Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising
<p>Comparison between existing MID and the proposed method. Existing denoising methods typically yield smooth denoising results with visual artifacts. The proposed method can clean noisy medical images and address the limitations of existing methods. Left to right: noisy input, AED [<a href="#B9-mathematics-12-02313" class="html-bibr">9</a>], ResCNN [<a href="#B10-mathematics-12-02313" class="html-bibr">10</a>], DnCNN [<a href="#B11-mathematics-12-02313" class="html-bibr">11</a>], MIDDRAN [<a href="#B12-mathematics-12-02313" class="html-bibr">12</a>], DAE [<a href="#B13-mathematics-12-02313" class="html-bibr">13</a>], MMD [<a href="#B3-mathematics-12-02313" class="html-bibr">3</a>], the proposed method, and the reference image.</p> "> Figure 2
<p>Representative images obtained via each imaging modality: (<b>a</b>) X-ray; (<b>b</b>) MRI; (<b>c</b>) CT; (<b>d</b>) microscopy.</p> "> Figure 3
<p>Gaussian noise simulation for learning medical image denoising. This study incorporated noise simulation to learn and evaluate MID methods using numerous medical imaging modalities. From left to right: clean image, random noise (simulated), and noisy image (clean image + generated noise).</p> "> Figure 4
<p>Overview of the proposed novel MID network. The proposed method allows the network to encode salient features in high-dimensional space and to learn to reconstruct clean images by decoding the encoded features. The proposed network incorporates a novel DWR module to capture long-distance pixel dependencies and an MHA block to perform effective reconstruction.</p> "> Figure 5
<p>Comparison between vanilla residual blocks and proposed DWR. Proposed DWR block design captures long-distance pixel dependencies to learn efficient denoising. (<b>a</b>) Residual block; (<b>b</b>) bottleneck residual block; (<b>c</b>) proposed deep–wider residual block.</p> "> Figure 6
<p>Overview of proposed MHA, which enables proposed network to reconstruct clean and artifact-free medical images while performing denoising.</p> "> Figure 7
<p>Learning process of proposed network. Proposed method was trained for 50,000 steps. Convergence was determined by considering training loss and PSNR scores. (<b>a</b>) Training loss vs. steps; (<b>b</b>) PSNR vs. steps.</p> "> Figure 8
<p>Comparison between deep medical image denoising methods. Existing denoising methods tend to yield smooth denoising results with visual artifacts. Proposed method can clean noisy medical images and address limitations of existing methods. Left to right: noisy input, AED [<a href="#B9-mathematics-12-02313" class="html-bibr">9</a>], ResCNN [<a href="#B10-mathematics-12-02313" class="html-bibr">10</a>], DnCNN [<a href="#B11-mathematics-12-02313" class="html-bibr">11</a>], MIDDRAN [<a href="#B12-mathematics-12-02313" class="html-bibr">12</a>], DAE [<a href="#B13-mathematics-12-02313" class="html-bibr">13</a>], MMD [<a href="#B3-mathematics-12-02313" class="html-bibr">3</a>], proposed method, and reference image.</p> "> Figure 9
<p>Performance of proposed method in real-world noisy MID. Proposed method can manage real-world noise. In each pair, left represents noisy input and right represents image denoised by proposed method.</p> "> Figure 10
<p>Ablation study on proposed network. Proposed DWR facilitates deep network to learn to mitigate noise by leveraging long-distance pixel dependencies. Proposed MHA block aims to reconstruct plausible, clean images by exploiting salient features extracted by proposed DWR module. From left to right, the Input image, base network (without DWR + MHA), DWR network (without MHA block), the proposed deep network (DWR + MHA), and the reference image.</p> ">
Abstract
:1. Introduction
- A novel transformer-attention-based deep architecture is proposed that can address the limitations of existing MID methods.
- A novel DWR module is proposed to learn long-distance pixel dependencies in order to perform MID efficiently. Additionally, this study proposes to leverage MHA in the decoder to mitigate artifacts from denoised images.
- Dense experiments conducted on numerous medical modalities show that the proposed method substantially outperforms existing MID methods based on qualitative and quantitative comparisons.
