Abstract
Noise is a definite degeneration of medical images that interferes with the diagnostic process in clinical medicine. Although many denoising algorithms have been developed to improve the visual quality of medical images, failure to noise adaptation has been identified as a critical limitation of many existing denoising algorithms. Therefore, the objective of this study is to conduct an in-depth review to investigate and classify the various self-adaptive approaches and techniques implemented in recent medical image denoising applications. The articles published from the year 2015 have been retrieved from the web of science core collection database focusing on four medical imaging modalities, such as radiography, magnetic resonance imaging, computed tomography, and ultrasound. The analysis of the applications has emphasized the unique algorithmic components used to achieve the self-adaptability in detailed. Moreover, the strengths and weaknesses of those applications have been reviewed according to the various adaptive denoising approaches. Finally, this review highlights the limitations of existing adaptive denoising algorithms and open research directions for further studies of the domain.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Not applicable.
Code availability
Not applicable.
Abbreviations
- ML:
-
Machine Learning
- CT:
-
Computed Tomography
- MRI:
-
Magnetic Resonance Imaging
- US:
-
Ultrasonography
- ANLM:
-
Adaptive Non-local Means
- NLM:
-
Non-local Means
- BM3D:
-
Block Matching Three Dimention
- LDCT:
-
Low-dose CT
- LRA:
-
Low Rank Approximation
- SVD:
-
Singular Value Decomposition
- TV:
-
Total Variation
- ADF:
-
Anisotropic Diffusion Filtering
- AMM:
-
Adaptive Mathematical Morphology
- PCA:
-
Principle Component Analysis
- LMMSE:
-
Linear Minimum Mean Square Error
- MLE:
-
Maximum Likelihood Estimation
- EM:
-
Expectation Maximization
- MRF:
-
Markov Random Field
- MAP:
-
Maximum a Posterior
- DWT:
-
Discrete Wavelet Transform
- SURE:
-
Stein’s Unbiased Risk Estimator
- ANN:
-
Artificial Neural Network
- FLANN:
-
Function Link Artificial Neural Network
- CNN:
-
Convolutional Neural Networks
- ResNet:
-
Residual CNN
- GAN:
-
Generative Adversarial Networks
References
Ai D, Yang J, Fan J, Cong W, Wang Y (2015) Adaptive tensor-based principal component analysis for low-dose CT image denoising. PLoS ONE 10(5):e0126914. https://doi.org/10.1371/journal.pone.0126914
Aja-Fernández S, Alberola-López C, Westin C-F(2008) Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans Image Process 17(8):1383–1398
Aja-Fernández S, Pie¸ciak T, Vegas-Sánchez-Ferrero G (2015) Spatially variant noise estimation in MRI: A homomorphic approach. Med Image Anal 20(1):184–197. https://doi.org/10.1016/j.media.2014.11.005
Akdemir Akar S (2016) Determination of optimal parameters for bilateral filter in brain MR image denoising. Appl Soft Comput 43:87–96. https://doi.org/10.1016/j.asoc.2016.02.043
Alkinani MH, El-Sakka MR (2017)Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP J Image Video Process 2017(1):58. https://doi.org/10.1186/s13640-017-0203-4
Arora S, Hanmandlu M, Gupta G (2018) Filtering impulse noise in medical images using information sets. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.06.002
Baselice F, Ferraioli G, Pascazio VJBEO (2017) A 3D MRI denoising algorithm based on Bayesian theory. Biomed Eng Online 16(1):25. https://doi.org/10.1186/s12938-017-0319-x
Baselice F, Ferraioli G, Ambrosanio M, Pascazio V, Schirinzi G (2018) Enhanced wiener filter for ultrasound image restoration. Comput Methods Program Biomed 153:71–81. https://doi.org/10.1016/j.cmpb.2017.10.006
Bhujle HV, Vadavadagi BH (2019) NLM based magnetic resonance image denoising – A review. Biomed Signal Process Control 47:252–261. https://doi.org/10.1016/j.bspc.2018.08.031
