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Abstract

:

In this article, we investigate sufficient conditions for the existence and stability of solutions to a coupled system of  ψ -Caputo hybrid fractional derivatives of order   1 < υ ≤ 2   subjected to Dirichlet boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of the Leray–Schauder alternative theorem and Banach’s contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam–Hyers. Finally, we provide one example in order to show the validity of our results.






Keywords:


ψ-Caputo fractional derivative; existence; fixed point theorems; Ulam–Hyers stability




MSC:


26A33; 34K37; 34A08












1. Introduction


Fractional calculus has a long history, going all the way back to Leibniz’s 17th-century explanation of the derivative order in 1965. Mathematicians use fractional calculus to study how derivatives and integrals of noninteger order work and how they change over time. Since then, the new theory has proven to be very appealing to mathematicians, biologists, chemists, economists, engineers, and physicists. Subsequently, the subject attracted the interest of numerous famous mathematicians, including Fourier, Laplace, Abel, Liouville, Riemann, and Letnikov. For current and wide-ranging analyses of fractional derivatives and their applications, we recommend the monographs [1,2,3,4]. In [5], the authors investigated new results of the existence and uniqueness of systems of nonlinear coupled DEs and inclusions involving Caputo-type sequential derivatives of fractional order and new kinds of boundary conditions. In [6], the authors investigated a new type of SFDE and inclusions involving  ψ -Hilfer fractional derivatives, associated with integral multi-point BCs.



Fractional derivatives have played a very important role in mathematical modeling in many diverse applied sciences, see [7]. In [8], the authors applied a new technique called “local fractional Laplace homotopy perturbation method” (LFLHPM) on Helmholtz and coupled Helmholtz equations to obtain analytical approximate solutions. In [9], the authors present a new analytical method called the “local fractional Laplace variational iteration method” (LFLVIM) for solving the two-dimensional Helmholtz and coupled Helmholtz equations. In [10], the authors find the solution of the LFFPE on the Cantor set. They make a comparison between the RDTM and LFSEM used in LFFPE. For example, the authors in [11] employed the LFLVIM and LFLDM to obtain approximate solutions for solving the damped wave equation and dissipative wave equation within LFDOs. The authors in [12] employed the fractional derivative of the  ψ -Caputo type in modeling the logistic population equation, through which they were able to show that the model with the fractional derivative led to a better approximation of the variables than the classical model. In addition, the authors in [13] employ the fractional derivative of the  ψ -Caputo type, and use the kernel Rayleigh, to improve the model again in modeling the logistic population equation. Various research has studied the existence and uniqueness of solutions to initial and boundary value problems utilizing  ψ -fractional derivatives, see [14,15,16,17,18].



Fractional differential equations have been used to describe a wide variety of occurrences in a number of different engineering and scientific areas. Differential equations of fractional order are suitable for critical aspects in finance, electromagnetics, acoustics, viscoelasticity, biochemistry, and material science, see [19,20,21].



Additionally, it is essential to examine coupled systems through the use of fractional differential equations, as these systems are found in a wide range of applications. A number of scholars have also investigated coupled fractional differential equation systems. Some theoretical work on coupled fractional differential equations is included in this article, see [22,23,24].



The fractional derivatives of an unknown function are included in hybrid differential equations, as is the nonlinearity that relies on them. This class of equations arises in a wide variety of applications and physical science areas, for example, in the redirection of a bent pillar with a constant or variable cross-area, a three-layer shaft, electromagnetic waves, or gravity-driven streams. In the literature, hybrid FDEs have been examined by employing a variety of different forms of fractional derivatives; see [23,25,26]. Some recent results on the existence and uniqueness of initial and boundary value problems and Ulam–Hyers stability can be found in [27,28,29] and the references therein. For recent results from the  ψ -Caputo hybrid fractional derivatives (CHFDs), we refer to [22,23,30,31] and the references cited therein. Choukri Derbazi et al. recently investigated the existence of extremal solutions to the nonlinear coupled system in [32]. Using the so-called “monotone iterative technique” together with the method of upper and lower solutions, the authors investigate the existence of extremal solutions of the following BVP that involves the  ψ -Caputo derivative with ICs.


           C   D  a +   υ , ψ   φ  ( ω )  = f  ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈ J   [ a , b ]  ;         C   D  a +   υ , ψ   ζ  ( ω )  = g  ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈ J   [ a , b ]  ;       φ  ( a )  =  φ a   ζ  ( b )  =  ζ b  ,         








where     C   D  a +   υ ; ψ     denote the  ψ -Caputo fractional derivatives (CFDs) of order  υ  and   f , g :  [ a , b ]  ×  R  e  2  →  R e    are continuous functions and    φ a  ,  ζ b  ∈  R e    with    φ a  ≤  ζ b   .



Mohamed I Abbas [30] investigated the uniqueness of solutions for the following coupled system of fractional differential equations (CSFDEs). Based on the Leray–Schauder alternative and Banach’s fixed point theorem, the authors investigated the existence and uniqueness of the following BVP associated with four-point BCs.


           C   D  0 +   υ , ψ   φ  ( ω )  = f  ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ 0 , 1 ]   1 < υ < 2 ;         C   D  0 +   β , ψ   ζ  ( ω )  = g  ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ 0 , 1 ]   1 < β < 2 ;       φ ( 0 ) = ζ ( 0 ) = 0 ,       φ ( 1 ) = λ φ ( η ) ,  ζ ( 1 ) = μ ζ ( ζ ) ,  0 < η < ζ < 1 ,  λ , μ > 0 ,         








where     C   D  0 +   υ ; ψ   ,   C   D  0 +   β ; ψ     denote the  ψ -CFDs of order   υ , β   and   f , g :  [ 0 , 1 ]  ×  R  e  2  →  R e    are continuous functions.