- The effectiveness of the proposed method is investigated based on real-world noisy medical images, and its practicability is analyzed for real-world usage.
2. Related Studies
2.1. Image-to-Image Translation
2.2. Residual-Noise Estimation
3. Method
3.1. Data Preparation
3.1.1. Data Acquisition
- X-ray imaging is widely used for diagnosing bone fractures, joint problems, lung conditions, dental issues, etc. This study leverages the well-known Chexpert [29] dataset to represent X-ray images.
- Magnetic resonance imaging (MRI) is an effective medical imaging technique that uses magnetic fields and radio waves to generate detailed images of the body’s internal structures. It is crucial for diagnosing various conditions from brain tumors to joint injuries. This study leverages the dataset presented in [30] to learn MID for MRI.
- CT is a diagnostic imaging method that uses X-rays to create cross-sectional images of the body, thus providing detailed views of internal structures and aiding in the detection and diagnosis of various medical conditions such as fractures, tumors, and internal bleeding. The scan dataset presented in [31] was used to learn MID in CT images.
- Microscopy provides high-resolution images that reveal the intricate details of minute biological structures, cells, tissues, and microorganisms, and it is essential for advancing our understanding of biology, medicine, and various scientific disciplines. Furthermore, microscopic images typically contain Gaussian noise, which exhibits various pixel intensities, thus complicating accurate analyses and interpretations in fields such as biology and materials science. Thus, protein atlas scans [32] were used to investigated MID.
3.1.2. Noise Simulation
3.2. Learning from Data
3.2.1. Network Architecture
3.2.2. DWR Module
3.2.3. MHA
3.2.4. Learning Objective
3.3. Learning Details
Algorithm 1 Training algorithm of the proposed method |
|
4. Experiments
4.1. Comparison with State-of-the-Art Methods
4.1.1. Comparison Setup
- PSNR: This is commonly used in image denoising to measure the quality of denoised images based on a comparison with the original noisy image. Higher PSNR scores represent better visual quality of generated images. Equation (12) presents the derivation of the PSNR.
- SSIM: This is a widely used metric for image quality assessment. This study utilized the SSIM to compare the structural information of generated and ground truth images. A higher SSIM score represents better structural reconstruction. We calculated the SSIM score as follows:
- LLIPS: In addition to the standard quantitative metrics, we used another well-known perceptual metric, i.e., the LLIPS, to summarize the performance of the deep models in terms of perceptual perspective. Specifically, we leveraged the LLIPS with Alexnet pretrained weights. The reference and denoised images were compared quantitatively by calculating the LLIPS as follows:
4.1.2. Quantitative Evaluation
