Liu, Y.; Li, J.; Xu, F.; Huang, X.; Yue, X. Review of Flexible Robotic Grippers, with a Focus on Grippers Based on Magnetorheological Materials. Materials 2024, 17, 4858. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.A.; Kim, Y.; Hoegerman, J.; Bartlett, M.D.; Losey, D.P. RISO: Combining Rigid Grippers with Soft Switchable Adhesives. arXiv 2022, arXiv:2210.15791. [Google Scholar]
- Krüger, J.; Schreck, G.; Surdilovic, D. Dual Arm Robot for Flexible and Cooperative Assembly. CIRP Annals 2011, 60, 5–8. [Google Scholar] [CrossRef]
- Sitjongsataporn, S.; Paenoi, N. Development of Single-Arm Robots for Automotive Body Assembly Automation. In Proceedings of the 2023 International Conference on Power, Energy and Innovations (ICPEI), Phrachuap Khirikhan, Thailand, 18–20 October 2023. [Google Scholar]
- Kharidege, A.; Ting, D.T.; Yajun, Z. A Practical Approach for Automated Polishing System of Free-Form Surface Path Generation Based on Industrial Arm Robot. Int. J. Adv. Manuf. Technol. 2017, 93, 3921–3934. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, X. Research on Force-Controlled Polishing System for Robotic Arm Based on Compliance Control. J. Phys. Conf. Ser. 2024, 2764, 012055. [Google Scholar] [CrossRef]
- González, M.; Rodríguez, A.; Pereira, O.; Celaya, A.; López de Lacalle, L.N.; Esparta, M. Axial-Compliant Tools for Adaptive Chamfering of Sharp-Edges: Characterisation and Modelling. Eng. Sci. Technol. Int. J. 2023, 41, 101407. [Google Scholar] [CrossRef]
- Krotov, A.S. Application of Robotic Arms to Optimize the Packaging Line of a Paper Mill: Modeling in AnyLogic. In Proceedings of the 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), Saint Petersburg, Russia, 29–30 January 2024. [Google Scholar]
- Auh, E.; Kim, J.; Joo, Y.; Park, J.; Lee, G.; Oh, I.; Pico, N.; Moon, H. Unloading Sequence Planning for Autonomous Robotic Container-Unloading System Using A-Star Search Algorithm. Eng. Sci. Technol. Int. J. 2024, 50, 101610. [Google Scholar] [CrossRef]
- Alojaiman, B. Technological Modernizations in the Industry 5.0 Era: A Descriptive Analysis and Future Research Directions. Processes 2023, 11, 1318. [Google Scholar] [CrossRef]
- Raza, F. AI for Predictive Maintenance in Industrial Systems. Cosm. Bull. Bus. Manag. 2023, 2, 167–183. [Google Scholar] [CrossRef]
- Chen, W.; Men, Y.; Fuster, N.; Osorio, C.; Juan, A.A. Artificial Intelligence in Logistics Optimization with Sustainable Criteria: A Review. Sustainability 2024, 16, 9145. [Google Scholar] [CrossRef]
- Ettalibi, A.; Elouadi, A.; Mansour, A. AI and Computer Vision-Based Real-Time Quality Control: A Review of Industrial Applications. Procedia Comput. Sci. 2024, 231, 212–220. [Google Scholar] [CrossRef]
- Taleghani, M. The Role of Artificial Intelligence (AI) in Quality Control of Industrial Products. Iris J. Econ. Bus. Manag. 2024, 2, 1–2. [Google Scholar] [CrossRef]
- Károly, A.; Galambos, P.; Kuti, J.; Rudas, I. Deep Learning in Robotics: Survey on Model Structures and Training Strategies. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 266–279. [Google Scholar] [CrossRef]
- Barata, J.; Kayser, I. Industry 5.0 – Past, Present, and Near Future. Procedia Comput. Sci. 2023, 219, 778–788. [Google Scholar] [CrossRef]
- Mohan, A.; Priyadarshini, R. Gesture Controlled Robot using Accelerometer. Int. J. Eng. Adv. Technol. 2020, 9, 1241–1245. [Google Scholar] [CrossRef]
- Gomathy, C.K.; Niteesh, G.; Sai Krishna, K. The Gesture Controlled Robot. Int. Res. J. Eng. Technol. (IRJET) 2021, 8, 1721. [Google Scholar]
- Cekova, K.; Koceska, N.; Koceski, S. Gesture Control of a Mobile Robot using Kinect Sensor. In Proceedings of the International Conference on Applied Internet and Information Technologies, Bitola, Macedonia, 3–4 June 2016. [Google Scholar] [CrossRef]
