Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement
<p>Schematic diagrams of the free-space QT with OAM multiplexed CV entangled states. BS, beam splitter; M, mirror; DP, Dove prism; Sub., subtractor; PD, photo detector; Tel., telescope; SLM, spatial light modulator; Att., attenuator; AM, amplitude modulator; PM, phase modulator; SA, spectrum analyser.</p> "> Figure 2
<p>The properties of the atmospheric turbulence channel in terms of different OAM modes. (<b>a</b>) Transmittance and excess noise versus the propagation distance with <math display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow></semantics></math> m<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></semantics></math>; (<b>b</b>) transmittance and excess noise versus the atmospheric turbulence intensity with <math display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> km.</p> "> Figure 3
<p>Dependence of quantum coherence of the OAM multiplexed EPR entangled states on the transmittance for <math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><mn>0</mn></mrow></semantics></math>, <math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow></semantics></math>, and <math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><mn>2</mn></mrow></semantics></math>. The error bars represent the difference between the coherence of the entangled state with topological charge <span class="html-italic">l</span> and that of the Gaussian state.</p> "> Figure 4
<p>The effect of transmission distance and atmospheric turbulence intensity on the coherence between the probe and conjugate modes: (<b>a</b>) on the condition of <math display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup></mrow></semantics></math> m<math display="inline"><semantics><msup><mrow/><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup></semantics></math>; (<b>b</b>) on the condition of <math display="inline"><semantics><mrow><mi>z</mi><mo>=</mo><mn>1</mn></mrow></semantics></math> km. The excess noise <math display="inline"><semantics><mi>ε</mi></semantics></math> varies dynamically with the two variables in the subfigures.</p> "> Figure 5
<p>(<b>a</b>) The crosstalk matrix of the transmitted OAM states. (<b>b</b>) The density matrix of the detected OAM states.</p> "> Figure 6
<p>Fidelity of the proposed CV-QT protocol versus the topological charge number carried by the unknown input state and (<b>a</b>) the propagation distance; (<b>b</b>) the atmospheric turbulence intensity.</p> "> Figure 7
<p>Channel capacity of the system with different numbers of OAM modes multiplexed versus the transmission distance and the atmospheric turbulence intensity. The purple plane represents the limit for the polarized codes.</p> "> Figure A1
<p>The generation of the OAM multiplexed CV EPR states. (<b>a</b>) The SFWM process occurs in a hot <math display="inline"><semantics><msup><mrow/><mn>85</mn></msup></semantics></math>Rb vapor cell for generating multiple pairs of OAM modes. (<b>b</b>) Double-<math display="inline"><semantics><mi>Λ</mi></semantics></math> energy level diagram of <math display="inline"><semantics><msup><mrow/><mn>85</mn></msup></semantics></math>Rb D1 line in the SFWM process. (<b>c</b>) OAM spectrum from the SFWM process. pr, probe beam; conj, conjugate beam.</p> "> Figure A2
<p>The schematic of BHD for OAM modes: <span class="html-italic">l</span> is the topological charge carried by the OAM modes, <math display="inline"><semantics><mi>θ</mi></semantics></math> is the azimuthal angle.</p> ">
Abstract
:1. Introduction
2. Free-Space QT with OAM Multiplexed CV EPR States
2.1. Scheme Description
2.2. Properties of the Atmospheric Turbulence Channel
2.3. Propagation Characteristics of the OAM Multiplexed EPR State
3. Performance Analysis
3.1. Fidelity
3.2. Channel Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Preparation for the OAM Multiplexed CV EPR States
Appendix B. Mode-Matched Balanced Homodyne Detection for OAM
Appendix C. Kolmogorov Turbulence Model
References
- Bennett, B.; Crepeau, J.; Peres, W. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidman, L. Teleportation of quantum states. Phys. Rev. A 1994, 49, 1473–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwmeester, D.; Pan, J.W.; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A. Experimental quantum teleportation. Nature 1997, 390, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Boschi, D.; Branca, S.; De Martini, F.; Hardy, L.; Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-PodolskyRosen channels. Phys. Rev. Lett. 1998, 80, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Marcikic, I.; de Riedmatten, H.; Tittel, W.; Zbinden, H.; Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 2003, 421, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ren, J.G.; Lu, H.; Cao, Y.; Yong, H.L.; Wu, Y.P.; Liu, C.; Liao, S.K.; Zhou, F.; Jiang, Y.; et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 2012, 488, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.S.; Herbst, T.; Scheidl, T.; Wang, D.Q.; Kropatschek, S.; Naylor, W.; Wittmann, B.; Mech, A.; Kofler, J.; Anisimova, E.; et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 2012, 489, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.G.; Xu, P.; Yong, H.L.; Zhang, L.; Liao, S.K.; Yin, J.; Liu, W.Y.; Cai, W.Q.; Yang, M.; Li, L.; et al. Ground-to-satellite quantum teleportation. Nature 2017, 549, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Huo, M.; Qin, J.L.; Cheng, J.L.; Yan, Z.H.; Qin, Z.Z.; Su, X.L.; Jia, X.J.; Xie, C.D.; Peng, K.C. Deterministic quantum teleportation through fiber channels. Sci. Adv. 2018, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.L.; Kimble, H.J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 1998, 80, 869–872. [Google Scholar] [CrossRef] [Green Version]
- Furusawa, A.; Sorensen, J.L.; Braunstein, S.L.; Fuchs, C.A.; Kimble, H.J.; Polzik, E.S. Unconditional quantum teleportation. Science 1998, 282, 706–709. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, F.L. Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 2009, 80, 022315. [Google Scholar] [CrossRef]
- Jiang, K.X. The role of the non-Gaussianity plays in the enhancement of the fidelity in continuous variable quantum teleportation. Opt. Commun. 2013, 300, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.N.; Yi, Y.G.; Xu, X.W.; Guo, Y. Continuous-variable quantum teleportation with entanglement enabled via photon catalysis. Quantum Inf. Process. 2022, 21, 325. [Google Scholar] [CrossRef]
- Wen, Z.N.; Yi, Y.G.; Xu, X.W.; Guo, Y. Continuous variable quantum teleportation with noiseless linear amplifier. Acta Phys. Sin. 2022, 71, 130307. [Google Scholar] [CrossRef]
- Fiurášek, J. Teleportation-based noiseless quantum amplification of coherent states of light. Opt. Express 2022, 30, 1466–1489. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Zhang, H.; Ruan, X.C.; Guo, Y. Performance analysis of continuous variable quantum teleportation with noiseless linear amplifier in seawater channel. Symmetry-Basel 2022, 14, 997. [Google Scholar] [CrossRef]
- Xu, J.Y.; Xu, X.W.; Zuo, Z.Y.; Guo, Y. Continuous variable quantum teleportation through turbulent channels. Phys. Scr. 2022, 97, 045103. [Google Scholar] [CrossRef]
- Andersen, U.L.; Ralph, T.C. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys. Rev. Lett. 2013, 111, 050504. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.; James, D.F.V. High-fidelity teleportation of continuous-variable quantum states with discrete-variable resources. J. Opt. Soc. Am. B 2014, 31, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Pyrkov, A.N.; Byrnes, T. Quantum teleportation of spin coherent states: Beyond continuous variables teleportation. New J. Phys. 2014, 16, 073038. [Google Scholar] [CrossRef] [Green Version]
- Zubarev, A.; Cuzminschi, M.; Isar, A. Continuous variable quantum teleportation of a thermal state in a thermal environment. Results Phys. 2022, 39, 105700. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, J.X.; Sun, J.K.; Li, Y.J.; Zhang, K.S. Real time deterministic quantum teleportation over 10 km of single optical fiber channel. Opt. Express 2022, 30, 3770–3782. [Google Scholar] [CrossRef]
- Zuo, Z.Y.; Wang, Y.J.; Liao, Q.; Guo, Y. Overcoming the uplink limit of satellite-based quantum communication with deterministic quantum teleportation. Phys. Rev. A 2021, 104, 022615. [Google Scholar] [CrossRef]
- Liu, S.S.; Lou, Y.B.; Jing, J.T. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 2020, 11, 3875. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Wang, Q.W.; Tian, L.; Zhang, X.L.; Wang, J.W.; Shi, S.P.; Wang, Y.J.; Zheng, Y.H. Multi-channel multiplexing quantum teleportation based on the entangled sideband modes. Photon. Res. 2022, 10, 1909–1914. [Google Scholar] [CrossRef]
- Pan, X.Z.; Yu, S.; Zhou, Y.F.; Zhang, K.; Zhang, K.; Lv, S.C.; Li, S.J.; Wang, W.; Jing, J.T. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett. 2019, 123, 070506. [Google Scholar] [CrossRef]
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Malaney, R.; Burnett, B. Satellite-to-earth quantum key distribution via orbital angular momentum. Phys. Rev. Appl. 2020, 14, 064031. [Google Scholar] [CrossRef]
- Ruan, X.C.; Zhang, H.; Zhao, W.; Jin, D.; Wang, Z.P.; Guo, Y. Orbital angular momentum-encoded quantum digital signature over atmospheric channel. Quantum Inf. Process. 2022, 21, 191. [Google Scholar] [CrossRef]