4.1.3. Qualitative Evaluation
4.2. Real-World MID
4.3. Real-World Application
4.4. Inference Analysis
4.5. Ablation Study
4.6. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, G.; Fujita, H. Deep Learning in Medical Image Analysis: Challenges and Applications; Springer: Cham, Switzerland, 2020; Volume 1213. [Google Scholar]
- Kulathilake, K.S.H.; Abdullah, N.A.; Sabri, A.Q.M.; Bandara, A.R.; Lai, K.W. A review on self-adaptation approaches and techniques in medical image denoising algorithms. Multimed. Tools Appl. 2022, 81, 37591–37626. [Google Scholar] [CrossRef]
- El-Shafai, W.; Mahmoud, A.; Ali, A.; El-Rabaie, E.; Taha, T.; Zahran, O.; El-Fishawy, A.; Soliman, N.; Alhussan, A.; Abd El-Samie, F. Deep cnn model for multimodal medical image denoising. Comput. Mater. Contin. 2022, 73, 3795–3814. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Ying, Y.; Liu, Y.; Peng, Q. Fast non-local algorithm for image denoising. In Proceedings of the 2006 International Conference on Image Processing, Atlanta, GA, USA, 8–11 October 2006; pp. 1429–1432. [Google Scholar]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Arif, A.S.; Mansor, S.; Logeswaran, R. Combined bilateral and anisotropic-diffusion filters for medical image de-noising. In Proceedings of the 2011 IEEE Student Conference on Research and Development, Cyberjaya, Malaysia, 19–20 December 2011; IEEE: New York, NY, USA, 2011; pp. 420–424. [Google Scholar]
- Bhonsle, D.; Chandra, V.; Sinha, G. Medical image denoising using bilateral filter. Int. J. Image Graph. Signal Process. 2012, 4, 36. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Gondara, L. Medical image denoising using convolutional denoising autoencoders. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December 2016; pp. 241–246. [Google Scholar]
- Jifara, W.; Jiang, F.; Rho, S.; Cheng, M.; Liu, S. Medical image denoising using convolutional neural network: A residual learning approach. J. Supercomput. 2019, 75, 704–718. [Google Scholar] [CrossRef]
- Jiang, D.; Dou, W.; Vosters, L.; Xu, X.; Sun, Y.; Tan, T. Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn. J. Radiol. 2018, 36, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Sharif, S.; Naqvi, R.A.; Biswas, M. Learning medical image denoising with deep dynamic residual attention network. Mathematics 2020, 8, 2192. [Google Scholar] [CrossRef]
- El-Shafai, W.; El-Nabi, S.A.; El-Rabaie, E.S.M.; Ali, A.M.; Soliman, N.F.; Algarni, A.D.; El-Samie, A.; Fathi, E. Efficient Deep-Learning-Based Autoencoder Denoising Approach for Medical Image Diagnosis. Comput. Mater. Contin. 2022, 70, 6107–6125. [Google Scholar] [CrossRef]
- Wang, Z.; Cun, X.; Bao, J.; Zhou, W.; Liu, J.; Li, H. Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 17683–17693. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5728–5739. [Google Scholar]
- Suganyadevi, S.; Seethalakshmi, V.; Balasamy, K. A review on deep learning in medical image analysis. Int. J. Multimed. Inf. Retr. 2022, 11, 19–38. [Google Scholar] [CrossRef]