Buades A, Coll B, Morel J-M(2005) A review of image denoising algorithms, with a new one. Multiscale Model and Simul 4(2):490–530. https://doi.org/10.1137/040616024
Chang YN, Chang HH (2015) Automatic brain MR image denoising based on texture feature-based artificial neural networks. Bio-Med Mater Eng 26:S1275–S1282. https://doi.org/10.3233/bme-151425
Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017)Low-Dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535. https://doi.org/10.1109/TMI.2017.2715284
Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017)Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694. https://doi.org/10.1364/BOE.8.000679
Chi J, Wu C, Yu X, Ji P, Chu H (2020) Single Low-Dose CT image denoising using a generative adversarial network with modified U-net generator and multi-level discriminator. IEEE Access 8:133470–133487. https://doi.org/10.1109/ACCESS.2020.3006512
Chinnathambi V, Sankaralingam E, Thangaraj V, Padma SJIIP (2018) Despeckling of ultrasound images using directionally decimated wavelet packets with adaptive clustering. IET Image Process 13(1):206–215. https://doi.org/10.1049/iet-ipr.2018.5011
Choi K, Lim JS, Kim SK (2020) StatNet: Statistical image restoration for low-dose CT using deep learning. IEEE J Sel Top Signal Process 14(6):1137–1150. https://doi.org/10.1109/jstsp.2020.2998413
Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: An overview. IEEE Signal Process Mag 35(1):53–65
Dabov K, Foi A, Egiazarian K (2007) Video denoising by sparse 3D transform-domain collaborative filtering. In: 2007 15th Eur Signal Process Conf, Poznan, Poland, 2015. IEEE, pp 145–149
Das P, Pal C, Chakrabarti A, Acharyya A, Basu S (2020) Adaptive denoising of 3D volumetric MR images using local variance based estimator. Biomed Signal Process Control 59:101901. https://doi.org/10.1016/j.bspc.2020.101901
Diwakar M, Kumar M (2018) A review on CT image noise and its denoising. Biomed Signal Process Control 42:73–88. https://doi.org/10.1016/j.bspc.2018.01.010
Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455. https://doi.org/10.1093/biomet/81.3.425
Dorini LB, Leite NJ (2009) Multiscale methods for image processing: The wavelet and the scale-space approaches. In: Tutor of the XXII Braz Symp Comput Graph and Image Process, Rio de Janeiro, Brazil, 11–14, 2009. IEEE, pp31–44. https://doi.org/10.1109/SIBGRAPI-Tutorials.2009.11
Du W, Chen H, Wu Z, Sun H, Liao P, Zhang Y (2017) Stacked competitive networks for noise reduction in low-dose CT. PLoS ONE 12(12):e0190069. https://doi.org/10.1371/journal.pone.0190069
Du W, Chen H, Liao P, Yang H, Wang G, Zhang Y (2019) Visual attention network for low-dose CT. IEEE Signal Process Lett 26(8):1152–1156. https://doi.org/10.1109/LSP.2019.2922851
Elyasi I, Pourmina MA (2016) Reduction of speckle noise ultrasound images based on TV regularization and modified bayes shrink techniques. Optik 127(24):11732–11744. https://doi.org/10.1016/j.ijleo.2016.09.054
Fan F, Shan H, Kalra MK, Singh R, Qian G, Getzin M, Teng Y, Hahn J, Wang G (2020) Quadratic Autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans Med Imaging 39(6):2035–2050. https://doi.org/10.1109/TMI.2019.2963248
Fu Y, Dong W (2016) 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195:30–39. https://doi.org/10.1016/j.neucom.2015.09.125
Fu XW, Wang Y, Chen L, Dai Y (2015)Quantum-inspired hybrid medical ultrasound images despeckling method. Electron Lett 51(4):321–322. https://doi.org/10.1049/el.2014.3742
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI 6(6):721–741. https://doi.org/10.1109/TPAMI.1984.4767596
Golshan HM, Hasanzadeh RPR (2015) An optimized LMMSE based method for 3D MRI denoising. IEEE/ACM Trans Comput Biol Bioinform 12(4):861–870. https://doi.org/10.1109/TCBB.2014.2344675