In 2020, the authors of [33] studied the existence and uniqueness of the following BVP associated with multi-point BCs, with results obtained via topological degree theory and Banach’s contraction principle:


        C   D  a +   α ; ψ   z  ( τ )  + h  ( τ , z  ( τ )  )  = 0 ,   2 < α ≤ 3 ,   a ≤ τ ≤ b ,        z  ( a )  =  z ′   ( a )  = 0 ,   z  ( b )  =  ∑  k = 1  n   δ k  z  (  μ k  )  ,   a <  μ k  < b ,       








where     C   D  a +   α ; ψ     denotes  ψ -Caputo fractional derivatives,   h :  [ a , b ]  ×  R e  →  R e    is assumed to be continous and    δ k  ∈  R e  , k = 1 , 2 , … , n .  



In previous works, researchers investigated the existence and uniqueness of linear fractional differential equations involving  ψ -Caputo.



This work is devoted to investigating the existence and uniqueness of the solutions for the following system of equations with Dirichlet BCs. Adding to this, we show that BVP is stable via the Ulam–Hyers technique.


            C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =  h 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]   1 <  υ 1  ≤ 2 ;           C   D   υ 2  ; ψ      ζ ( ω )   g ( ω , φ ( ω ) , ζ ( ω ) )    =  h 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]   1 <  υ 2  ≤ 2 ;        φ ( ξ ) = φ ( T ) = 0 ,       ζ ( ξ ) = ζ ( T ) = 0 ,         



(1)




where     C   D  0 +    υ i  , ψ   , i = 1 , 2 .   is the  ψ -CFDs of order   υ i  , and   f , g :  [ ξ , T ]  ×  R  e  2  →  R e    are continuous functions. To be valuable, the findings of this paper must be novel and generalize several earlier findings that are important to the research. To the best of our knowledge, there are no articles that discuss boundary value problems for systems of fractional differential equations with  ψ -Caputo and no articles that investigate Ulam–Hyers stability for differential equations that contain  ψ -Caputo derivatives. This paper is organized as follows. In Section 2, we will briefly recall some basic definitions and some preliminary concepts about fractional calculus and auxiliary results used in the following sections. In Section 3, we establish the existence of solutions to the  ψ -Caputo fractional hybrid differential equation by using the Leray–Schauder alternative and Banach’s fixed point theorem. In Section 4, the stability of Ulam–Hyers solutions is shown. In Section 5, we finally give an example to illustrate the application of the results obtained and we give our conclusion in Section 6.




2. Preliminaries


There are some basic definitions, lemmas and results of the  ψ -CFDs with regard to another function ([1,2,3,4]).



Definition 1.

Let   υ > 0  ,   f ∈  L ′   (  [ ξ , T ]  ,  R e  )    and   ψ :  [ ξ , T ]  →  R e    such that    ψ ′   ( ω )  > 0  



∀  ω ∈ [ ξ , T ]  . The ψ-Riemann–Liouville fractional integral of order υ for the function  f  is given by


       I   ξ   υ ; ψ   f  ( ω )  =  1  Γ ( υ )    ∫  ξ  ω    ( ψ  ( ω )  − ψ  ( s )  )   υ − 1   f  ( s )   ψ ′   ( s )  d s ,      



(2)




where Γ denotes the standard Euler gamma function.





Definition 2.

Let   υ > 0  ,   f ∈  C  m − 1    (  [ ξ , T ]  ,  R e  )    and   ψ ∈  C m   (  [ ξ , T ]  ,  R e  )    such that    ϕ ′   ( ω )  > 0  



  ∀ ω ∈ (  [ ξ , T ]  ,  R e  )  . The ψ-Caputo fractional derivative (CFD) of order υ for the function  f  is given by


        C   D ξ  υ ; ψ   f  ( ω )  =  1  Γ ( n − υ )    ∫  ξ  ω   ψ ′   ( s )    ( ψ  ( ω )  − ψ  ( s )  )   n − υ − 1    f ψ  [ n ]    ( s )  d s ,      



(3)




where


       f ψ  [ n ]    ( s )  =    1   ψ ′   ( s )     d  d s    n  f  ( s )     a n d    n =  [ υ ]  + 1 ,      








and   [ υ ]   denotes the integer part of the real number υ.





Remark 1.

If   υ ∈ ( 0 , 1 ) ,   then Equation (3) can be written as follows:


        C   D ξ  υ ; ψ   f  ( ω )  =  1  Γ ( υ )    ∫  ξ  ω    ( ψ  ( ω )  − ψ  ( s )  )   υ − 1    f ′   ( s )  d s .      











In another way, we have


        C   D ξ  υ ; ψ   f  ( ω )  =  I  1 − υ , ψ       f ′   ( ω )     ψ ′   ( ω )     .      













Remark 2.

Note that if   ψ ( ω ) = ω   and   ψ ( ω ) = log ( ω )  , then Equation (2) is reduced to the Riemann–Liouville and Hadamard fractional integrals, respectively.





Remark 3.

In particular, note that if   ψ ( ω ) = ω   and   ψ ( ω ) = log ( ω )  , then Equation (3) is reduced to the CFDs and Caputo–Hadamard fractional integrals, respectively.





Definition 3.