- Patil, R.; Bhosale, S. Medical image denoising techniques: A review. Int. J. Eng. Sci. Technol. (IJonEST) 2022, 4, 21–33. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [Google Scholar] [CrossRef]
- Fan, F.; Shan, H.; Kalra, M.K.; Singh, R.; Qian, G.; Getzin, M.; Teng, Y.; Hahn, J.; Wang, G. Quadratic autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans. Med. Imaging 2019, 39, 2035–2050. [Google Scholar] [CrossRef] [PubMed]
- Hyun, C.M.; Kim, H.P.; Lee, S.M.; Lee, S.; Seo, J.K. Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 2018, 63, 135007. [Google Scholar] [CrossRef]
- Kidoh, M.; Shinoda, K.; Kitajima, M.; Isogawa, K.; Nambu, M.; Uetani, H.; Morita, K.; Nakaura, T.; Tateishi, M.; Yamashita, Y.; et al. Deep learning based noise reduction for brain MR imaging: Tests on phantoms and healthy volunteers. Magn. Reson. Med. Sci. 2020, 19, 195. [Google Scholar] [CrossRef]
- Rawat, S.; Rana, K.; Kumar, V. A novel complex-valued convolutional neural network for medical image denoising. Biomed. Signal Process. Control 2021, 69, 102859. [Google Scholar] [CrossRef]
- Ghahremani, M.; Khateri, M.; Sierra, A.; Tohka, J. Adversarial distortion learning for medical image denoising. arXiv 2022, arXiv:2204.14100. [Google Scholar]
- Zhou, B.; Tsai, Y.J.; Chen, X.; Duncan, J.S.; Liu, C. MDPET: A unified motion correction and denoising adversarial network for low-dose gated PET. IEEE Trans. Med. Imaging 2021, 40, 3154–3164. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, K.; Shi, W.; Miao, Y.; Jiang, Z. A Novel Medical Image Denoising Method Based on Conditional Generative Adversarial Network. Comput. Math. Methods Med. 2021, 2021, 9974017. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Wu, C.; Yu, X.; Ji, P.; Chu, H. Single low-dose CT image denoising using a generative adversarial network with modified U-Net generator and multi-level discriminator. IEEE Access 2020, 8, 133470–133487. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Kokil, P.; Sudharson, S. Despeckling of clinical ultrasound images using deep residual learning. Comput. Methods Programs Biomed. 2020, 194, 105477. [Google Scholar] [CrossRef]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 590–597. [Google Scholar]
- Buda, M.; Saha, A.; Mazurowski, M.A. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 2019, 109, 218–225. [Google Scholar] [CrossRef]
- Yang, X.; He, X.; Zhao, J.; Zhang, Y.; Zhang, S.; Xie, P. Covid-ct-dataset: A ct scan dataset about covid-19. arXiv 2020, arXiv:2003.13865. [Google Scholar]
- Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 2010, 28, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Peng, L.; Zhang, H.; He, Y.; Cao, S.; Lu, L. Dynamic PET image denoising using deep image prior combined with regularization by denoising. IEEE Access 2021, 9, 52378–52392. [Google Scholar] [CrossRef]