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, Montreal, Canada, December 08–13 2014. MIT Press, Cambridge, pp 2672–2680
Gu J, Ye JC (2021)AdaIN-based tunable cycleGAN for efficient unsupervised Low-Dose CT denoising. IEEE Trans Comp Imaging 7:73–85. https://doi.org/10.1109/TCI.2021.3050266
Gupta D, Anand RS, Tyagi B (2015) Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Process 9(2):107–117. https://doi.org/10.1049/iet-ipr.2014.0330
Hashemi S, Paul NS, Beheshti S, Cobbold RSC (2015) Adaptively tuned iterative low dose CT image denoising. Comput Math Method Med 12. .https://doi.org/10.1155/2015/638568
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conf on Comput Vis and Pattern Recognit, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Heydari M, Karami M-R, Babakhani A (2016) A new adaptive coupled diffusion PDE for MRI rician noise. Signal Image Video Process 10(7):1211–1218. https://doi.org/10.1007/s11760-016-0878-5
Hu K, Cheng Q, Gao X (2016)Wavelet-domain TI wiener-like filtering for complex MR data denoising. Magn Reson Imaging 34(8):1128–1140. https://doi.org/10.1016/j.mri.2016.05.011
Hu K, Cheng Q, Li B, Gao X (2018) The complex data denoising in MR images based on the directional extension for the undecimated wavelet transform. Biomed Signal Process and Control 39:336–350. https://doi.org/10.1016/j.bspc.2017.08.014
Hu Z, Jiang C, Sun F, Zhang Q, Ge Y, Yang Y, Liu X, Zheng H, Liang D (2019) Artifact correction in low-dose dental CT imaging using wasserstein generative adversarial networks. Med Phys 46(4):1686–1696. https://doi.org/10.1002/mp.13415
Huang Z, Zhang Y, Li Q, Zhang T, Sang N (2018) Spatially adaptive denoising for X-ray cardiovascular angiogram images. Biomed Signal Process Control 40:131–139. https://doi.org/10.1016/j.bspc.2017.09.019
Huang S, Zhou P, Shi H, Sun Y, Wan S (2019) Image speckle noise denoising by a multi-layer fusion enhancement method based on block matching and 3D filtering. Imaging Sci J 67(4):224–235. https://doi.org/10.1080/13682199.2019.1612589
Irrera P, Bloch I, Delplanque M (2016) A flexible patch based approach for combined denoising and contrast enhancement of digital X-ray images. Med Image Anal 28:33–45. https://doi.org/10.1016/j.media.2015.11.002
Jai Jaganath Babu J, Florence Sudha G (2016) Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation. Biomed Signal Process Control 23:93–103. https://doi.org/10.1016/j.bspc.2015.08.001
Jia L, Zhang Q, Shang Y, Wang Y, Liu Y, Wang N, Gui Z, Yang G (2018) Denoising for low-dose CT image by discriminative weighted nuclear norm minimization. IEEE Access 6:46179–46193. https://doi.org/10.1109/ACCESS.2018.2862403
Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T (2018) Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol 36(9):566–574. https://doi.org/10.1007/s11604-018-0758-8
Joel T, Sivakumar R (2018) An extensive review on despeckling of medical ultrasound images using various transformation techniques. Appl Acoust 138:18–27. https://doi.org/10.1016/j.apacoust.2018.03.023
Joseph J, Periyasamy R (2018) An image driven bilateral filter with adaptive range and spatial parameters for denoising magnetic resonance images. Comput Electr Eng 69:782–795. https://doi.org/10.1016/j.compeleceng.2018.02.033
Kala R, Deepa P (2019) Adaptive fuzzy hexagonal bilateral filter for brain MRI denoising. Multimed Tools Appl 79:15513–15530. https://doi.org/10.1007/s11042-019-7459-x
Kang M, Kang M, Jung M (2015) Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters. J Vis Commun Image Represent 32:180–193. https://doi.org/10.1016/j.jvcir.2015.08.006
Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X‐ray CT reconstruction. Med Phys 44(10):e360–e375. https://doi.org/10.1002/mp.12344