- Rosca, S.D.; Leba, M.; Sibisanu, R.C.; Muntean, E. Gesture Control of a Robotic Head using Kinect. In Proceedings of the 7th International Conference on Mathematics and Computers in Sciences and Industry (MCSI), Athens, Greece, 22–24 August 2022; pp. 101–108. [Google Scholar] [CrossRef]
- Kim, J.-W.; Choi, J.-Y.; Ha, E.-J.; Choi, J.-H. Human Pose Estimation Using MediaPipe Pose and Optimization Method Based on a Humanoid Model. Appl. Sci. 2023, 13, 2700. [Google Scholar] [CrossRef]
- Aggarwal, L.; Gaur, V.; Verma, P. Design and Implementation of a Wireless Gesture Controlled Robotic Arm with Vision. Int. J. Comput. Appl. (0975-8887) 2013, 79, 39–43. [Google Scholar] [CrossRef]
- Pradeep, J.; Paul, P.V. Design and Implementation of Gesture Controlled Robotic Arm for Industrial Applications. Int. J. Adv. Sci. Res. Dev. 2016, 3, 202–209. [Google Scholar]
- Megalingam, R.K.; Saboo, N.; Ajithkumar, N.; Unny, S.; Menon, D. Kinect Based Gesture Controlled Robotic Arm: A Research Work at HuT Labs. In Proceedings of the 2013 IEEE International Conference in MOOC, Innovation and Technology in Education (MITE), Jaipur, India, 20–22 December 2013. [Google Scholar] [CrossRef]
- Zidarić, M. Vizijski Sustav za Upravljanje Industrijskim Robotom Pokretima Ruke. Master’s Thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 2024. [Google Scholar]
- Gasparetto, A.; Scalera, L. A Brief History of Industrial Robotics in the 20th Century. Adv. Hist. Stud. 2019, 8, 24–35. [Google Scholar] [CrossRef]
- Khajone, S.A.; Mohod, S.W.; Harne, V.M. Implementation of a Wireless Gesture Controlled Robotic Arm. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 3, 375–379. [Google Scholar] [CrossRef]
- Stergiopoulou, E.; Sgouropoulos, K.; Nikolaou, N.; Papamarkos, N.; Mitianoudis, N. Real-Time Hand Detection in a Complex Background. Eng. Appl. Artif. Intell. 2014, 35, 54–70. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Ha, E.; Son, M.; Jeon, J.-H.; Kim, J.-W. Human Joint Angle Estimation Using Deep Learning-Based Three-Dimensional Human Pose Estimation for Application in a Real Environment. Sensors 2024, 24, 3823. [Google Scholar] [CrossRef] [PubMed]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.-L.; Yong, M.G.; Lee, J.; et al. Mediapipe: A Framework for Building Perception Pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar]
- Li, J.; Xu, C.; Chen, Z.; Bian, S.; Yang, L.; Lu, C. HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3383–3393. [Google Scholar]
- Li, W.; Liu, H.; Tang, H.; Wang, P.; Van Gool, L. MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13147–13156. [Google Scholar]
- Shan, W.; Liu, Z.; Zhang, X.; Wang, Z.; Han, K. Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation. arXiv 2023, arXiv:2303.11579. [Google Scholar]
- Mitrovic, K.; Milošević, D. Pose Estimation and Joint Angle Detection Using Mediapipe Machine Learning Solution. In Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering; Springer: Cham, Switzerland, 2023; pp. 109–120. [Google Scholar] [CrossRef]
- Kasar, M.; Kavimandan, P.; Suryawanshi, T.; Abbad, S. AI-Based Real-Time Hand Gesture-Controlled Virtual Mouse. Aust. J. Electr. Electron. Eng. 2024, 21, 258–267. [Google Scholar] [CrossRef]
- Using the Single Camera Calibrator App. Available online: https://www.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html (accessed on 30 June 2023).
- Dorodnicov, S.; Grunnet-Jepsen, A.; Wen Rev, G. Projection, Texture-Mapping, and Occlusion with Intel® RealSense™ Depth Cameras. Available online: https://dev.intelrealsense.com/docs/projection-texture-mapping-and-occlusion-with-intel-realsense-depth-cameras (accessed on 4 July 2024).
