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Abstract: In this study, we present a gesture-controlled robotic arm system for small
assembly lines. Robotic arms are extensively used in industrial applications; however, they
typically require special treatment and qualified personnel to set up and operate them.
Towards this end, hand gestures can provide a natural way for human–robot interaction,
providing a straightforward means for control without the need for significant training
of the operators. Our goal is to develop a safe, low-cost, and user-friendly system for
environments that often involve non-repetitive and custom automation processes, such as
in small factory setups. Our system estimates the 3D position of the user’s joints in real
time with the help of AI and real-world data provided by an RGB-D camera. Then, joint
coordinates are translated into the robotic arm’s desired poses in a simulated environment
(ROS), thus achieving gesture control. Through the experiments we conducted, we show
that the system provides the performance required to control a robotic arm effectively
and efficiently.

Keywords: robotic arm; gesture controlled; RGB-D sensors; machine learning; hand joints
detection; ROS

1. Introduction
Robotic science is constantly advancing, addressing increasingly complex challenges

to enhance automation in our daily lives. Some of the major sectors that benefit the most
from the above advancements include industry, medicine, and unmanned systems. How-
ever, modern industry still faces major problems, such as the inability to find specialized
personnel, which affects both the production time and the quality of the products. Working
accidents are a serious concern, especially in hazardous working environments where
workers are exposed to high temperatures, dangerous chemical substances, flammable
material, and heavy machinery [1].

In 2011, the German government introduced Industry 4.0 (I4.0). I4.0 follows the
third industrial revolution and focuses on the digitalization and connectivity of such
applications through advanced technologies, such as artificial intelligence (AI), big data,
and cloud computing. In such an ecosystem, machines and systems communicate with
their environment in real time in the most efficient “smart” ways [2,3].

Nowadays, we are entering the era of Industry 5.0 (I5.0). I5.0 attempts to reinforce
human–robot interaction during industrial processes, ensuring that this type of collabo-
ration occurs seamlessly and intuitively for the user [4]. This approach solves the costly
and time-consuming challenge of human adaptation to the technologies introduced by
I4.0. This means that users can quickly familiarize themselves with new systems and
advanced practices, requiring little to no training for this type of collaboration [5]. This
could be crucial in smaller assembly lines where the production is not fixed and there is
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a limited workforce, often without specialized knowledge. I5.0 also considers concepts
such as livability and economic challenges [6]. It is a broader, more global approach to
manufacturing that emphasizes a human-centric industry. This type of industry aims to
enhance productivity while also ensuring the ethical integrity of industrial processes [7].

In this context, robots apply to a variety of everyday human activities, often beyond
the borders of industry, such as healthcare, agriculture, and entertainment [1,8]. The
most common categories of modern robots are mobile agents [8,9], surgical robots [10],
household robots [11], and of course, industrial robots [12]. Industrial robots are used
in factory environments, performing demanding and hazardous assignments, reducing
potential risks for the personnel. They are often utilized to replicate or augment human
actions as they perform tasks more accurately. In semi-manual processes, robots collaborate
directly with humans, thus enhancing productivity and preventing the risk of human errors.
Furthermore, while replacing manual tasks, robots are usually equipped with sophisticated
sensors and control systems to handle tools or materials similarly to human workers.
This category of robots, especially articulated robotic arms, is designed and constantly
developed to complete various operations in an industrial environment.

To successfully complete the desired tasks, the robotic arm’s end effector is equipped
with a wide variety of tools, such as grippers. Grippers are used for object manipulation,
and they are divided into two main categories: flexible and rigid. On the one hand, flexible
grippers are made from adaptable materials and are utilized for grasping irregularly
shaped objects [13]. On the other hand, rigid grippers usually grip large, non-deformable
objects [14]. Each gripper type suits different applications based on the manipulated
object characteristics. Industrial robotic arms are mainly used for applications such as
assembly [15,16], polishing [17,18], finishing with the help of specialized tools [19], and
common manual tasks, such as packaging [20] and material handling [21]. Automation
through robotic arms significantly reduces operational costs, establishing more efficient
and competitive production practices [1]. Most of the time, robotic systems themselves are
not able to keep up with I5.0’s principles, so they often integrate other technologies, such
as AI [22].