- Gao, F.; Wu, T.; Chu, X.; Yoon, H.; Xu, Y.; Patel, B. Deep Residual Inception Encoder–Decoder Network for Medical Imaging Synthesis. IEEE J. Biomed. Health Inform. 2019, 24, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Sharif, S.; Naqvi, R.A.; Ali, F.; Biswas, M. DarkDeblur: Learning single-shot image deblurring in low-light condition. Expert Syst. Appl. 2023, 222, 119739. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kınlı, F.; Menteş, S.; Özcan, B.; Kıraç, F.; Timofte, R.; Zuo, Y.; Wang, Z.; Zhang, X.; Zhu, Y.; Li, C.; et al. AIM 2022 challenge on Instagram filter removal: Methods and results. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 27–43. [Google Scholar]
- Sharif, S.; Naqvi, R.A.; Loh, W.K. Two-Stage Deep Denoising With Self-guided Noise Attention for Multimodal Medical Images. IEEE Trans. Radiat. Plasma Med. Sci. 2024, 8, 521–531. [Google Scholar] [CrossRef]
- Pytorch. PyTorch Framework Code. 2016. Available online: https://pytorch.org/ (accessed on 24 April 2024).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- McCollough, C. TU-FG-207A-04: Overview of the low dose CT grand challenge. Med. Phys. 2016, 43, 3759–3760. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, B.; Feng, P.; He, P.; Guo, X.; Wang, G. Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning. IEEE Access 2020, 8, 67519–67529. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLOv8. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed on 16 July 2024).
- TFG. YOLO Dataset. 2022. Available online: https://universe.roboflow.com/tfg-2nmge/yolo-yejbs (accessed on 14 July 2024).
- Sharif, S.; Mobin, I.; Mohammed, N. Augmented quick health. Int. J. Comput. Appl. 2016, 134, 1–6. [Google Scholar] [CrossRef]
- Dong, G.; Ma, Y.; Basu, A. Feature-guided CNN for denoising images from portable ultrasound devices. IEEE Access 2021, 9, 28272–28281. [Google Scholar] [CrossRef]
- Sakib, S.; Fouda, M.M.; Al-Mahdawi, M.; Mohsen, A.; Oogane, M.; Ando, Y.; Fadlullah, Z.M. Deep learning models for magnetic cardiography edge sensors implementing noise processing and diagnostics. IEEE Access 2021, 10, 2656–2668. [Google Scholar] [CrossRef]
Method | Learning Strategy | Strengths | Weaknesses |
---|---|---|---|
Image-to-image translation | Translates noisy image into clean image |
|
|
Residual denoising | Learns underlying noise from noisy image |
|
|
Proposed method | Denoises medical images utilizing DWR and MHA |
|
|
Model | Chexpert | CT | MRI | Microscopy | Combined | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | ||
AED | 10 | 30.43 | 0.9178 | 0.1078 | 27.39 | 0.8882 | 0.1361 | 33.93 | 0.9375 | 0.0680 | 32.07 | 0.9094 | 0.0784 | 30.95 | 0.9132 | 0.0976 |
DnCNN | 26.19 | 0.7812 | 0.2786 | 23.29 | 0.6763 | 0.2260 | 26.53 | 0.7131 | 0.1697 | 30.34 | 0.8660 | 0.0933 | 26.59 | 0.7592 | 0.1919 | |
ResCNN | 24.77 | 0.7455 | 0.3324 | 23.92 | 0.7214 | 0.1859 | 26.68 | 0.7517 | 0.1610 | 30.64 | 0.8710 | 0.1012 | 26.50 | 0.7724 | 0.1951 | |
