Abstract
Quantum digital signature (QDS) ensures the integrity of a classical message and the authenticity of its sender based on information-theoretical limits and quantum mechanical mechanisms. The existing polarization-encoded or phase-encoded QDS protocols are susceptible to the interference from non-ideal factors in the quantum channel, resulting in the mismatch of the measurement reference frame. The channel capacities of these protocols are also limited, reducing the practicability of these protocols. To overcome these defects, we present a time-bin orbital angular momentum (OAM)-encoded continuous variable QDS (CVQDS) protocol, which exploits the rotation invariance of the vortex beam in the transmission direction to circumvent the real-time calibration of the reference frame and utilizes the infinite-dimensional eigenstate characteristics of the OAM states to beat the channel capacity limit. Security analysis and numerical simulations show that it is feasible to use this protocol to sign 1-bit message in atmospheric channel, and the channel capacity can be improved by increasing the dimensionality of the OAM code.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
All data generated or analyzed during this study are included in the article.
References
Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:0105032 (2001)
Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)
Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3(1), 1174 (2012)
Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)
Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)
Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)
Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)
Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)
Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17, 275 (2018)
Zhang, H., An, X.B., Zhang, C.H., Zhang, C.M., Wang, Q.: High-efficiency quantum digital signature scheme for signing long messages. Quantum Inf. Process. 18(1), 3 (2019)
Zhang, C.H., Zhou, X.Y., Zhang, C.M., Li, J., Wang, Q.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)
Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117(10), 100503 (2016)
Shang, T., Li, K., Liu, J.W.: Measurement-device independency analysis of continuous-variable quantum digital signature. Entropy 20(4), 291 (2018)
Thornton, M., Scott, H., Croal, C., Korolkova, N.: Continuous-variable quantum digital signatures over insecure channels. Phys. Rev. A 99(3), 032341 (2019)
Zhao, W., Shi, R.H., Shi, J.J., Huang, P., Guo, Y., Huang, D.: Multibit quantum digital signature with continuous variables using basis encoding over insecure channels. Phys. Rev. A 103(1), 012410 (2021)
Zhao, W., Shi, R.H., Shi, J.J., Ruan, X.C., Guo, Y., Huang, D.: Quantum digital signature based on measurement-device-independent continuous-variable scheme. Quantum Inf. Process. 20(7), 222 (2021)
Zhao, W., Shi, R.H., Ruan, X.C.: High-efficiency continuous-variable quantum digital signature protocol for signing multi-bit messages. Laser Phys. Lett. 18(3), 035201 (2021)
Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93(3), 032316 (2016)
Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)
Yin, H.L., Fu, Y., Liu, H., Tang, Q.J., Wang, J., You, L.X., Zhang, W.J., Chen, S.J., Wang, Z., Zhang, Q., Chen, T.Y., Chen, Z.B., Pan, J.W.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883–4886 (2016)
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Sasaki, M., Andersson, E., Buller, G.S.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7, 3235 (2017)
An, X.B., Zhang, H., Zhang, C.M., Chen, W., Wang, S., Yin, Z.Q., Wang, Q., He, D.Y., Hao, P.L., Liu, S.F., Zhou, X.Y., Guo, G.C., Han, Z.F.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)
Spedalieri, F.M.: Quantum key distribution without reference frame alignment: exploiting photon orbital angular momentum. Opt. Commun. 260(1), 340–346 (2006)
Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88(1), 013601 (2002)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282–286 (2008)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)
Li, J.L., Wang, C.: Six-state quantum key distribution using photons with orbital angular momentum. Chin. Phys. Lett. 27(11), 110303 (2010)
Gibson, G., Courtial, J., Padgett, M.J.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12(22), 5448–5456 (2004)
Jin, D., Guo, Y., Wang, Y.J., Huang, D.: Parameter estimation of orbital angular momentum based continuous-variable quantum key distribution. J. Appl. Phys. 127(21) (2020)
Ruan, X.C., Shi, W.H., Chen, G.J., Zhao, W., Zhang, H., Guo, Y.: High-rate continuous-variable quantum key distribution with orbital angular momentum multiplexing. Entropy 23(9), 1187 (2021)
Leach, J., Padgett, M.J., Barnett, S.M., Franke-Arnold, S., Courtial, J.: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88(25), 257901 (2002)
Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94(15), 153901 (2005)
Wang, Z.Q., Malaney, R., Burnett, B.: Satellite-to-earth quantum key distribution via orbital angular momentum. Phys. Rev. Appl. 14(6), 064031 (2020)
Tyler, G.A., Boyd, R.W.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34(2), 142–144 (2009)
Wang, X.Y., Zhao, S.H., Dong, C., Zhu, Z.D., Gu, W.Y.: Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process. 18, 304 (2019)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58(301), 13–30 (1963)
Corominas-Murtra, B., Fortuny, J., Sole, R.V.: Towards a mathematical theory of meaningful communication. Sci. Rep. 4, 4587 (2014)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 61871407), the Natural Science Foundation of Hunan Province (Grant No. 2021JJ30878), the Key Research and Development Program of Hunan Province (Grant No. 2022GK2016) and the Special Funds for the Construction of an Innovative Province in Hunan (Grant No. 2020GK4063). We acknowledge the support from the Optoelectronic Information Center of Central South University and Hunan Railway Engineering Machinery Electro-hydraulic Control Engineering Technology Research Center.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ruan, X., Zhang, H., Zhao, W. et al. Orbital angular momentum-encoded quantum digital signature over atmospheric channel. Quantum Inf Process 21, 191 (2022). https://doi.org/10.1007/s11128-022-03536-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03536-3