Kang E, Chang W, Yoo J, Ye JC (2018) Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 37(6):1358–1369. https://doi.org/10.1109/TMI.2018.2823756
Kang E, Koo HJ, Yang DH, Seo JB, Ye JC (2019)Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 46(2):550–562. https://doi.org/10.1002/mp.13284
Kaur R, Juneja M, Mandal AK (2018) A comprehensive review of denoising techniques for abdominal CT images. Multimed Tools Appl 77(17):22735–22770. https://doi.org/10.1007/s11042-017-5500-5
Kaur P, Singh G, Kaur P (2018) A review of denoising medical images using machine learning approaches. Curr Med Imaging Rev 14(5):675–685. https://doi.org/10.2174/1573405613666170428154156
Khaleel HS, Mohd Sagheer SV, Baburaj M, George SN (2018) Denoising of rician corrupted 3D magnetic resonance images using tensor-SVD. Biomed Signal Process Control 44:82–95. https://doi.org/10.1016/j.bspc.2018.04.004
Kumar A (2015) Nonlocal means image denoising using orthogonal moments. Appl Opt 54(27):8156–8165. https://doi.org/10.1364/ao.54.008156
Kumar M, Mishra S (2017) Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image. Bio-Med Mater Eng 28(6):643–654. https://doi.org/10.1002/mp.13284
Kumar M, Mishra SK (2018) Jaya based functional link multilayer perceptron adaptive filter for Poisson noise suppression from X-ray images. Multimed Tools Appl 77(18):24405–24425. https://doi.org/10.1007/s11042-017-5592-y
Kumar PK, Darshan P, Kumar S, Ravindra R, Rajan J, Saba L, Suri JS (2015) Magnetic resonance image denoising using nonlocal maximum likelihood paradigm in DCT-framework. Int J Imaging Syst Technol 25(3):256–264. https://doi.org/10.1002/ima.22142
Kwon K, Kim M-S, Shin B-S(2016) A fast 3D adaptive bilateral filter for ultrasound volume visualization. Comput Methods Program Biomed 133:25–34. https://doi.org/10.1016/j.cmpb.2016.05.008
Lee JSJ, Budak PV, Lin CR, Haralick RM (1988) Adaptive image processing techniques, vol 0848. SPIE, Cambridge. https://doi.org/10.1117/12.942745
Lee MS, Park SW, Lee SY, Kang MG (2017)Motion-adaptive 3D nonlocal means filter based on stochastic distance for low-dose X-ray fluoroscopy. Biomed Signal Process Control 38:74–85. https://doi.org/10.1016/j.bspc.2017.05.001
Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584. https://doi.org/10.3348/kjr.2017.18.4.570
Lerallut R, Decenciere E, Meyer F (2007) Image filtering using morphological amoebas. Image Vis Comput 25(4):395–404
Li B, Xie W (2015) Adaptive fractional differential approach and its application to medical image enhancement. Comp Electr Eng F 45:324–335. https://doi.org/10.1016/j.compeleceng.2015.02.013
Li M, Hsu W, Xie X, Cong J, Gao W (2020) SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging 39(7):2289–2301. https://doi.org/10.1109/TMI.2020.2968472
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005
Liu Y, Zhang Y (2018)Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 284:80–89. https://doi.org/10.1016/j.neucom.2018.01.015
Liu C, Gao CB, Yu X (2015) A MRI denoising method based on 3D nonlocal means and multidimensional PCA. Comput Math Method Med 2015:11. https://doi.org/10.1155/2015/232389
Lu C-T, Chen M-Y, Shen J-H, Wang L-L, Hsu C-C(2018) Removal of salt-and-pepper noise for X-ray bio-images using pixel-variation gain factors. Comput Electr Eng 71:862–876. https://doi.org/10.1016/j.compeleceng.2017.08.012
Lv H, Wang R (2019) Denoising 3D magnetic resonance images based on low-rank tensor approximation with adaptive multirank estimation. IEEE Access 7:85995–86003. https://doi.org/10.1109/ACCESS.2019.2924907
Ma Y, Wei B, Feng P, He P, Guo X, Wang G (2020)Low-Dose CT image denoising using a Generative Adversarial Network with a hybrid loss function for noise learning. IEEE Access 8:67519–67529. https://doi.org/10.1109/ACCESS.2020.2986388