AI has revolutionized modern industry by introducing innovative methods and ap-
proaches. AI increases the efficiency of maintenance predictions for the equipment involved,
leading to reduced downtime [23]. It contributes to sustainable logistics management by
predicting high-demand periods and managing supplies [24]. AI is also a common integra-
tion in quality control applications utilizing computer vision technology [25,26]. AI’s role
in modern automated production lines, where robotic systems need to adapt to various and
dynamic tasks, is crucial as it can be used to create a safe and user-centric human–robot
interaction environment, paving the way for fully adapting to I5.0’s guidelines. One of
the most representative applications of AI in robotic systems involves their control, either
through data-driven object manipulation [27] or by enabling the intuitive translation of
users’ gestures into motion commands [28].

Gesture-controlled robotic applications utilize human movement recognition to
achieve control. This approach offers significant advantages over traditional methods,
such as keyboards and joysticks, as it allows direct control commands in a human-centric
manner. Gesture control is possible by various sensors such as accelerometers [29,30] and
depth cameras [31,32], which provide direct depth measurements alongside the visible
spectrum data. Combined with AI, they are able to estimate human poses [33], providing
at the same time visible feedback, which is crucial for the system’s operator.

Even though the majority of gesture control systems rely on wearable devices [34,35],
there exist some non-wearable-based methods that utilize AI and depth camera sensors.
However, they do not consider the orientation of the user’s hand, thus failing to provide
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precise gripper control [36,37]. To address this gap, we propose a complete system that
combines the above. Our system identifies the pose and the hand gestures of an operator,
using state-of-the-art machine learning (ML) techniques based on an RGB-D camera, and
directly translates them to control commands of a robotic arm, targeting small assembly
lines (Figure 1). Our novelties include the following:

• 3-Dimensional Gesture Control: We present a complete robotic arm control system
for object manipulation that mimics the motion, the orientation of the operator’s arm,
and hand gestures in the 3D space to effectively grip objects in a production line.

• AI-Driven Hands-Free Control: The introduction of AI and ML allows a user-friendly
control scheme without the need for any additional devices equipped by the operator.

• Affordability: The proposed system provides a cost-effective solution that solely
requires the addition of a depth camera sensor to control a robotic arm.

• Versatility and Adaptability: The proposed work offers a versatile approach that can be
adapted to various environments, operations, and robotic arm models as it decouples
the robot’s control from the gesture recognition pipeline.

Figure 1. Schematic representation of our proposed gesture-controlled robotic arm system.

The rest of this paper is organized as follows: Section 2 presents the related work on
the topic of gesture-controlled robotic arms. Section 3 introduces our system’s methodology,
while Section 4 describes the experimental setup and evaluation of our system. Finally,
Section 5 draws our conclusion and discusses possible extensions of our work.