DRAN | 33.35 | 0.9236 | 0.0622 | 36.72 | 0.9624 | 0.0162 | 35.15 | 0.9442 | 0.0409 | 37.11 | 0.9693 | 0.0330 | 35.58 | 0.9499 | 0.0381 | |
MMD | 27.63 | 0.8537 | 0.1771 | 25.05 | 0.7498 | 0.1582 | 24.88 | 0.6848 | 0.2211 | 29.55 | 0.8514 | 0.1224 | 26.78 | 0.7849 | 0.1697 | |
DAE | 24.10 | 0.8383 | 0.1968 | 19.00 | 0.8008 | 0.1752 | 29.72 | 0.8028 | 0.1475 | 27.61 | 0.6417 | 0.2169 | 25.11 | 0.7709 | 0.1841 | |
Proposed | 37.19 | 0.9685 | 0.0130 | 41.55 | 0.9856 | 0.0037 | 42.55 | 0.9819 | 0.0062 | 43.13 | 0.9892 | 0.0053 | 41.11 | 0.9813 | 0.0070 | |
AED | 25 | 30.51 | 0.9150 | 0.1046 | 27.09 | 0.8709 | 0.1488 | 33.72 | 0.9318 | 0.0710 | 31.95 | 0.9053 | 0.0795 | 30.82 | 0.9057 | 0.1010 |
DnCNN | 28.01 | 0.8299 | 0.2074 | 25.22 | 0.7448 | 0.1743 | 27.82 | 0.7689 | 0.1757 | 29.95 | 0.8541 | 0.1246 | 27.75 | 0.7994 | 0.1705 | |
ResCNN | 29.04 | 0.8603 | 0.1676 | 26.50 | 0.8010 | 0.1261 | 28.84 | 0.7704 | 0.1993 | 30.63 | 0.8449 | 0.1379 | 28.75 | 0.8192 | 0.1578 | |
DRAN | 30.84 | 0.8828 | 0.1110 | 32.01 | 0.8950 | 0.0657 | 34.38 | 0.9270 | 0.0728 | 34.91 | 0.9408 | 0.0509 | 33.03 | 0.9114 | 0.0751 | |
MMD | 30.28 | 0.8749 | 0.1336 | 26.84 | 0.7929 | 0.1367 | 27.98 | 0.7709 | 0.1780 | 31.14 | 0.8759 | 0.1080 | 29.06 | 0.8287 | 0.1391 | |
DAE | 24.67 | 0.8389 | 0.1806 | 19.17 | 0.7938 | 0.1727 | 29.01 | 0.7954 | 0.1857 | 27.60 | 0.6542 | 0.2008 | 25.11 | 0.7706 | 0.1849 | |
Proposed | 36.94 | 0.9670 | 0.0145 | 40.07 | 0.9825 | 0.0046 | 40.83 | 0.9787 | 0.0082 | 41.25 | 0.9841 | 0.0076 | 39.77 | 0.9781 | 0.0087 | |
AED | 50 | 30.22 | 0.9071 | 0.1108 | 27.27 | 0.8778 | 0.1431 | 33.28 | 0.9211 | 0.0802 | 31.73 | 0.8993 | 0.0860 | 30.63 | 0.9013 | 0.1051 |
DnCNN | 28.10 | 0.8335 | 0.2166 | 26.55 | 0.8134 | 0.1330 | 26.83 | 0.7171 | 0.2805 | 27.20 | 0.7543 | 0.2151 | 27.17 | 0.7796 | 0.2113 | |
ResCNN | 29.27 | 0.8781 | 0.1589 | 27.65 | 0.8506 | 0.1111 | 26.75 | 0.6155 | 0.3075 | 27.06 | 0.6417 | 0.2501 | 27.68 | 0.7465 | 0.2069 | |
DRAN | 26.27 | 0.7800 | 0.2542 | 27.94 | 0.8229 | 0.1366 | 32.80 | 0.8756 | 0.1512 | 33.00 | 0.8785 | 0.0876 | 30.00 | 0.8393 | 0.1574 | |
MMD | 27.94 | 0.8589 | 0.1907 | 25.67 | 0.7745 | 0.1628 | 26.33 | 0.6137 | 0.2789 | 26.80 | 0.6347 | 0.2208 | 26.68 | 0.7205 | 0.2133 | |
DAE | 24.03 | 0.8055 | 0.2080 | 18.89 | 0.7720 | 0.1897 | 28.00 | 0.7492 | 0.2720 | 27.54 | 0.6510 | 0.2029 | 24.62 | 0.7444 | 0.2182 | |
Proposed | 36.75 | 0.9659 | 0.0160 | 39.20 | 0.9804 | 0.0056 | 39.83 | 0.9757 | 0.0110 | 39.64 | 0.9793 | 0.0104 | 38.85 | 0.9753 | 0.0107 | |
AED | 75 | 29.95 | 0.9000 | 0.1195 | 27.42 | 0.8853 | 0.1376 | 32.85 | 0.9105 | 0.0912 | 31.52 | 0.8938 | 0.0940 | 30.44 | 0.8974 | 0.1106 |
DnCNN | 26.53 | 0.8146 | 0.2441 | 25.61 | 0.8176 | 0.1458 | 21.17 | 0.3179 | 0.4531 | 21.28 | 0.3096 | 0.4473 | 23.65 | 0.5649 | 0.3226 | |
ResCNN | 27.05 | 0.8392 | 0.2312 | 26.57 | 0.8261 | 0.1395 | 20.53 | 0.2831 | 0.4906 | 20.70 | 0.2860 | 0.4903 | 23.71 | 0.5586 | 0.3379 | |