Let   υ > 0   and an increasing function   ψ :  [ ξ , T ]  →  R e    satisfy    ψ ′   ( ω )   0   for all   ω ∈ [ ξ , T ]  . We define the left-side ψ-Riemann–Liouville integral of an integrable function  f  on   [ ξ , T ]   in the fractional framework with regard to another differentiable function ψ as


        ( ξ   I  υ ; ψ   f )   ( ω )  =  1  Γ ( υ )    ∫  ξ  ω    ( ψ  ( ω )  − ψ  ( s )  )   υ − 1   f  ( s )   ψ ′   ( s )  d s ,      








where Γ denotes the standard Euler gamma function.





Definition 4.

Let   m ∈ N   with   m = [ υ ] + 1  . The left-sided ψ-Riemann–Liouville fractional derivative of an existing function   f ∈  C m   (  [ ξ , T ]  ,  R e  )    with regard to a nondecreasing function ψ such that    ψ ′   ( ω )  = 0  , for all   ω ∈ [ ξ , T ]   in the functional framework, is represented as follows:


       D  ξ +   υ ; ψ   f  ( ω )  =        1   ψ ′   ( ω )     d dt   m   (  I ξ  m − υ ; ψ   f )   ( ω )  ,      =     1  Γ ( m − υ )      1   ψ ′   ( ω )     d dt   m   ∫  ξ  ω    ( ψ  ( ω )  − ψ  ( s )  )   m − υ − 1   f  ( s )   ψ ′   ( s )  d s .      













Definition 5.

Let   m ∈ N   with   m = [ υ ] + 1  . The left-sided ψ-Caputo fractional derivative of an existing function   f ∈  C m   (  [ ξ , T ]  ,  R e  )    with regard to a nondecreasing function ψ such that    ψ ′   ( ω )  = 0  , for all   ω ∈ [ ξ , T ]   in the functional framework, is represented as follows:


        c   D  ξ +   υ ; ψ   f  ( ω )  =      I  ξ +   m − υ ; ψ      1   ψ ′   ( ω )     d dt   m  f  ( ω )  ,      =     1  Γ ( m − υ )      1   ψ ′   ( ω )     d dt   m   ∫  ξ  ω    ( ψ  ( ω )  − ψ  ( s )  )   m − υ − 1   f  ( s )   ψ ′   ( s )  d s .      













Definition 6.

Let   ψ ∈  C n   (  [ ξ , T ]  )    be such that    ψ ′   ( ω )  > 0   on   [ ξ , T ]  . Then,


        AC   m ; ψ    (  [ ξ , T ]  )  =  f :  [ ξ , T ]  → C    a n d     f  [ m − 1 ]   =    1   ψ ′   ( ω )     d dt    m − 1   f  .      













Proposition 1.

Let   υ > 0   and   β > 0  , then




	(1)

	
    I  ξ +   υ ; ψ     ( ψ  ( ω )  − ψ  ( ξ )  )   β − 1   =   Γ ( β )   Γ ( υ + β )     ( ψ  ( ω )  − ψ  ( ξ )  )   υ + β − 1   ,   




	(2)

	
     C   D  ξ +   υ ; ψ     ( ψ  ( ω )  − ψ  ( ξ )  )   β − 1   =   Γ ( β )   Γ ( β − υ )     ( ψ  ( ω )  − ψ  ( ξ )  )   β − υ − 1   ,   




	(3)

	
     C   D  ξ +   υ ; ψ     ( ψ  ( ω )  − ψ  ( ξ )  )  k  = 0 ,    f o r   a n y    k = 0 , … , m − 1 ; m ∈ N .   











Proposition 2.

Let   υ > 0  , if   f ∈  C  m − 1    (  [ ξ , T ]  ,  R e  )   , then we have




	(1)

	
     C   D  ξ +   υ , ψ    I  ξ +   υ , ψ   f  ( ω )  = f  ( ω )  ,   




	(2)

	
    I  ξ +   υ , ψ     C   D  ξ +   υ , ψ   f  ( ω )  = f  ( ω )  −  ∑  J = 0   n − 1      f [    k ]  ψ   ( 0 )    k !     ( ψ  ( ω )  − ψ  ( 0 )  )  k  .   




	(3)

	
    I  ξ +   υ , ψ      i s   l i n e a r   a n d   b o u n d e d   f r o m    C  (  [ ξ , T ]  ,  R e  )     t o    C  (  [ ξ , T ]  ,  R e  )  .   











Lemma 1

(Hybrid Fixed Point Theorem). Let  X  be a convex, bounded and closed set contained in the Banach algebra  Y  and the operators   P , S : Y → Y   and   Q : X → Y   be such that:




	(1)

	
 P  and  S  are Lipschitz maps with Lipschitz constant   L P   and   L S  , respectively;




	(2)

	
 Q  is continuous and compact;




	(3)

	
  φ = P φ Q ζ + S φ   ∀   ζ ∈ X ⇒ φ ∈ X  ; and




	(4)

	
   L P   M Q  +  L S  < 1 ,   where    M Q  =  | | Q  ( X )  | |  = sup  { | | Q φ | | : φ ∈ X }   , then the operator equation   φ = P φ + S φ   possesses a solution in  X .











Theorem 1.

A contraction mapping   T : Ω → Ω   possesses a unique fixed point where   Ω   is a nonempty closed set contained in a Banach space  Y .





Theorem 2

(Banach Contraction Mapping Principle). A contraction mapping on a complete metric space has exactly one fixed point.





Theorem 3

(Arzelà–Ascoli Theorem). A set of functions in   C ( [ a , b ] )   with supremum norm is relatively compact if, and only if, it is uniformly bounded and equicontinuous on   [ a , b ]  .