- van Loock, P.; Braunstein, S.L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 2000, 84, 3482–3485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, A.H.; Roux, F.S.; McLaren, M.; Konrad, T.; Forbes, A. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 2013, 88, 012312. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.D.; Zhu, Y.; Wang, J.C. Quantum coherence of thermal biphoton orbital angular momentum state and its distribution in non-Kolmogorov atmospheric turbulence. Opt. Express 2022, 30, 20185–20193. [Google Scholar] [CrossRef] [PubMed]
- Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 2005, 94, 153901. [Google Scholar] [CrossRef]
- Tyler, G.A.; Boyd, R.W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 2009, 34, 142–144. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Zhao, S.H.; Dong, C.; Zhu, Z.D.; Gu, W.Y. Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process. 2019, 18, 304. [Google Scholar] [CrossRef]
- Ruan, X.C.; Shi, W.H.; Chen, G.J.; Zhao, W.; Zhang, H.; Guo, Y. High-rate continuous-variable quantum key distribution with orbital angular momentum multiplexing. Entropy 2021, 23, 1187. [Google Scholar] [CrossRef]
- Ricklin, J.C.; Hammel, S.M.; Eaton, F.D.; Lachinova, S.L. Atmospheric channel effects on free-space laser communication. J. Opt. Fiber. Commun. Rep. 2006, 3, 111–158. [Google Scholar] [CrossRef]
- Wang, S.Y.; Huang, P.; Wang, T.; Zeng, G.H. Feasibility of all-day quantum communication with coherent detection. Phys. Rev. Appl. 2019, 12, 024041. [Google Scholar] [CrossRef]
- Laudenbach, F.; Pacher, C.; Fung, C.H.F.; Poppe, A.; Peev, M.; Schrenk, B.; Hentschel, M.; Walther, P.; Hubel, H. Continuous-variable quantum key distribution with Gaussian modulation—The theory of practical implementations. Adv. Quantum Technol. 2018, 1, 1800011. [Google Scholar] [CrossRef]
- Kish, S.P.; Villaseñor, E.; Malaney, R.; Mudge, K.A.; Grant, K.J. Feasibility assessment for practical continuous variable quantum key distribution over the satellite-to-Earth channel. Quantum Eng. 2020, 2, e50. [Google Scholar] [CrossRef]
- Wen, H.; Zeng, L.; Ma, R.; Kang, H.J.; Liu, J.; Qin, Z.Z.; Su, X.L. Quantum coherence of an orbital angular momentum multiplexed continuous-variable entangled state. Opt. Contin. 2022, 1, 697–704. [Google Scholar] [CrossRef]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Nape, I.; Wang, Q.K.; Valles, A.; Wang, J.; Forbes, A. Multidimensional entanglement transport through single-mode fiber. Sci. Adv. 2020, 6, eaay0837. [Google Scholar] [CrossRef] [Green Version]
- Ndagano, B.; Perez-Garcia, B.; Roux, F.S.; McLaren, M.; Rosales-Guzman, C.; Zhang, Y.W.; Mouane, O.; Hernandez-Aranda, R.I.; Konrad, T.; Forbes, A. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 2017, 13, 397–402. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Fuchs, C.A.; Kimble, H.J.; van Loock, P. Quantum versus classical domains for teleportation with continuous variables. Phys. Rev. A 2001, 64, 022321. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.; O’Sullivan, M.; Rodenburg, B.; Mirhosseini, M.; Leach, J.; Lavery, M.P.J.; Padgett, M.J.; Boyd, R.W. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express 2012, 20, 13195–13200. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.T.; Jing, J.T. Deterministic entanglement of large-scale Hermite-Gaussian modes. Phys. Rev. Appl. 2022, 18, 024057. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. Roy. Soc. A-Math. Phys. Eng. Sci. 1991, 434, 9–13. [Google Scholar]
Condition | Clear Air | Haze | Fog | Dense Fog |
---|---|---|---|---|
Value () | ≈0.1 | ≈1.0 | ≥10 | ≈391 |
Parameter | Description | Value |
---|---|---|
radius of zero-order Gaussian beam at the waist | 3 cm | |
wavelength | 1550 nm | |
atmospheric refractive index structure parameter | m | |
z | propagation distance | 1 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, X.; Zhang, H.; Peng, W.; Xian, H.; Zhu, Y.; Zhao, W.; Xiong, S. Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement. Mathematics 2023, 11, 3209. https://doi.org/10.3390/math11143209
Ruan X, Zhang H, Peng W, Xian H, Zhu Y, Zhao W, Xiong S. Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement. Mathematics. 2023; 11(14):3209. https://doi.org/10.3390/math11143209
Chicago/Turabian StyleRuan, Xinchao, Hang Zhang, Wenqi Peng, Hui Xian, Yiwu Zhu, Wei Zhao, and Sha Xiong. 2023. "Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement" Mathematics 11, no. 14: 3209. https://doi.org/10.3390/math11143209
APA StyleRuan, X., Zhang, H., Peng, W., Xian, H., Zhu, Y., Zhao, W., & Xiong, S. (2023). Free-Space Quantum Teleportation with Orbital Angular Momentum Multiplexed Continuous Variable Entanglement. Mathematics, 11(14), 3209. https://doi.org/10.3390/math11143209