Manjón JV, Coupé P, Buades A (2015) MRI noise estimation and denoising using non-local PCA. Med Image Anal 22(1):35–47. https://doi.org/10.1016/j.media.2015.01.004
Mao X, Shen C, Yang Y-B(2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Adv Neural Inf Process Syst, pp 2802–2810
Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2794–2802. https://doi.org/10.1109/ICCV.2017.304
Martin-Fernandez M, Villullas S (2015) The EM method in a probabilistic wavelet-based MRI denoising. Comput Math Method Med 21. doi:https://doi.org/10.1155/2015/182659
Mishra D, Chaudhury S, Sarkar M, Soin AS (2018) Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process Lett 25(9):1349–1353. https://doi.org/10.1109/LSP.2018.2858147
Mohd Sagheer SV, George SN (2017) Ultrasound image despeckling using low rank matrix approximation approach. Biomed Signal Process Control 38:236–249. https://doi.org/10.1016/j.bspc.2017.06.011
Mohd Sagheer SV, George SN (2019) Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization. Artif Intell Medicine 94:1–17. https://doi.org/10.1016/j.artmed.2018.12.006
Mohd Sagheer SV, George SN (2020) A review on medical image denoising algorithms. Biomed Signal Process Control 61:102036. https://doi.org/10.1016/j.bspc.2020.102036
Park HS, Baek J, You SK, Choi JK, Seo JK (2019) Unpaired image denoising using a generative adversarial network in X-Ray CT. IEEE Access 7:110414–110425. https://doi.org/10.1109/ACCESS.2019.2934178
Periyasamy N, Ramasamy A (2018) A novel edge preserving improved adaptive wavelet filter (EPIAWF) for speckle removal in ultrasound images. Curr Med Imaging Rev 14(4):521–532. https://doi.org/10.2174/1573405613666170118102821
Perona P, Malik J (1990)Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205
Phophalia A, Mitra SK (2015) Rough set based bilateral filter design for denoising brain MR images. Appl Soft Comput 33:1–14. https://doi.org/10.1016/j.asoc.2015.04.005
Prasath VB (2017) Quantum noise removal in X-Ray images with adaptive total variation regularization. J Informatica 28(3):505–515. https://doi.org/10.15388/Informatica.2017.141
Rajan J, Poot D, Juntu J, Sijbers J (2010) Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys Med Biol 55(16):N441-449. https://doi.org/10.1088/0031-9155/55/16/n02
Ran M, Hu J, Chen Y, Chen H, Sun H, Zhou J, Zhang Y (2019) Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med Image Anal 55:165–180. https://doi.org/10.1016/j.media.2019.05.001
Rawat N, Singh M, Singh B (2019) Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wirel Pers Commun 106(3):pages1547-1572. https://doi.org/10.1007/s11277-019-06229-w
Riji R, Rajan J, Sijbers J, Nair MS (2015) Iterative bilateral filter for rician noise reduction in MR images. Signal Image Video Process 9(7):1543–1548. https://doi.org/10.1007/s11760-013-0611-6
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Int Conf Med Image Comput and Computer-assisted Interv. Springer, pp 234–241
Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom 60(1):259–268. https://doi.org/10.1016/0167-2789(92)90242-F
Saadia A, Rashdi A (2016) Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image. Comput Methods Program Biomed 137:65–75. https://doi.org/10.1016/j.cmpb.2016.09.006
Sagheer SVM, George SN, Kurien SK (2019) Despeckling of 3D ultrasound image using tensor low rank approximation. Biomed Signal Process Control 54:101595. https://doi.org/10.1016/j.bspc.2019.101595
Sa-ing V, Vorasayan P, Suwanwela NC, Auethavekiat S, Chinrungrueng C (2018) Multiscale adaptive regularisation Savitzky-Golay method for speckle noise reduction in ultrasound images. IET Image Process 12(1):105–112. https://doi.org/10.1049/iet-ipr.2017.0391
Saladi S, Amutha Prabha N (2017) Analysis of denoising filters on MRI brain images. Int J Imaging Syst Technol 27(3):201–208. https://doi.org/10.1002/ima.22225