Before presenting our main results, the following auxiliary lemma is presented.



Lemma 2.

The solution of the following boundary value problem (BVP):


             C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =  H 1   ( ω )  ,  ω ∈  [ ξ , T ]   1 <  υ 1  ≤ 2 ;           C   D   υ 2  ; ψ      ζ ( ω )   g ( ω , φ ( ω ) , ζ ( ω ) )    =  H 2   ( ω )  ,  ω ∈  [ ξ , T ]   1 <  υ 2  ≤ 2 ;        φ ( ξ ) = φ ( T ) = 0 ,       ζ ( ξ ) = ζ ( T ) = 0 ,          



(4)




is given by


      φ ( ω ) =     f  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ς )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ς )  d ς ,      



(5)




and


      ζ ( ω ) =     g  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 2  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ς )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 2  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ς )  d ς .      



(6)









Proof. 

First, we apply the fractional integral     ψ   I  ξ +   υ 1     to the equation


        C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =  H 1   ( ω )  ,      








and we obtain


        φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =   ψ   I  ξ +   υ 1    H 1   ( ω )  +  b 0  +  b 1   ψ ( ω ) − ψ ( ξ )  ,     



(7)




the first boundary condition   φ ( ξ ) = 0  , which yields


      b 0  = 0 ,     








and the second boundary condition   φ ( T )  , which implies


      b 1  =   −   ψ   I  ξ +   υ 1    H 1   ( T )    ψ ( ω ) − ψ ( ξ )   .     











Substituting the obtained values of   b 0   and   b 1   in Equation (7), we have


        φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =   ψ   I  ξ +   υ 1    H 1   ( ω )  −  1  ψ ( ω ) − ψ ( ξ )     ψ   I  ξ +   υ 1    H 1   ( T )  ,     










        φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =      1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ς )  d ς        −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ς )  d ς ,     








which completes the proof. □






3. Main Result


Defining the space   B =   φ ( ω ) , ζ ( ω )  :  ( φ , ζ )  ∈ C   [ ξ , T ]  ,  R e   × C   [ ξ , T ]  ,  R e     , it is obvious that  B  is a Banach space. Furthermore, this space is endowed with the norm


       | |  ( φ , ζ )  | |  B  =  | | φ | |  +  | | ζ | |   ∀  ( φ , ζ )   ∈ B .     











By Lemma 2, we define an operator   Φ : B → B   as


     Φ  ( φ , ζ )   ( ω )  =       Φ 1   ( φ , ζ )   ( ω )  ,        Φ 2   ( φ , ζ )   ( ω )  ,          



(8)




where


         Φ 1   (  ( φ , ζ )   ( ω )  )         = f  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς ,     



(9)




and


         Φ 2   (  ( φ , ζ )   ( ω )  )         = g  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 2  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 2  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς .     



(10)







Now, let us assume that the following assumptions hold true:



  (  A 1  )    φ , ζ   are assumed to be continuous and bounded, and there exist    ∂ f  ,  ∂ g  > 0   such that


      | f  ( ω , φ , ζ )  |  ≤  ∂ f  ,    a n d     | g  ( ω , φ , ζ )  |  ≤  ∂ g  , ∀  ( ω , φ , ζ )  ∈  [ ξ , T ]  ×  R  e  2  .     








  (  A 2  )   Both   H 1   and   H 2   are assumed to be continuous and there exist    δ i  ,  ε i  > 0 , i = 1 , 2   such that


      |   H 1   ( ω ,  φ 1  ,  ζ 1  )  −  H 1   ( ω ,  φ 2  ,  ζ 2  )   | ≤       δ 1   |   φ 1  −  φ 2   | +   δ 2   |  ζ 1  −  ζ 2  |  ,        |   H 2   ( ω ,  φ 1  ,  ζ 1  )  −  H 2   ( ω ,  φ 2  ,  ζ 2  )   | ≤       ε 1   |   φ 1  −  φ 2   | +   ε 2   |  ζ 1  −  ζ 2  |  ,     








  ∀   ω ∈  [ ξ , T ]  ,  φ i  ,  ζ i  ∈  R e   ,   i = 1 , 2  .



  (  A 3  )   There exist    λ 0  ,  μ 0  > 0  , and    λ i  ,  μ i  ≤ 0 , i = 1 , 2   such that


      |   H 1    ( ω , φ , ζ )  | ≤       λ 0  +  λ 1   | φ |  +  λ 2   | ζ |  ,        |   H 2    ( ω , φ , ζ )  | ≤       μ 0  +  μ 1   | φ |  +  μ 2   | ζ |  ,   ∀ ω ∈  [ ξ , T ]  , φ , ζ ∈  R e  .     








  (  A 4  )   Let   S ⊂ B   be a bounded set, then there exist    K i  > 0 , i = 1 , 2   such that


      |   H 1    ( ω , φ  ( ω )  , ζ  ( ω )  )  | ≤       K 1  ,        |   H 2    ( ω , φ  ( ω )  , ζ  ( ω )  )  | ≤       K 2  ,   ∀   ω ∈  [ ξ , T ]  ,   ∀ φ , ζ ∈ S .     











Using   A 4  , observe that   ∀   i = 1 , 2 .  


          1  Γ (  υ i  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ i  − 1    H i   ( ς , φ  ( ς )  , ζ  ( ς )  )  d ς          −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ i  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ i  − 1    H 1   ( ς , φ  ( ς )  , ζ  ( ς )  )  d ς  ,      ≤      2  K i    ( ψ  ( T )  − ψ  ( ξ )  )   υ i     Γ (  υ i  + 1 )   .     











