On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- (1)
- (2)
- (3)
- (1)
- (2)
- (3)
- (1)
- and are Lipschitz maps with Lipschitz constant and , respectively;
- (2)
- is continuous and compact;
- (3)
- ; and
- (4)
- where , then the operator equation possesses a solution in .
3. Main Result
4. Ulam–Hyers Stability
5. Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Burton, T.A. A Fixed-Point Theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980; Volume 66. [Google Scholar]
- Manigandan, M.; Muthaiah, S.; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Math. 2022, 7, 723755. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K. Approximate solutions of the damped wave equation and dissipative wave equation in fractal strings. Fractal Fract. 2019, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Jassim, H.K. A modification fractional homotopy perturbation method for solving Helmholtz and coupled Helmholtz equations on Cantor sets. Fractal Fract. 2019, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Jassim, H.K.; Al Qurashi, M. Solving Helmholtz equation with local fractional derivative operators. Fractal Fract. 2019, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Jassim, H.K.; Kumar, D. An efficient computational technique for local fractional Fokker Planck equation. Phys. A Stat. Mech. Appl. 2020, 555, 124525. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K. Exact solution of two-dimensional fractional partial differential equations. Fractal Fract. 2020, 4, 21. [Google Scholar] [CrossRef]
- Awadalla, M.; Yameni Noupoue, Y.Y.; Asbeh, K.A. ψ-Caputo Logistic Population Growth Model. J. Math. 2021, 2021, 8634280. [Google Scholar]
- Awadalla, M.; Noupoue, Y.Y.Y.; Abuasbeh, K. Population Growth Modeling via Rayleigh-Caputo Fractional Derivative. J. Stat. Appl. Probab. 2021, 10, 11–16. [Google Scholar]
- Almeida, R. Variational problems involving a Caputo-type fractional derivative. J. Optim. Theory Appl. 2017, 174, 276–294. [Google Scholar] [CrossRef]
- Awadalla, M.; Yameni, Y.Y. Modeling exponential growth and exponential decay real phenomena by ψ-Caputo fractional derivative. J. Adv. Math. Comput. Sci. 2018, 28, 1–13. [Google Scholar] [CrossRef]
- Boutiara, A.; Abdo, M.S.; Benbachir, M. Existence results for ψ-Caputo fractional neutral functional integro-differential equations with finite delay. Turk. J. Math. 2020, 44, 2380–2401. [Google Scholar] [CrossRef]
- Abdo, M.S.; Panchal, S.K.; Hussien, H.S. Fractional integro-differential equations with nonlocal conditions and psi–Hilfer fractional derivative. Math. Model. Anal. 2020, 24, 564–584. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K. Some existence and stability results for ψ-Hilfer fractional implicit differential equation with periodic conditions. J. Math. Anal. Model. 2020, 1, 15. [Google Scholar] [CrossRef]
- Subramanian, M.; Manigandan, M.; Tunç, C.; Gopal, T.N.; Alzabut, J. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. J. Taibah Univ. Sci. 2022, 16, 1–23. [Google Scholar] [CrossRef]
- Muthaiah, S.; Murugesan, M.; Thangaraj, N.G. Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations. Adv. Theory Nonlinear Anal. Appl. 2019, 3, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Awadalla, M. Some Existence Results for a System of Nonlinear Sequential Fractional Differential Equations with Coupled Nonseparated Boundary Conditions. Complexity 2022, 2022, 8992894. [Google Scholar] [CrossRef]
- Jiang, D.; Bai, C. On coupled Gronwall inequalities involving a ψ-fractional integral operator with its applications. AIMS Math. 2020, 7, 7728–7741. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Hussain, A.; Rezapour, S. The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ψ-Caputo fractional operators. Adv. Differ. Equ. 2020, 2021, 95. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled hybrid fractional system of mixed fractional derivatives via an extension of Darbo’s theorem. AIMS Math. 2021, 6, 3915–3926. [Google Scholar] [CrossRef]
- Ji, D.; Ge, W. A nonlocal boundary value problems for hybrid ψ-Caputo fractional integro-differential equations. AIMS Math. 2020, 5, 7175–7190. [Google Scholar] [CrossRef]
- Shammakh, W.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Alzabut, J. A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal Fract. 2022, 6, 152. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam–Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Abdo, M.S.; Thabet, S.; Ahmad, B. The existence and Ulam–Hyers stability results for ψ-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1757–1780. [Google Scholar] [CrossRef]
- Abbas, M.I. Four-point boundary value problems for a coupled system of fractional differential equations with ψ-Caputo fractional derivatives. arXiv 2020, arXiv:2007.10325. [Google Scholar]
- Aydin, M.; Mahmudov, N.I.; Aktuğlu, H.; Baytunç, E.; Atamert, M.S. On a study of the representation of solutions of a ψ-Caputo fractional differential equations with a single delay. Electron. Res. Arch. 2022, 30, 1016–1034. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; Graef, J.R. Extremal solutions to a coupled system of nonlinear fractional differential equations with Caputo fractional derivatives. J. Math. Appl. 2021, 44, 19–34. [Google Scholar] [CrossRef]
- BAİTİCHE, Z.; DERBAZİ, C.; BENCHOHRA, M. ψ-Caputo fractional differential equations with multi-point boundary conditions by Topological Degree Theory. Results Nonlinear Anal. 2020, 3, 167–178. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
0.3 | 0.00169289 | 0.00164105 | 0.00156982 | 0.00148344 | 0.00138603 | 0.00128146 |
1.3 | 0.00338579 | 0.00364173 | 0.00386534 | 0.00405286 | 0.00420167 | 0.00431029 |
2.3 | 0.00507868 | 0.00580513 | 0.00654797 | 0.00729616 | 0.00803837 | 0.00876327 |
4.3 | 0.00677158 | 0.0080815 | 0.00951759 | 0.0110728 | 0.0127371 | 0.014498 |
5.3 | 0.00677158 | 0.0104457 | 0.0127207 | 0.0153029 | 0.0182023 | 0.0214241 |
6.3 | 0.0101574 | 0.0128824 | 0.016123 | 0.0199337 | 0.0243678 | 0.029476 |
7.3 | 0.0118503 | 0.015381 | 0.0197005 | 0.0249265 | 0.0311839 | 0.0386034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awadalla, M.; Abuasbeh, K.; Subramanian, M.; Manigandan, M. On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions. Mathematics 2022, 10, 1681. https://doi.org/10.3390/math10101681
Awadalla M, Abuasbeh K, Subramanian M, Manigandan M. On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions. Mathematics. 2022; 10(10):1681. https://doi.org/10.3390/math10101681
Chicago/Turabian StyleAwadalla, Muath, Kinda Abuasbeh, Muthaiah Subramanian, and Murugesan Manigandan. 2022. "On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions" Mathematics 10, no. 10: 1681. https://doi.org/10.3390/math10101681
APA StyleAwadalla, M., Abuasbeh, K., Subramanian, M., & Manigandan, M. (2022). On a System of ψ-Caputo Hybrid Fractional Differential Equations with Dirichlet Boundary Conditions. Mathematics, 10(10), 1681. https://doi.org/10.3390/math10101681