Selvikvåg Lundervold A, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–107. https://doi.org/10.1016/j.zemedi.2018.11.002
Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, Cong W, Wang G (2018)3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 37(6):1522–1534. https://doi.org/10.1109/TMI.2018.2832217
Sharif M, Hussain A, Jaffar MA, Choi T-S(2016)Fuzzy-based hybrid filter for Rician noise removal. Signal Image Video Process 10(2):215–224. https://doi.org/10.1007/s11760-014-0729-1
Sharma A, Chaurasia V (2019) A review on magnetic resonance images denoising techniques. In: Tanveer M, Pachori RB (eds) Mach Intell and Signal Anal, Singapore. Springer Singapore, pp 707–715. https://doi.org/10.1007/978-981-13-0923-6_60
Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200
Sree SJ, Vasanthanayaki C (2019)De-speckling of ultrasound images using local statistics-based trilateral filter. J Circuits Syst Comput 28(09):1950150. https://doi.org/10.1142/s0218126619501500
Sudeep PV, Palanisamy P, Kesavadas C, Rajan J (2015) Nonlocal linear minimum mean square error methods for denoising MRI. Biomed Signal Process Control 20:125–134. https://doi.org/10.1016/j.bspc.2015.04.015
Tang C, Li J, Wang L, Li Z, Jiang L, Cai A, Zhang W, Liang N, Li L, Yan B (2019) Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput Math Method Med 2019:8639825. https://doi.org/10.1155/2019/8639825
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. ICCV 1:2. https://doi.org/10.1109/ICCV.1998.710815
Venuji Renuka S, Reddy Edla D (2019) Adaptive shrinkage on dual-tree complex wavelet transform for denoising real-time MR images. Biocybern Biomed Eng 39(1):133–147. https://doi.org/10.1016/j.bbe.2018.11.003
Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593. https://doi.org/10.1002/mrm.26059
Wang YB, Liao YT, Zhangh YK, He J, Li S, Bian ZY, Zhang H, Gao YY, Meng DY, Zuo WM, Zeng D, Ma JH (2018) Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Phys Med and Biol 63(21):17. https://doi.org/10.1088/1361-6560/aae511
Wang H, Zheng R, Dai F, Wang Q, Wang C (2019)High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network. J Magn Resonance Imaging 50(6):1937–1947. https://doi.org/10.1002/jmri.26761
Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545. https://doi.org/10.1109/TMI.2017.2708987
Wu D, Kim K, Fakhri GE, Li Q (2017) A cascaded convolutional neural network for x-ray low-dose CT image denoising. arXiv preprint arXiv:170504267
Xia Y, Gao Q, Cheng N, Lu Y, Zhang D, Ye Q (2017) Denoising 3-D magnitude magnetic resonance images based on weighted nuclear norm minimization. Biomed Signal Process Control 34:183–194. https://doi.org/10.1016/j.bspc.2017.01.016
Xiao L, Li C, Wu Z, Wang T (2016) An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering. Neurocomputing 195:56–64. https://doi.org/10.1016/j.neucom.2015.08.113
Yang S, Li J (2015) The design of composite adaptive morphological filter and applications to rician noise reduction in MR images. Int J Imaging Syst Technol 25(1):15–23. https://doi.org/10.1002/ima.22116
Yang W, Zhang H, Yang J, Wu J, Yin X, Chen Y, Shu H, Luo L, Coatrieux G, Gui Z, Feng Q (2017) Improving low-dose CT image using residual convolutional network. IEEE Access 5:24698–24705. https://doi.org/10.1109/ACCESS.2017.2766438
Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018)Low-Dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37(6):1348–1357. https://doi.org/10.1109/TMI.2018.2827462
Yang L, Shangguan H, Zhang X, Wang A, Han Z (2020)High-frequency sensitive generative adversarial network for low-dose CT image denoising. IEEE Access 8:930–943. https://doi.org/10.1109/ACCESS.2019.2961983
Yap K-H, Perry SW, San Wong H, Guan L (2009) Adaptive image processing. Adaptive image processing: a computational intelligence perspective. CRC Press, Boca Raton, pp 2–8