For computational convenience, we let


      L i  =    ( ψ  ( T )  − ψ  ( ξ )  )   υ i    Γ (  υ i  + 1 )   .     



(11)







Next, we introduce our main result by setting two theorems with their proofs.



Theorem 4.

If the assumptions   A 1   and   A 2   hold, and


      P = 2   ∂ f   L 1   (  δ 1  +  δ 2  )  +  ∂ g   L 2   (  ε 1  +  ε 2  )   < 1 ,      



(12)




then the BVP in (1) has a unique solution on   [ ξ , T ] .  





Proof. 

Considering the operator given by (1), let


       B r  ^  =  ( φ , ζ ) ∈ B : | | ( φ , ζ ) | | ≤ r      








be closed ball in  B  with


     r ≥   2   ∂ f   L 1   (  N  H 1   )  +  ∂ g   L 2   (  N  H 2   )     1 −  2   ∂ f   L 1   (  δ 1  +  δ 2  )  +  ∂ g   L 2   (  ε 1  +  ε 2  )      ,     








where


      N  H 1   =  sup  ξ ≤ ω ≤ T     H 1   ( ω , 0 , 0 )      a n d     N  H 2   =  sup  ξ ≤ ω ≤ T     H 2   ( ω , 0 , 0 )   .     











Observe that


       H 1   ( ω , φ , ζ )   =       H 1   ( ω , φ , ζ )  −  H 1   ( ω , 0 , 0 )  +  H 1   ( ω , 0 , 0 )   ,        ≤  δ 1   φ  +  δ 2   ζ  +  N  H 1   ,        ≤  (  δ 1  +  δ 2  )  r +  N  H 1   .     











Now, we demonstrate that   Φ   B r  ^  ⊂   B r  ^   , ∀   ( φ , ζ )  ∈   B r  ^  , ω ∈  [ ξ , T ]   , then


         Φ 1   (  ( φ , ζ )   ( ω )  )       =    f  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς          −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς  ,      ≤     ∂ f   sup  ξ ≤ ω ≤ T      1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς           +   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς  ,      ≤     ∂ f    (  δ 1  +  δ 2  )  r +  N  H 1     sup  ξ ≤ ω ≤ T      1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1   d ς           +   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1   d ς  ,     










       Φ 1   (  ( φ , ζ )   ( ω )  )   ≤      ∂ f   ( 2  L 1  )    (  δ 1  +  δ 2  )  r +  N  H 1    ,     








and


       Φ 1   (  ( φ , ζ )   ( ω )  )   ≤  ∂ f   ( 2  L 1  )    (  δ 1  +  δ 2  )  r +  N  H 1    ,     



(13)




similarly,


       Φ 2   (  ( φ , ζ )   ( ω )  )   ≤  ∂ g   ( 2  L 1  )    (  ε 1  +  ε 2  )  r +  N  H 2    .     



(14)







Equations (13) and (14) yield


     | | Φ ( φ , ζ ) | | ≤ r .     











Next, we show that  Φ  is a contraction. Let    (  φ 1  ,  ζ 1  )  ,  (  φ 2  ,  ζ 2  )  ∈ B ,   then


         |   Φ 1   (  φ 1  ,  ζ 1  )   ( ω )  −  Φ 1   (  φ 2  ,  ζ 2  )   ( ω )   |       ≤     ∂ f   sup  ξ ≤ ω ≤ T      1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1              |   H 1   ( ω ,  φ 1   ( ω )  ,  ζ 1   ( ω )  )  −  H 1   ( ω ,  φ 2   ( ω )  ,  ζ 2   ( ω )  )   | d ς          +   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1            |   H 1   ( ω ,  φ 1   ( ω )  ,  ζ 1   ( ω )  )  −  H 1   ( ω ,  φ 2   ( ω )  ,  ζ 2   ( ω )  )   | d ς ,   ,      ≤     ∂ f    δ 1   | |   φ 1  −  φ 2   | |  +  δ 2   | |   ζ 1  −  ζ 2   | |    ( 2  L 1  )  ,     










         | |   Φ 1   (  φ 1  ,  ζ 1  )  −  Φ 1   (  φ 2  ,  ζ 2  )   | |         ≤  ∂ f   (  δ 1  +  δ 2  )    | |   φ 1  −  φ 2   | |  +  | |   ζ 1  −  ζ 2   | |    ( 2  L 1  )  .     



(15)







Similarly,


         | |   Φ 2   (  φ 1  ,  ζ 1  )  −  Φ 2   (  φ 2  ,  ζ 2  )   | |         ≤  ∂ g   (  ε 1  +  ε 2  )    | |   φ 1  −  φ 2   | |  +  | |   ζ 1  −  ζ 2   | |    ( 2  L 2  )  .     



(16)







Equations (15) and (16) give


         | | Φ   (  φ 1  ,  ζ 1  )  − Φ  (  φ 2  ,  ζ 2  )   | |         ≤   ∂ f   ( 2  L 1  )   (  δ 1  +  δ 2  )  +  ∂ g   ( 2  L 2  )   (  ε 1  +  ε 2  )     | |   φ 1  −  φ 2   | |  +  | |   ζ 1  −  ζ 2   | |        ≤     | |   φ 1  −  φ 2   | |  +  | |   ζ 1  −  ζ 2   | |  .     



(17)







Operator  Φ  is a contraction, and the Banach contraction mapping principle applies, that is, on   [ ξ , T ]  , the BVP (1) has a unique solution. □





Theorem 5.