2. Related Work
Since antiquity, there has been interest in constructing machines that have character-

istics similar to modern robots. The intensive development of robots started during the
Industrial Revolution. In 1954, George Devol introduced the first industrial programmable
robotic arm, a moment that defined the first generation of industrial robots (1950–1967) [38].
During the second generation of industrial robots (1968–1977), extensively utilizing sensors,
industrial robots were established in complex tasks in the automotive industry, while dur-
ing the third one (1978–1999), the industry saw the integration of programming languages
and specialized controllers in robotic systems. This means operation with hardly any
human supervision. The fourth generation of industrial robots (2000–2017) keeps up with
the rapidly increased computational power and the development of sophisticated sensors.
Fourth-generation robotic arms showed increased intelligence and adaptability. During
this time, the concept of robots who cooperate immediately with humans (cobots), ensuring
the safe execution of this type of interaction, was introduced [1,2]. Nowadays, robotics
focuses on utilizing robots in order to make everyday activities easier. The fifth generation
of industrial robotics (2018-present) are usually versatile articulated robots, such as robotic
arms. For this reason, fifth-generation robots are important in I5.0’s systems [1]. Following
the above evolution, the need for excessively advanced robot control has emerged. In what
follows, an analysis of relevant studies is presented regarding gesture-based approaches
for controlling a robotic arm.
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Aggarwal et al. [34] utilized inertial sensors, which recognize four hand gestures, to
control a robotic arm wirelessly for pick-and-place tasks via radio frequency (RF) signals.
They also integrated an IP camera into their system to provide real-time video information
to the user. Similarly, Pradeep and Paul [35] developed an accelerometer-based system
to remotely control a three-degree-of-freedom (DOF) robotic arm. They provided video
data and temperature measurements from the robot’s surroundings in order to enable a
more secure remote control. Khajone et al. [39] used a conventional webcam’s output
to recognize gestures from a custom database stored in a computer using correlation.
Every predefined gesture is translated into a corresponding robotic arm movement. Their
algorithm is able to detect gestures regardless of their scale. This system also uses an
RF module to transmit data to the arm. Megalingam et al. [36] developed a system for
controlling a two-link robotic manipulator using a Kinect sensor. Through Kinect’s SDK,
they estimated the angles between the joints of the user’s arm. These angles were used to
control the movements of 3 servo motors, achieving the desired robot’s pose in this way.
Their algorithm does not include finger estimations. Zidarić [37] enabled gesture control
by using an RGB-D camera sensor and calculating the 3D position of the user’s hands.
His system can also detect an open or closed palm to adjust the end effector’s opening
accordingly. The above highlights the extensive focus on research aimed at developing
user-friendly gesture-controlled robotic arms within the I5.0’s protocol. However, there is
still the need for less invasive and more intuitive control schemes that do not depend on
specific gestures to perform predefined robot movements.

An innovative and efficient way of achieving natural interaction with a robotic arm
can be achieved through human pose estimation, which is enabled through AI and ML
techniques. In the related literature, several AI-based approaches have been proposed for
joint recognition that take advantage of the human body to allow remote control. Ster-
giopoulou et al. [40] proposed a method for real-time hand detection that combines motion
detection, skin tone classification, and morphological features to enhance accuracy in
complicated backgrounds. Choi et al. [41] compared four deep-learning methods (Medi-
aPipe [42], Hybrid Inverse Kinematics solution [43], Multi-Hypothesis Transformer [44],
and Diffusion-based 3D Pose Estimation [45]) dedicated to 3D human pose and joint estima-
tion, evaluating their performance on real-world video streams under various conditions.
They concluded that the algorithms showed reliable performance in uncomplicated poses,
unobstructed frames, and conditions of constant lighting. Mitrovic and Milošević [46]
introduced a method of monitoring human activities to minimize the risk of injuries. Using
MediaPipe, they extracted joint data to assist medical professionals. Kasar et al. [47] em-
ployed hand joint estimation to convert hand coordinates into real-time computer cursor
movements. They also included a series of gestures, each triggering a distinct cursor action.

The proposed system effectively incorporates AI-based joint detection techniques into
the existing literature on gesture-controlled robotic arms. Unlike many examples from
the available literature [34,35], which rely on wearable equipment, our approach allows
users to control the robotic arm solely through their intuitive motion, eliminating the need
for equipping additional devices. It also provides precise gripper control that follows the
hand’s opening and closing gestures, a feature missing from the majority of vision-based
techniques [36,37].

