Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings
<p>The relation between the functions <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mi>θ</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <msup> <mi>θ</mi> <mfrac> <mi>θ</mi> <mrow> <mn>1</mn> <mo>−</mo> <mi>θ</mi> </mrow> </mfrac> </msup> <mi mathvariant="script">L</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with different values of <math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The estimated PDFs of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>θ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>θ</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The estimated PDFs of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>θ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>></mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
Work Motivation
2. Some Properties of CRTE
3. Further Theoretical Aspects and Test Statistic
The Stability of CRTE
4. Percentage Points of the Test Statistic
Percentage Points
5. Power Analysis
- For a fixed and as n increases, we see that the power of increases.
- For the alternatives and , the power of increases and gives better performance against the other tests when tends to 1 ().
- For the alternative , when n and increases, the power of increases and gives a better performance than the other tests.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, W.; Liu, R. Applications of entropy principles in power systems: A survey. In Proceedings of the 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific, Dalian, China, 15–18 August 2005; pp. 1–4. [Google Scholar]
- Schmid, R.; Miah, A.M.; Sapunov, V.N. A new table of the thermodynamic quantities of ionic hydration: Values and some applications (enthalpy–entropy compensation and Born radii). Phys. Chem. Chem. Phys. 2000, 2, 97–102. [Google Scholar] [CrossRef]
- Song, Y.; Fu, Q.; Wang, Y.F.; Wang, X. Divergence-based cross entropy and uncertainty measures of Atanassov’s intuitionistic fuzzy sets with their application in decision making. Appl. Soft Comput. 2019, 84, 105703. [Google Scholar] [CrossRef]
- Gu, R. Multiscale Shannon entropy and its application in the stock market. Physica A 2017, 484, 215–224. [Google Scholar] [CrossRef]
- Zhou, R.; Cai, R.; Tong, G. Applications of entropy in finance: A review. Entropy 2013, 15, 4909–4931. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Wang, F.; Vemuri, B.C. Non-rigid multi-model image registration using cross-cumulative residual entropy. Int. J. Comp. Vision 2007, 74, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Havrda, J.; Charvat, F. Quantification method of classification process: Concept of structural α-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Sati, M.M.; Gupta, N. Some characterization results on dynamic cumulative residual Tsallis entropy. J. Probab. Stat. 2015, 2015, 694203. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, G.; Sunoj, S.M. Some properties of cumulative Tsallis entropy of order α. Stat. Pap. 2019, 60, 933–943. [Google Scholar] [CrossRef]
- Mohamed, M.S. On cumulative Tsallis entropy and its dynamic past version. Indian J. Pure Appl. Math. 2020, 51, 1903–1917. [Google Scholar] [CrossRef]
- Abd Elgawad, M.A.; Alawady, M.A.; Barakat, H.M.; Xiong, S. Concomitants of generalized order statistics from Huang-Kotz Farlie-Gumbel-Morgenstern bivariate distribution: Some information measures. Bull. Malays. Math. Sci. Soc. 2020, 43, 2627–2645. [Google Scholar] [CrossRef]
- Abd Elgawad, M.A.; Barakat, H.M.; Xiong, S.; Alyami, S.A. Information measures for generalized order statistics and their concomitants under general framework from Huang-Kotz FGM bivariate distribution. Entropy 2021, 23, 335. [Google Scholar] [CrossRef]
- Alawady, M.A.; Barakat, H.M.; Abd Elgawad, M.A. Concomitants of generalized order statistics from bivariate Cambanis family of distributions under a general setting. Bull. Malays. Math. Sci. Soc. 2021, 44, 3129–3159. [Google Scholar] [CrossRef]
- Barakat, H.M.; Husseiny, I.A. Some information measures in concomitants of generalized order statistics under iterated Farlie-Gumbel-Morgenstern bivariate type. Quaest. Math. 2021, 44, 581–598. [Google Scholar] [CrossRef]
- Park, S. Information measure in terms of the hazard function and its estimate. Entropy 2021, 23, 298. [Google Scholar] [CrossRef]
- Xiong, H.; Shang, P.; Zhang, Y. Fractional cumulative residual entropy. Comm. Nonlin. Sci. Num. Simul. 2019, 78, 104879. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, P.; He, J.; Xiong, H. Cumulative Tsallis entropy based on power spectrum of financial time series. Chaos 2019, 29, 103–118. [Google Scholar] [CrossRef]