If    (  A 1  )  ,  (  A 3  )    and   (  A 4  )   are satisfied, and if


   2 (  ∂ f   L 1   λ 1  +  ∂ g   L 2   μ 1  ) < 1   








and


   2 (  ∂ f   L 1   λ 2  +  ∂ g   L 2   μ 2  ) < 1 ,   











then the proposed problem given by (1) has at least one solution on   [ ξ , T ]  .





Proof. 

To begin, we show that  Φ  is (c.c), if    H 1  ,  H 2  , f   and  g  are both continuous, which implies that  Φ  is continuous.



By   A 4  , for any   ( f , g ) ∈ S  , we have


         Φ 1   (  ( φ , ζ )   ( ω )  )         ≤  ∂ f   sup  ξ ≤ ω ≤ T      1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς           +   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς  ,     








that is


       Φ 1   ( φ , ζ )   ≤  ∂ f   ( 2  L 1  )   K 1  ,     



(18)




similarly,


       Φ 2   ( φ , ζ )   ≤  ∂ g   ( 2  L 2  )   K 2  ,     



(19)




and, from (18) and (19), we obtain


      Φ ( φ , ζ )  ≤  ∂ f   ( 2  L 1  )   K 1  +  ∂ g   ( 2  L 2  )   K 2  ,     



(20)




which implies that our operator  Φ  is uniformly bounded.



Next, we investigate the equicontinuity of our operator to see this,   ∀  ω 1  ,  ω 2  ∈  [ ξ , T ]    with    ω 1  <  ω 2  , i = 1 , 2 .   We have


         Φ 1   (  ( φ , ζ )   (  ω 2  )  )  −  Φ 1   (  ( φ , ζ )   (  ω 1  )  )       ≤     ∂ f     1  Γ (  υ 1  )    ∫  ξ   ω 1    ψ ′   ( ς )     ( ψ  (  ω 1  )  − ψ  ( ς )  )    υ 1  − 1   −   ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 1  − 1     |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς          +   1  Γ (  υ 1  )    ∫   ω 1    ω 2    ψ ′   ( ς )     ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 1  − 1     |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς          +   ( ψ  (  ω 2  )  − ψ  (  ω 1  )  )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς  ,     










    ≤       ∂ f   K 1    Γ (  υ 1  )      ∫  ξ   ω 1    ψ ′   ( ς )     ( ψ  (  ω 1  )  − ψ  ( ς )  )    υ 1  − 1   −   ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 1  − 1    d ς          +   ∫   ω 1    ω 2    ψ ′   ( ς )     ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 1  − 1    d ς          +   ( ψ  (  ω 2  )  − ψ  (  ω 1  )  )   ψ ( T ) − ψ ( ξ )    ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1   d ς  ,     








and


         Φ 2   (  ( φ , ζ )   (  ω 2  )  )  −  Φ 2   (  ( φ , ζ )   (  ω 1  )  )       ≤     ∂ g     1  Γ (  υ 2  )    ∫  ξ   ω 1    ψ ′   ( ς )     ( ψ  (  ω 1  )  − ψ  ( ς )  )    υ 2  − 1   −   ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 2  − 1     |  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς          +   1  Γ (  υ 2  )    ∫   ω 1    ω 2    ψ ′   ( ς )     ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 2  − 1     |  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς          +   ( ψ  (  ω 2  )  − ψ  (  ω 1  )  )   Γ  (  υ 2  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1    |  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς  ,     










    ≤       ∂ g   K 2    Γ (  υ 2  )      ∫  ξ   ω 1    ψ ′   ( ς )     ( ψ  (  ω 1  )  − ψ  ( ς )  )    υ 2  − 1   −   ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 1  − 1    d ς          +   ∫   ω 1    ω 2    ψ ′   ( ς )     ( ψ  (  ω 2  )  − ψ  ( ς )  )    υ 2  − 1    d ς          +   ( ψ  (  ω 2  )  − ψ  (  ω 1  )  )   ψ ( T ) − ψ ( ξ )    ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1   d ς  .     











Note that the above inequality approaches zero and is independent of   ( f , g )  , that is,  Φ  is equicontinuous. Finally, we let  Δ  = { ( φ , ζ ) ∈ B : ( φ , ζ ) = r Φ ( φ , ζ ) , r ∈ [ 0 , 1 ] } ∀    ω ∈ [ 0 , 1 ]   and we obtain   φ  ( ω )  = r  Φ 1   ( φ , ζ )   ( ω )    and   ζ  ( ω )  = r  Φ 2   ( φ , ζ )   ( ω )   . By   (  A 3  )  , we obtain


      | | φ | |  ≤  ∂ f   ( 2  L 1  )    λ 0  +  λ 1   | | φ | |  +  λ 2   | | ζ | |       



(21)






      | | ζ | |  ≤  ∂ g   ( 2  L 2  )    μ 0  +  μ 1   | | φ | |  +  μ 2   | | ζ | |   ,     



(22)




and adding (21) and (22), we obtain


     | | φ | | + | | ζ | | ≤      ∂ f   ( 2  L 1  )   λ 0  +  ∂ g   ( 2  L 2  )   μ 0         +   ∂ f   ( 2  L 1  )   λ 1  +  ∂ g   ( 2  L 2  )   μ 1    | | φ | |         +   ∂ f   ( 2  L 1  )   λ 2  +  ∂ g   ( 2  L 2  )   μ 2    | | ζ | | .      