3. Methodology
Figure 2 shows the setup of the proposed system. A depth camera is mounted at the

height of the user’s chest (x) after calibrating the visible spectrum data through a proper
pattern [48]. In addition, depth data aligned to the visible spectrum measurements for an
accurate representation of the scene [49]. The user is positioned at a fixed distance d, where
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their movements and hands are easily distinguishable in the camera frame. The considered
frames of reference are also depicted, with s corresponding to the camera sensor, c to the
operator’s chest, b to the robot’s base, and g to the robot’s gripper. The frame of reference
for the operator’s hand is divided into ht, which is considered parallel to s and follows the
hand’s position (translation-only), and hr, which is considered attached to ht but follows the
hand’s orientation (rotation-only). The goal is to calculate the homogenous transformation
matrix c

hr
T, from the user’s hand to the user’s chest, for every hand’s pose and convert its

values to the transformation matrix b
gT from the end effector to the robot’s base.

Figure 2. Proposed setup for controlling a robotic arm through human gestures. The frames consid-
ered for reference are depicted in red for the x-axis, green for the y-axis, and blue for the z-axis.

The introduced system is compatible with robotic arms of varying DOFs. A 6-DOF
manipulator is able to reach any point within its workspace with an arbitrary end-effector
orientation, while arms with fewer DOFs cannot. Robotic arms with more than 6 DOFs are
often utilized in applications that require enhanced flexibility, such as obstacle avoidance.
A higher DOF robotic arm used with the proposed methodology can adapt its movements
to the user rather than the other way around. Overall, the proposed system applies to any
robotic arm as long as the target end effector’s pose is within the robot’s workspace.

3.1. Hand Joint Estimation

An ML model based on MediaPipe [42,50] is used for tracking the 21 main hand
joints, as seen in Figure 3. The ML model uses a single-shot detector (SSD) to estimate the
palm’s position. After the palm’s detection, the hand joint positions are estimated through
regressions and provided in pixel values. The proposed system utilizes four hand joints for
its operation: the wrist, the thumb’s tip, the index finger’s tip, the index finger’s proximal
interphalangeal (PIP) and metacarpophalangeal (MCP) joints, and the pinky’s MCP, or in
Figure 3 joints 0, 4, 8, 6, 5 and 17, respectively.
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Figure 3. The 21 estimated hand joints from the work presented in [42,50].

3.2. Transforming Hand Pose Coordinates to Camera Coordinates

The full pose (6 DOF) of the human hand is considered for controlling the robotic
arm. We choose to divide translation and rotation into two different subsections for better
clarity. Here, the computation of the hand’s transformation is described, while Section 3.3
is dedicated to the computation of its orientation.

As mentioned above, the frames ht and hr are considered to share the same origin,
which is assigned to the midpoint pm = [xm, ym, zm]T between thumb and index tips. This
is computed by combining depth information provided by the RGB-D camera sensor, the
pinhole camera model [51], as described by the following projection matrix:

P = K[R|t]. (1)

In the above, K corresponds to the intrinsic parameters of the camera, R refers to the
camera’s rotation, and t is the camera’s translation. The camera’s axes are placed according
to common conventions [52]. In this way, we can compute the transformation matrix
between frames ht and s as

s
ht

T =


1 0 0 xm

0 1 0 ym

0 0 1 zm

0 0 0 1

. (2)

3.3. Calculating Hand’s Orientation

Two direction vectors are calculated to choose the axes in the coordinate system that
describe the hand’s orientation. For the first one, its starting point is at the index PIP joint
and its endpoint is at the user’s wrist and, respectively, at the pinky MCP and index MCP
joints for the other vector. These vectors are computed via

−→v =
(
xjoint2 − xjoint1 , yjoint2 − yjoint1 , zjoint2 − zjoint1

)
. (3)

These vectors are depicted in Figure 4, and they are normalized to unit vectors, resulting
in the zhr -axis and the xhr -axis. Then, the yhr -axis is calculated as the cross-product of the
xhr -axis and the zhr -axis. Finally, the xhr -axis is computed once more as the cross-product of
the yhr -axis and zhr -axis to ensure the orthonormality of the defined reference frame. Based
on the above, the hand’s orientation, and thus the transformation matrix between frames ht

and hr, is computed as
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ht
hr

T =

R(xhr , yhr , zhr )

0
0
0

0 0 0 1

 (4)

Figure 4. Direct vectors computed between the index PIP joint and the wrist (blue), pinky MCP, and
index MCP joints (red). These vectors are used as references for computing the orientation of the
operator’s hand (frame hr).