DRAN | 23.89 | 0.6918 | 0.3738 | 27.32 | 0.8158 | 0.1595 | 31.03 | 0.7946 | 0.2494 | 31.75 | 0.8151 | 0.1388 | 28.50 | 0.7794 | 0.2304 | |
MMD | 26.09 | 0.8039 | 0.2760 | 25.21 | 0.7915 | 0.1700 | 21.13 | 0.3085 | 0.4490 | 21.29 | 0.3065 | 0.4303 | 23.43 | 0.5526 | 0.3313 | |
DAE | 22.92 | 0.7681 | 0.2595 | 18.49 | 0.7507 | 0.2143 | 27.55 | 0.7130 | 0.3309 | 27.09 | 0.6142 | 0.2350 | 24.01 | 0.7115 | 0.2599 | |
Proposed | 36.57 | 0.9653 | 0.0164 | 38.66 | 0.9789 | 0.0063 | 38.97 | 0.9703 | 0.0139 | 38.79 | 0.9763 | 0.0124 | 38.25 | 0.9727 | 0.0122 | |
AED | Avg. | 30.28 | 0.9100 | 0.1107 | 27.29 | 0.8806 | 0.1414 | 33.45 | 0.9252 | 0.0776 | 31.82 | 0.9020 | 0.0845 | 30.71 | 0.9044 | 0.1035 |
DnCNN | 27.21 | 0.8148 | 0.2366 | 25.17 | 0.7630 | 0.1698 | 25.58 | 0.6292 | 0.2698 | 27.19 | 0.6960 | 0.2201 | 26.29 | 0.7258 | 0.2241 | |
ResCNN | 27.53 | 0.8308 | 0.2225 | 26.16 | 0.7998 | 0.1407 | 25.70 | 0.6052 | 0.2896 | 27.26 | 0.6609 | 0.2449 | 26.66 | 0.7242 | 0.2244 | |
DRAN | 28.59 | 0.8196 | 0.2003 | 31.00 | 0.8740 | 0.0945 | 33.34 | 0.8854 | 0.1286 | 34.19 | 0.9009 | 0.0776 | 31.78 | 0.8700 | 0.1252 | |
MMD | 27.98 | 0.8478 | 0.1943 | 25.69 | 0.7771 | 0.1569 | 25.08 | 0.5945 | 0.2818 | 27.20 | 0.6671 | 0.2204 | 26.49 | 0.7216 | 0.2133 | |
DAE | 23.93 | 0.8127 | 0.2112 | 18.89 | 0.7793 | 0.1880 | 28.57 | 0.7651 | 0.2340 | 27.46 | 0.6403 | 0.2139 | 24.71 | 0.7493 | 0.2118 | |
Proposed | 36.87 | 0.9667 | 0.0150 | 39.87 | 0.9819 | 0.0050 | 40.54 | 0.9767 | 0.0098 | 40.70 | 0.9822 | 0.0089 | 39.50 | 0.9769 | 0.0097 |
Kernel | Wavelength | Method | PSNR↑ | SSIM↑ | LLIPS↓ |
---|---|---|---|---|---|
Soft | 1 mm | Input | 36.31 | 0.8799 | 0.0802 |
Proposed | 40.71 | 0.9543 | 0.0431 | ||
3 mm | Input | 36.29 | 0.8832 | 0.0777 | |
Proposed | 40.80 | 0.9556 | 0.0414 | ||
Sharp | 1 mm | Input | 28.53 | 0.6768 | 0.1342 |
Proposed | 34.90 | 0.8462 | 0.1180 | ||
3 mm | Input | 28.55 | 0.6751 | 0.1354 | |
Proposed | 34.77 | 0.8459 | 0.1175 | ||
Combine | 1 mm | Input | 32.42 | 0.7783 | 0.1072 |
Proposed | 37.81 | 0.9003 | 0.0806 | ||
3 mm | Input | 32.42 | 0.7791 | 0.1066 | |
Proposed | 37.79 | 0.9007 | 0.0795 | ||
Average | 1 mm/3 mm | Input | 30.47 | 0.7275 | 0.1207 |
Proposed | 36.35 | 0.8732 | 0.0993 |
Input | Class | Box (Precision) | Recall | mAP (50) | mAP (50–95) |
---|---|---|---|---|---|
Original [45] | Platelets | 0.8240 | 0.8150 | 0.8550 | 0.4620 |
RBC | 0.7480 | 0.7440 | 0.7870 | 0.5770 | |
WBC | 0.9830 | 0.8840 | 0.9140 | 0.7880 | |
All | 0.8510 | 0.8140 | 0.8520 | 0.6090 | |
Enhanced | Platelets | 0.8730 | 0.8380 | 0.9120 | 0.4720 |
RBC | 0.7490 | 0.8260 | 0.8590 | 0.6200 | |
WBC | 0.9800 | 0.9830 | 0.9840 | 0.8290 | |
All | 0.8680 | 0.8820 | 0.9180 | 0.6400 |
Dimension | |||
Flops (G) | 17.42 | 69.68 | 278.74 |
Gmacs | 16.22 | 64.90 | 259.59 |
Parameters (M) | 12.54 | ||
Inference Time (ms) | 9.56 | 31.80 | 119.99 |
Model | Chexpert | CT | MRI | Microscopy | Combined | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | PSNR↑ | SSIM↑ | LLIPS↓ | ||