(23)




Equation (23) can be rewritten as


      | |  ( φ , ζ )  | |  ≤    ∂ f   ( 2  L 1  )   λ 0  +  ∂ g   ( 2  L 2  )   μ 0    min  1 −   ∂ f   ( 2  L 1  )   λ 1  +  ∂ g   ( 2  L 2  )   μ 1   , 1 −   ∂ f   ( 2  L 1  )   λ 2  +  ∂ g   ( 2  L 2  )   μ 2      ,     



(24)




which shows that the defined subset  Δ  is bounded. Now, applying the Leray–Schauder alternative, the problem (1) has at least one solution on   [ ξ , T ]  . □






4. Ulam–Hyers Stability


This section is devoted to the investigation of Hyers–Ulam stability for our system. Consider the following equations:


     φ ( ω ) =      Φ 1   ( φ , ζ )   ( ω )  ,       ζ ( ω ) =      Φ 2   ( φ , ζ )   ( ω )  ,     



(25)




where   Φ 1   and   Φ 2   are given by (9) and (10), respectively. Consider the following definitions of nonlinear operators    h 1  ,  h 2  ∈ C   [ ξ , T ]  ,  R e   × C   [ ξ , T ]  ,  R e   → C   [ ξ , T ]  ,  R e   :  


       C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    −  h 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  =  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ a , T ]  ,         C   D   υ 2  ; ψ      ζ ( ω )   g ( ω , φ ( ω ) , ζ ( ω ) )    −  h 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  =  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ a , T ]  .     











Considering the following inequalities for some    Λ ^  1   and    Λ ^  2  ,


      | |   H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )   | |  ≤       Λ ^  1  ,        | |   H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )   | |  ≤       Λ ^  2  .     



(26)







Definition 7.

The coupled system 1 is said to have Hyers–Ulam stability, if there exist    M 1  ,  M 2  > 0  , showing that, for every solution    (  φ ′  ,  ζ ′  )  ∈ C   [ ξ , T ]  ,  R e   × C   [ ξ , T ]  ,  R e     of the inequalities (26),


       | | φ  ( ω )   −  φ ′   ( ω )   | |  ≤      M 1    Λ ^  1  ,        | | ζ  ( ω )   −  ζ ′   ( ω )   | |  ≤      M 2    Λ ^  2  ,    a n d    ω ∈  [ ξ , T ]  .      













Theorem 6.

If all conditions of Theorem 4 are satisfied, the CSFDEs given by (1) are U-H stable.





Proof. 

Let   C   [ ξ , T ]  ,  R e   × C   [ ξ , T ]  ,  R e     be the solution to (1).



Let   ( φ , ζ )   be any solution that meets the condition (26):


       C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =  h 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  +  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]  ,         C   D   υ 2  ; ψ      ζ ( ω )   g ( ω , φ ( ω ) , ζ ( ω ) )    =  h 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  +  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]  ,     








so,


        φ ( ω )        =  φ ′   ( ω )  + f  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς ,     










         | φ  ( ω )  −   φ ′    ( ω )  |         = f  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 1  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 1  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 1  − 1    |  H 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς ,      ≤       ( ψ  ( T )  − ψ  ( ξ )  )   υ 1    Γ (  υ 1  + 1 )     Λ ^  1       ≤     L 1    Λ ^  1  ,     



(27)




and


        ζ ( ω )        =  ζ ′   ( ω )  + g  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 2  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 2  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς ,     










         | ζ  ( ω )  −   ζ ′    ( ω )  |         = g  ( ω , φ  ( ω )  , ζ  ( ω )  )    1  Γ (  υ 2  )    ∫  ξ  ω   ψ ′   ( ς )    ( ψ  ( ω )  − ψ  ( ς )  )    υ 2  − 1    H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  d ς         −   ( ψ ( ω ) − ψ ( ξ ) )   Γ  (  υ 2  )   ψ ( T ) − ψ ( ξ )     ∫  ξ  T   ψ ′   ( ς )    ( ψ  ( T )  − ψ  ( ς )  )    υ 2  − 1    |  H 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  |  d ς ,      ≤       ( ψ  ( T )  − ψ  ( ξ )  )   υ 2    Γ (  υ 2  + 1 )     Λ ^  2       ≤     L 2    Λ ^  2  ,     



(28)




where   L 1   and   L 2   are defined in (11). Hence, Definition (7) is verified, with the help of (27) and (28). Hence, the problem (1) is Ulam–Hyers stable. □






5. Example


Example 1.

Let us consider the following CSFDEs:


            C   D   υ 1  ; ψ      φ ( ω )   f ( ω , φ ( ω ) , ζ ( ω ) )    =  h 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]   1 <  υ 1  ≤ 2 ;         C   D   υ 2  ; ψ      ζ ( ω )   g ( ω , φ ( ω ) , ζ ( ω ) )    =  h 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  ,  ω ∈  [ ξ , T ]   1 <  υ 2  ≤ 2 ;       φ ( ξ ) = φ ( T ) = 0 ;       ζ ( ξ ) = ζ ( T ) = 0 .          