Yi X, Babyn P (2018)Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669. https://doi.org/10.1007/s10278-018-0056-0
Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, Chen Y, Shu H, Luo L, Coatrieux J (2019) Domain progressive 3D residual convolution network to improve low-dose CT imaging. IEEE Trans Med Imaging 38(12):2903–2913. https://doi.org/10.1109/TMI.2019.2917258
Yin ZX, Xia KW, He ZP, Zhang JN, Wang SJ, Zu BK (2021) Unpaired image denoising via wasserstein GAN in Low-Dose CT image with multi-perceptual loss and fidelity Loss. Symmetry-Basel 13(1):16. https://doi.org/10.3390/sym13010126
You C, Yang Q, Shan H, Gjesteby L, Li G, Ju S, Zhang Z, Zhao Z, Zhang Y, Cong W, Wang G (2018)Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 6:41839–41855. https://doi.org/10.1109/ACCESS.2018.2858196
Yuan J (2018) An improved variational model for denoising magnetic resonance images. Comput Math Appl 76(9):2212–2222. https://doi.org/10.1016/j.camwa.2018.05.044
Yuan ZX, Ding MY, Zhang XM (2017) Gradient controlled adaptive non-local means method for speckle reduction in ultrasound images. J Med Imaging Health Inf 7(1):288–292. https://doi.org/10.1166/jmihi.2017.2021
Yuan Y, Zhang YB, Yu HY (2018) Adaptive nonlocal means method for denoising basis material images from dual-energy computed tomography. J Comput Assist Tomogr 42(6):972–981. https://doi.org/10.1097/rct.0000000000000805
Zhang J, Lin G, Wu L, Wang C, Cheng Y (2015) Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomed Signal Process Control 18:1–10. https://doi.org/10.1016/j.bspc.2014.11.010
Zhang J, Wu L, Lin G, Cheng Y (2017) An integrated de-speckling approach for medical ultrasound images based on wavelet and trilateral filter. Circuits Syst Signal Process 36(1):297–314. https://doi.org/10.1007/s00034-016-0305-8
Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155
Zhang YB, Salehjahromi M, Yu HY (2019) Tensor decomposition and non-local means based spectral CT image denoising. J X-ray Sci Technol 27(3):397–416. https://doi.org/10.3233/xst-180413
Zhao T, Hoffman J, McNitt-Gray M, Ruan D (2019)Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics. Med Phys 46(1):190–198. https://doi.org/10.1002/mp.13252
Zhou Z, Wang Y, Guo Y, Qi Y, Yu J (2020) Image quality improvement of hand-held ultrasound devices with a two-stage generative adversarial network. IEEE Trans Biomed Eng 67(1):298–311. https://doi.org/10.1109/TBME.2019.2912986
Acknowledgements
This work was supported by the Fundamental Research Grant Scheme [FRGS/1/2019/TK04/UM/01/2], Ministry of Higher Education, Malaysia, the research grant of University of Malaya [IIRG012C-2019], and the World Bank-funded Accelerating Higher Education Expansion and Development Operation, Sri Lanka [Grant number: AHEAD/PhD/R1-PART-2/ENG&TECH/105].
Funding
This work was supported by the Fundamental Research Grant Scheme [FRGS/1/2019/TK04/UM/01/2], Ministry of Higher Education, Malaysia, the research grant of University of Malaya [IIRG012C-2019], and the World Bank-funded Accelerating Higher Education Expansion and Development Operation, Sri Lanka [Grant number: AHEAD/PhD/R1-PART-2/ENG&TECH/105].
Author information
Authors and Affiliations
Contributions
All the authors contributed equally to conduct research, analysis and writing of the manuscripts.
Corresponding author
Ethics declarations
Conflicts of interest/Competing interests
The authors declare that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kulathilake, K.A.S.H., Abdullah, N.A., Sabri, A.Q.M. et al. A review on self-adaptation approaches and techniques in medical image denoising algorithms. Multimed Tools Appl 81, 37591–37626 (2022). https://doi.org/10.1007/s11042-022-13511-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-13511-w