3.4. Transforming Hand Coordinates to Chest Coordinates

To convert hand coordinates to chest coordinates, the transformation matrix c
sT is

required, which is constant. The camera’s coordinate frame is shifted d units away from the
reference frame on the human’s chest. Then, the chest’s coordinate system is rotated 90◦

around the z-axis and then −90◦ around the x-axis’s new position to become identical to
the camera’s coordinate system, as shown in Figure 5. Consequently, the camera’s reference
frame is described relative to the chest as

c
sT =


0 0 −1 d
1 0 0 0
0 −1 0 0
0 0 0 1

. (5)

Finally, the matrix that transforms the hand’s coordinates to the chest’s is calculated through

c
hr

T =c
s T ·sht

T ·ht
hr

T. (6)

Figure 5. Rotations of the user’s chest frame of reference (c) in order to align its axes with those of the
camera’s coordinate frame (s).
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3.5. Scaling to Robotic Arm

To determine the gripper’s position and orientation b
gT, the computed hand’s pose

needs to be scaled to the robotic arm’s geometric characteristics and reach, as the gripper’s
orientation matches the human hand’s one. If the following is assumed, it is now possible
to transform c

hr
T into b

gT:

• xb,max, yb,max, zb,max and xb,min, yb,min, zb,min are the maximum reach of the robotic arm
along each axis in its base reference frame (b), “max” corresponds to the positive
direction while “min” corresponds to the negative direction of the respective axis.

• xc,max, yc,max, zc,max and xc,min, yc,min, zc,min is the furthest extent of the human arm with
respect to the coordinate system c, where “max” is dedicated to the positive direction
while “min” refers to the negative direction of the respective axis.

The relationship that translates hand coordinates to robot coordinates is given by the
following normalization formulas:

xb =
xc − xc,min

xc,max − xc,min
· (xb,max − xb,min) + xb,min

yb =
yc − yc,min

yc,max − yc,min
· (yb,max − yb,min) + yb,min

zb =
zc − zc,min

xc,max − zc,min
· (zb,max − zb,min) + zb,min

(7)

In order to deal with the possibility of the operator appearing in the frame but not in the
correct position, leading to out-of-bound hand positions, out-of-range values are handled by
setting the robotic arm to its maximum reach, until the correct control position is assumed.

3.6. Controlling the Gripper’s Opening Width

The maximum gripper opening width is denoted as wmax. The Euclidean distance
between the thumb tip and index tip is measured on the detected hand joints after their
projection to the 3D space to specify the opening width of the robotic gripper (w). Since the
motion of the gripper is symmetrical, w is halved and assigned to each of the robotic arm’s
fingers. To prevent the gripper, from attempting actions beyond its physical limitations, the
gripper’s opening span was set as min(w, wmax).

4. Expirements
4.1. Experimental Setup

For the experimental evaluation of our system, we used a ROS-based simulated version
of Franka Emika’s Panda robotic arm, a 7 DOF robotic manipulator. The end-effector tool
we utilized was a rigid gripper with a maximum opening span of 80 mm. The gripper
selection does not affect the outcome of the experiments as the pressure applied by the
gripper falls outside of this study’s scope. A high DOF robotic arm offers significant
flexibility, allowing the end effector to approach target points with multiple orientations
while being able to avoid obstacles. The arm was visualized in RViz, and the MoveIt!
package handled the inverse kinematics, motion planning, and control. An open-source,
high-level programming language was used for implementing the described methods and
managing the processes, as in [53]. The RGB-D sensor we utilized was the Intel RealSense
D435i RGB-D camera, which provides depth measurements through stereoscopic vision
technology. The depth sensor arrived factory pre-calibrated, and the Depth Quality Tool
provided by the camera’s SDK did not indicate problems in the calibration of the sensor.
Finally, the visible spectrum module was calibrated using the Camera Calibrator tool
provided by the MATLAB R2018b suite, using a printed copy of a chessboard pattern (each
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side of each square was measured at 96 mm). 25 images (848 × 480 pixels) were provided
to the calibration app, in each of which the pattern was easily visible in the frame. Table 1
presents the estimated intrinsic parameters.