(29)







The problem (29) has a coupled system of hybrid FDEs (1), where    υ 1  =  1 2  ,  υ 2  =  1 3  , T = 1 , ψ  ( ω )  = ω , ξ = 0 .   To prove Theorem 4, let   ω ∈ [ ξ , T ]   and   φ , ζ ∈  R e   , then we have


       h 1   ( ω , φ  ( ω )  , ζ  ( ω )  )  =      1 99     ω ζ ( ω )   2 + ζ ( ω )   −   ζ ( ω )   2 + ζ ( ω )    ,        h 2   ( ω , φ  ( ω )  , ζ  ( ω )  )  =       e  − ω   87      ω 2  − φ  ( ω )  ζ  ( ω )    2 + ζ ( ω ) φ ( ω )    ,       f ( ω , φ ( ω ) , ζ ( ω ) ) =      1 99     ω ζ ( ω )  3  +   ω φ ( ω )  2  +  5 6   ,       g ( ω , φ ( ω ) , ζ ( ω ) ) =      1 98     ζ ( ω )  5  + ω φ  ( ω )  + 6  ,      










       | f  ( ω , φ , ζ )  |  ≤  2 97  ,  | g  ( ω , φ , ζ )  |  ≤  1 87  ,        |   h 1   ( ω , φ , ζ )  −  h 1   ( ω ,   φ ^  ,  ζ ^   | ≤   1 99   { | φ  −  φ ^   | + | ζ −   ζ ^   | }  ,        |   h 2   ( ω , φ , ζ )  −  h 2   ( ω ,   φ ^  ,  ζ ^   | ≤   1 98   { | φ  −  φ ^   | + | ζ −   ζ ^   | }  .      











Moreover, we have


       L 1  = 1.183791995 ,  L 2  = 1.1193470177 ,        ∂ f  = 0.02061855676 ,  ∂ g  = 0.0114942528 ,        δ i  = 0.01010101 ,  ε i  = 0.010200816 ,      



(30)




as   i = 1 , 2  . We substitute values in Equation (12), and we obtain


      2   ∂ f   L 1   (  δ 1  +  δ 2  )  +  ∂ g   L 2   (  ε 1  +  ε 2  )   ≈ 0.0014651668 < 1 .      











Based on the computations mentioned above, all conditions of Theorem 4 are satisfied. Therefore, the BVP given by (29) guaranteed a unique solution on   [ ξ , T ]   (Table 1 and Figure 1).






6. Conclusions


In previous works, researchers investigated the existence and uniqueness of linear fractional differential equations involving  ψ -Caputo. The legacy of this work lies in verifying the existence and uniqueness of solutions to a coupled system of  ψ -Caputo hybrid fractional differential equations with Dirichlet boundary conditions. Our major findings are demonstrated using the Banach fixed point theorem and the alternative of Leray–Schauder. The stability of the solutions involved in the Hyers–Ulam type was investigated. We provide an example to demonstrate the study results.  ψ -fractional calculus has its own prominence. For example, some researchers showed that by considering different  ψ s, a particular natural phenomenon can be remodeled with more accuracy. For replacing the fractional calculus by ordinary calculus, see [34]. In future studies, researchers can verify the existence, uniqueness and stability of the solutions for the system of equations given by Equation (1) using the  ψ -Hilfer fractional derivative or any other derivatives such as the fractional Katugambula derivative. In addition, this system can be used in practical applications of the subject by taking our results as proven facts.
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Figure 1. The impact of fractional order ( υ ) on the condition  P  given by (12) is represented graphically. Based on the  P  value given by (12) and the conditions   A 1   and   A 2  , the graph shown above describes the behavior of the solution of problem (29) for different values of   υ ∈ ( 0 , 1 )  . It is noted that as  T  increases, the value of  P  increases as well and, with an increase in time, the condition  P  increases gradually for all values of   υ ∈ ( 0 , 1 )  , and the  P  is clearly less than 1, satisfying the condition obtained in Theorem 4. An important observation to be made is that when order   ( υ )   is small, the value of  P  decreases with increasing time. As the order   ( υ )   increases, this trend changes with the value of  P  increasing with time. The figure describes the behavior of the solution. 






Figure 1. The impact of fractional order ( υ ) on the condition  P  given by (12) is represented graphically. Based on the  P  value given by (12) and the conditions   A 1   and   A 2  , the graph shown above describes the behavior of the solution of problem (29) for different values of   υ ∈ ( 0 , 1 )  . It is noted that as  T  increases, the value of  P  increases as well and, with an increase in time, the condition  P  increases gradually for all values of   υ ∈ ( 0 , 1 )  , and the  P  is clearly less than 1, satisfying the condition obtained in Theorem 4. An important observation to be made is that when order   ( υ )   is small, the value of  P  decreases with increasing time. As the order   ( υ )   increases, this trend changes with the value of  P  increasing with time. The figure describes the behavior of the solution.



[image: Mathematics 10 01681 g001]







[image: Table] 





Table 1. The impact of fractional order ( υ ) on the condition  P  given by (12).
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	   T   
	    υ = 0.15    
	    υ = 0.30    
	    υ = 0.45    
	    υ = 0.60    
	    υ = 0.75    
	    υ = 0.90    





	
	
	
	  P  
	
	
	



	0.3
	0.00169289
	0.00164105
	0.00156982
	0.00148344
	0.00138603
	0.00128146



	1.3
	0.00338579
	0.00364173
	0.00386534
	0.00405286
	0.00420167
	0.00431029



	2.3
	0.00507868
	0.00580513
	0.00654797
	0.00729616
	0.00803837
	0.00876327



	4.3
	0.00677158
	0.0080815
	0.00951759
	0.0110728
	0.0127371
	0.014498



	5.3
	0.00677158
	0.0104457
	0.0127207
	0.0153029
	0.0182023
	0.0214241



	6.3
	0.0101574
	0.0128824
	0.016123
	0.0199337
	0.0243678
	0.029476



	7.3
	0.0118503
	0.015381
	0.0197005
	0.0249265
	0.0311839
	0.0386034
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