- Kavana, K.M.; Suma, N.R.; Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.-L. Recognization of Hand Gestures Using Mediapipe Hands. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 4149–4156. [Google Scholar]
- Sturm, P.; Ramalingam, S.; Tardif, J.-P.; Gasparini, S.; Barreto, J. Camera Models and Fundamental Concepts Used in Geometric Computer Vision. Found. Trends Comput. Graph. Vis. 2011, 6, 1–183. [Google Scholar] [CrossRef]
- Ahn, M.S.; Chae, H.; Noh, D.; Nam, H.; Hong, D. Analysis and Noise Modeling of the Intel RealSense D435 for Mobile Robots. In Proceedings of the 2019 16th International Conference on Ubiquitous Robots (UR), Jeju, Republic of Korea, 24–27 June 2019. [Google Scholar] [CrossRef]
- González, M.; Rodríguez, A.; López-Saratxaga, U.; Pereira, O.; López de Lacalle, L.N. Adaptive Edge Finishing Process on Distorted Features through Robot-Assisted Computer Vision. J. Manuf. Syst. 2024, 74, 41–54. [Google Scholar] [CrossRef]
- Qian, N.; Lo, C.-Y. Optimizing Camera Positions for Multi-View 3D Reconstruction. In Proceedings of the 2015 International Conference on 3D Imaging (IC3D), Liege, Belgium, 14–15 December 2015. [Google Scholar]
- Li, Z.; Wang, K.; Jia, W.; Chen, H.-C.; Zuo, W.; Meng, D.; Sun, M. Multiview Stereo and Silhouette Fusion via Minimizing Generalized Reprojection Error. Image Vis. Comput. 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Fang, H.-S.; Li, J.; Tang, H.; Xu, C.; Zhu, H.; Xiu, Y.; Li, Y.-L.; Lu, C. AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7157–7173. [Google Scholar] [CrossRef]
- Mikhel, S.; Popov, D.; Mamedov, S.; Klimchik, A. Advancement of Robots With Double Encoders for Industrial and Collaborative Applications. In Proceedings of the 2018 23rd Conference of Open Innovations Association (FRUCT), Bologna, Italy, 13–16 November 2018. [Google Scholar]
Category | Parameter | Value |
---|---|---|
FocalLength | [590.6891, 588.9445] | |
PrincipalPoint | [418.0332, 254.8811] | |
Camera Intrisics | Skew | 0.1962 |
RadialDistortion | [0.0672, −0.1554] | |
TangentialDistortion | [−0.0015, −0.0026] | |
ImageSize | [480, 848] | |
Accuracy of Estimation | MeanReprojectionError | 0.3230 |
NumPatterns | 25 | |
WorldPoints | [54 × 2 double] | |
Calibration Settings | WorldUnits | “millimeters” |
EstimateSkew | 1 | |
NumRadialDistortionCoefficients | 2 | |
EstimateTangentialDistortion | 1 |
Measurement No. | Pose 1 (mm) | Pose 2 (mm) |
---|---|---|
1 | 2239 | 1219 |
2 | 2238 | 1219 |
3 | 2239 | 1219 |
4 | 2236 | 1216 |
5 | 2240 | 1220 |
6 | 2239 | 1219 |
7 | 2239 | 1220 |
8 | 2237 | 1217 |
9 | 2237 | 1219 |
10 | 2238 | 1220 |
Mean | 2238.2 | 1218.8 |
Variance | 1.511 | 1.733 |
Std. Deviation | 1.229 | 1.316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelidis, G.; Bampis, L. Gesture-Controlled Robotic Arm for Small Assembly Lines. Machines 2025, 13, 182. https://doi.org/10.3390/machines13030182
Angelidis G, Bampis L. Gesture-Controlled Robotic Arm for Small Assembly Lines. Machines. 2025; 13(3):182. https://doi.org/10.3390/machines13030182
Chicago/Turabian StyleAngelidis, Georgios, and Loukas Bampis. 2025. "Gesture-Controlled Robotic Arm for Small Assembly Lines" Machines 13, no. 3: 182. https://doi.org/10.3390/machines13030182
APA StyleAngelidis, G., & Bampis, L. (2025). Gesture-Controlled Robotic Arm for Small Assembly Lines. Machines, 13(3), 182. https://doi.org/10.3390/machines13030182