Table 1. Camera parameters as calculated from MATLAB’s calibration tool.

Category Parameter Value

FocalLength [590.6891, 588.9445]
PrincipalPoint [418.0332, 254.8811]

Camera Intrisics Skew 0.1962
RadialDistortion [0.0672, −0.1554]
TangentialDistortion [−0.0015, −0.0026]
ImageSize [480, 848]

Accuracy of Estimation MeanReprojectionError 0.3230

NumPatterns 25
WorldPoints [54 × 2 double]

Calibration Settings WorldUnits “millimeters”
EstimateSkew 1
NumRadialDistortionCoefficients 2
EstimateTangentialDistortion 1

The depth camera was set at a height of x = 141 cm, while the operator was placed
in a fixed position d = 130 cm. The reach of our user’s hand was measured in millimeters:
xc ∈ [−600, 600], yc ∈ [−700, 700], and zc ∈ [−350, 700]. Similarly, the reach of the robotic
arm was measured in millimeters: xc ∈ [−770, 770], yc ∈ [−700, 700], and zc ∈ [−100, 900].

4.2. Results

Since the experimental setup of the proposed system uses a simulated robotic arm, only
the hand joint detection and the measurements of the depth camera sensor introduce noise.
The entirety of the computations is based on the above, and thus, they are further studied
and discussed in the section below. Any additional experiments would not accurately
reflect the performance of this setup due to the simulation characteristics. Therefore, we
are reluctant to provide further evaluations.

4.2.1. Hand Reference Pose Selection

Two types of palm reference poses were studied for controlling the robotic arm: (i) the
palm surface perpendicular to the camera and (ii) the palm surface parallel to the camera.
Figure 6 illustrates the hand approaching the same point by the two considered categories.
For each studied case, 10 depth measurements were taken after fixing the user’s hand at
1220 mm from the camera sensor. These measurements are presented in Table 2. As can
be seen, the mean absolute error of reference Pose 2 was 18.8 mm, which is why it was
selected for the rest of our study. It is worth mentioning that when the reference pose of the
hand was changed, and the depth estimation was not affected, the pose of the robotic arm
remained the same.
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(a) (b)

Figure 6. The two categories of studied hand poses for controlling the robotic arm. (a) Pose 1, the
palm’s surface is perpendicular to the camera; (b) Pose 2, where palm appears parallel relatively to
the camera.

Table 2. Depth estimations provided by the RGB-D camera for the two classes of examined hand’s
orientation. The hand’s real depth was 1220 mm.

Measurement No. Pose 1 (mm) Pose 2 (mm)

1 2239 1219
2 2238 1219
3 2239 1219
4 2236 1216
5 2240 1220
6 2239 1219
7 2239 1220
8 2237 1217
9 2237 1219
10 2238 1220

Mean 2238.2 1218.8
Variance 1.511 1.733

Std. Deviation 1.229 1.316

4.2.2. Fine-Tuning the Gripper Opening Width

It was observed that when the palm was widely open, or the actual distance between
the human fingers tended towards zero, depth estimation became inaccurate due to the
stereo depth module’s inability to estimate the depth of small surfaces such as fingertips
correctly. Because of this, the distance value w calculated by our algorithm became sig-
nificantly high, reaching approximately 60 m. It was considered that an open palm can
not extend 0.5 m. In this way, the gripper opening width was calculated as described in
Section 3.6. However, if w values were greater than 0.5 m, the gripper’s opening would be
set to zero.