Base | 10 | 20.61 | 0.9125 | 0.0591 | 18.42 | 0.8761 | 0.0614 | 31.21 | 0.6852 | 0.1111 | 30.45 | 0.6284 | 0.1352 | 25.17 | 0.7756 | 0.0917 |
DWR | 35.90 | 0.9588 | 0.0312 | 36.75 | 0.9643 | 0.0183 | 38.33 | 0.9433 | 0.0182 | 40.21 | 0.9416 | 0.0116 | 37.80 | 0.9520 | 0.0198 | |
Proposed | 37.19 | 0.9685 | 0.0130 | 41.55 | 0.9856 | 0.0037 | 42.55 | 0.9819 | 0.0062 | 43.13 | 0.9892 | 0.0053 | 41.11 | 0.9813 | 0.0070 | |
Base | 25 | 20.64 | 0.8230 | 0.2419 | 18.18 | 0.7610 | 0.1697 | 36.02 | 0.9168 | 0.0338 | 23.28 | 0.3492 | 0.4364 | 24.53 | 0.7125 | 0.2204 |
DWR | 35.37 | 0.9524 | 0.0346 | 35.69 | 0.9544 | 0.0202 | 24.28 | 0.3925 | 0.3393 | 37.80 | 0.9036 | 0.0122 | 33.28 | 0.8007 | 0.1016 | |
Proposed | 36.94 | 0.9670 | 0.0145 | 40.07 | 0.9825 | 0.0046 | 40.83 | 0.9787 | 0.0082 | 41.25 | 0.9841 | 0.0076 | 39.77 | 0.9781 | 0.0087 | |
Base | 50 | 19.38 | 0.6432 | 0.5316 | 17.22 | 0.6318 | 0.3511 | 17.84 | 0.2048 | 0.6275 | 17.64 | 0.1963 | 0.7461 | 18.02 | 0.4190 | 0.5641 |
DWR | 34.11 | 0.9431 | 0.0476 | 33.82 | 0.9399 | 0.0306 | 33.77 | 0.8714 | 0.0698 | 34.92 | 0.8505 | 0.0244 | 34.15 | 0.9012 | 0.0431 | |
Proposed | 36.75 | 0.9659 | 0.0160 | 39.20 | 0.9804 | 0.0056 | 39.83 | 0.9757 | 0.0110 | 39.64 | 0.9793 | 0.0104 | 38.85 | 0.9753 | 0.0107 | |
Base | 75 | 17.93 | 0.5380 | 0.6938 | 16.22 | 0.5622 | 0.4754 | 14.71 | 0.1395 | 0.7954 | 14.51 | 0.1344 | 0.8834 | 15.84 | 0.3435 | 0.7120 |
DWR | 20.59 | 0.6200 | 0.5963 | 20.94 | 0.6804 | 0.3626 | 15.40 | 0.1494 | 0.7511 | 15.21 | 0.1455 | 0.8582 | 18.04 | 0.3988 | 0.6420 | |
Proposed | 36.57 | 0.9653 | 0.0164 | 38.66 | 0.9789 | 0.0063 | 38.97 | 0.9703 | 0.0139 | 38.79 | 0.9763 | 0.0124 | 38.25 | 0.9727 | 0.0122 | |
Base | Avg. | 19.64 | 0.7292 | 0.3816 | 17.51 | 0.7078 | 0.2644 | 24.95 | 0.4866 | 0.3919 | 21.47 | 0.3271 | 0.5503 | 20.89 | 0.5626 | 0.3971 |
DWR | 31.49 | 0.8685 | 0.1774 | 31.80 | 0.8847 | 0.1079 | 27.94 | 0.5892 | 0.2946 | 32.03 | 0.7103 | 0.2266 | 30.82 | 0.7632 | 0.2016 | |
Proposed | 36.87 | 0.9667 | 0.0150 | 39.87 | 0.9819 | 0.0050 | 40.54 | 0.9767 | 0.0098 | 40.70 | 0.9822 | 0.0089 | 39.50 | 0.9769 | 0.0097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqvi, R.A.; Haider, A.; Kim, H.S.; Jeong, D.; Lee, S.-W. Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising. Mathematics 2024, 12, 2313. https://doi.org/10.3390/math12152313
Naqvi RA, Haider A, Kim HS, Jeong D, Lee S-W. Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising. Mathematics. 2024; 12(15):2313. https://doi.org/10.3390/math12152313
Chicago/Turabian StyleNaqvi, Rizwan Ali, Amir Haider, Hak Seob Kim, Daesik Jeong, and Seung-Won Lee. 2024. "Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising" Mathematics 12, no. 15: 2313. https://doi.org/10.3390/math12152313
APA StyleNaqvi, R. A., Haider, A., Kim, H. S., Jeong, D., & Lee, S.-W. (2024). Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising. Mathematics, 12(15), 2313. https://doi.org/10.3390/math12152313