4.3. Overall System Performance

Combining the above, a gesture-controlled robotic arm was developed that mimics
the movements of its operator’s hand, using a depth camera. Two different wrist orienta-
tions for the same hand position are illustrated in the left column of Figure 7, while the
right column displays the corresponding poses of the panda robotic arm for each hand
pose. Figure 7 indicates that the robotic arm can be intuitively utilized in pick-and-place
applications due to how the orientation of the end effector was defined.

Similarly, Figure 8 illustrates the control of the gripper. Specifically, images on the
left show the gripper at its maximum opening, while images on the right demonstrate the
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gripper adapting to an appropriate opening as the palm closes. Finally, Figure 9 depicts
33 hand positions and the corresponding positions of the gripper during the system’s
operation. The graphs demonstrate that the robotic arm followed the detected hand’s
positions with sufficient accuracy.

(a) Horizontal orientation of the user’s hand which results in the equivalent pose of the robotic arm.

(b) Vertical orientation of the palm which sets the panda arm in a vertical, face-down position.

Figure 7. Snapshots of the developed system’s operation.

(a) The user’s palm fully open (left), resulting in maximum opening span wmax, for the gripper (right).

(b) Almost closed user’s palm (left) as the gripper opening width tends to become zero (right).

Figure 8. The two boundary conditions for the gripper’s opening w values.
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Figure 9. The trajectory of the user’s hand, with respect to the frame of reference c , and the end
effector, with respect to b . 33 points are depicted with blue for the human hand and orange for the
Panda arm. The left graph is a side-view comparison of the movements, while the right one illustrates
the same sequence from a top view.

5. Conclusions
In this paper, a versatile gesture-controlled robotic arm system for small assembly lines

was presented, which integrates I5.0 guidelines. Our setup utilizes AI to enable intuitive
control without requiring any additional equipment for the user to achieve human–robot
interaction. Furthermore, it provides a reasonable solution for non-repetitive, customized
operations that typically take place in small-scale manufacturing lines, and it can be applied
in any modern collaborative robotic arm platform. Finally, the experimental setup of the
proposed design is presented, and the methodology was tailored to the Panda robotic arm.
The obtained results show that our proposal can achieve precise and user-friendly control
of a robotic arm.

The precision of our system is mainly affected by the quality of the depth camera’s
measurement, as poor depth estimation, when combined with the pinhole model, can lead
to incorrect hand position estimations. Even though the selected depth sensor does not
provide exceptional accuracy, especially in cases of small surfaces, the observed deviation
was minimal, and it did not affect our experiment’s outcome. However, in cases where
millimeter precision is required, the utilized depth sensor is not adequate.

Greater precision can be achieved using setups that estimate hand point coordinates
by multiple high-resolution sensors [54,55] or through the combination of specialized ML
models [56] to retain low equipment cost. Furthermore, considering the elbow joint in
future iterations of our system will allow users to select between elbow-up and elbow-down
configurations for the robotic arm in cases where the latter holds the required DOFs. This
addition would improve the adaptability of our system and provide more intuitive control,
allowing the robotic arm to replicate the movements of the user’s arm with greater accuracy
and avoid obstacles with better ease.

Additionally, integrating this system into a real industrial environment using a phys-
ical robot would provide valuable insights. The proposed system is easy to integrate
into various platforms and industrial settings. It supports a wide range of manipulators,
including multiple kinds of end effector tools, DOF, and convectional or double encoder
joints, to enable robust control and enhance torque sensing [57]. The remote control of the
robotic arm keeps operators safe from potential hazards. Moreover, real-time replication of
human arm movements and gestures allows the use of the system in non-repetitive tasks.
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This could have a significant impact on smaller enterprises, helping them transition from
traditional manufacturing techniques to automated ones. Finally, integrating the proposed
system into an actual assembly line is valuable, as collecting feedback from personnel
using the system is crucial for further optimization and enhancing its applicability in
real-world scenarios.
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