- Irshad, M.R.; Maya, R.; Buono, F.; Longobardi, M. Kernel estimation of cumulative residual Tsallis entropy and its dynamic version under ρ-mixing dependent data. Entropy 2022, 24, 9. [Google Scholar] [CrossRef]
- Mohamed, M.S. On cumulative residual Tsallis entropy and its dynamic version of concomitants of generalized order statistics. Commun. Stat. Theory Methods 2020. [CrossRef]
- Mohamed, M.S.; Abdulrahman, A.T.; Almaspoor, Z.; Yusuf, M. Ordered variables and their concomitants under extropy via COVID-19 data application. Complexity 2021, 2021, 114. [Google Scholar] [CrossRef]
- Toomaj, A.; Atabay, H.A. Some new findings on the cumulative residual Tsallis entropy. J. Comput. Appl. Math. 2021, 400, 113669. [Google Scholar] [CrossRef]
- Mohamed, M.S. A measure of inaccuracy in concomitants of ordered random variables under Farlie-Gumbel-Morgenstern family. Filomat 2019, 33, 4931–4942. [Google Scholar] [CrossRef]
- Mohamed, M.S. Some new findings on the survival Rényi entropy and application of COVID-19 data. Results Phys. 2021, 31, 104966. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.A. EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 1974, 69, 730–737. [Google Scholar] [CrossRef]
- Dudewicz, E.J.; Van der Meulen, E.C. Entropy-based tests of uniformity. J. Am. Stat. Assoc. 1981, 76, 967–974. [Google Scholar] [CrossRef]
- Noughabi, H.A. Cumulative residual entropy applied to testing uniformity. Commun. Stat. Theory Methods 2020, 50, 1811339. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Barakat, H.M.; Alyami, S.A.; Abd Elgawad, M.A. Fractional entropy-based test of uniformity with power comparisons. J. Math. 2021, 2021, 5331260. [Google Scholar] [CrossRef]
- Anastasiadis, A. Special Issue: Tsallis Entropy. Entropy 2012, 14, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J. Roll over, Boltzmann. Phys. World 2014, 27, 31–35. [Google Scholar] [CrossRef]
- Wanke, P. The uniform distribution as a first practical approach to new product inventory management. Int. J. Prod. Econ. 2008, 114, 811–819. [Google Scholar] [CrossRef]
- Blinov, P.Y.; Lemeshko, B.Y. A review of the properties of tests for uniformity. In Proceedings of the 2014 12th International Conference on Actual Problems of Electronic Instrument Engineering, Novosibirsk, Russia, 2–4 October 2014. [Google Scholar] [CrossRef]
- Howard, G.T. A generalization of the Glivenko-Cantelli theorem. Ann. Math. Stat. 1959, 30, 828–830. [Google Scholar] [CrossRef]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Abe, S. Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions. Phys. Rev. E 2002, 66, 046134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, S.; Kaniadakis, G.; Scarfone, A.M. Stabilities of generalized entropies. J. Phys. A Math. Gen. 2004, 37, 10513. [Google Scholar] [CrossRef] [Green Version]
- Lesche, B. Instabilities of Renyi entropies. J. Stat. Phys. 1982, 27, 419–422. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, P. Probability and Measure; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Johannesson, B.; Giri, N. On approximations involving the beta distribution. Commun. Stat. Simul. Comput. 1995, 24, 489–503. [Google Scholar] [CrossRef]
- Mesiar, R.; Sheikhi, A. Nonlinear random forest classification, a copula-based approach. Appl. Sci. 2021, 11, 7140. [Google Scholar] [CrossRef]
n | |||||||
---|---|---|---|---|---|---|---|
Normal Approximation | Beta Approximation | Monte Carlo Method | |||||
Lower | Upper | Lower | Upper | Lower | Upper | ||
10 | 0.1 | 0.1285 | 0.6311 | 0.1682 | 0.6655 | 0.2261 | 0.5302 |
0.5 | 0.1059 | 0.4777 | 0.1341 | 0.5023 | 0.1809 | 0.3872 | |
0.9 | 0.0873 | 0.3815 | 0.1093 | 0.4007 | 0.1486 | 0.3056 | |
2 | 0.05609 | 0.2439 | 0.07006 | 0.2561 | 0.0966 | 0.1956 | |
5 | 0.0269 | 0.1226 | 0.0342 | 0.12902 | 0.0468 | 0.1002 | |
10 | 0.01407 | 0.066908 | 0.01818 | 0.0704 | 0.0247 | 0.0554 | |
20 | 0.1 | 0.2163 | 0.6167 | 0.2399 | 0.6381 | 0.3059 | 0.5228 |
0.5 | 0.1683 | 0.4581 | 0.1847 | 0.4731 | 0.2381 | 0.3781 | |
0.9 | 0.1351 | 0.3631 | 0.1479 | 0.3748 | 0.1919 | 0.2976 | |
2 | 0.0856 | 0.2309 | 0.0938 | 0.2384 | 0.12201 | 0.19017 | |
5 | 0.04208 | 0.11614 | 0.04633 | 0.12001 | 0.0599 | 0.0967 | |
10 | 0.022602 | 0.0635 | 0.0249 | 0.0657 | 0.0321 | 0.0534 | |
30 | 0.1 | 0.2591 | 0.5993 | 0.2757 | 0.6147 | 0.3391 | 0.5145 |
0.5 | 0.1979 | 0.4425 | 0.2094 | 0.4532 | 0.2608 | 0.3723 | |
0.9 | 0.1578 | 0.35001 | 0.1668 | 0.3583 | 0.2088 | 0.2933 | |
2 | 0.0998 | 0.2223 | 0.1056 | 0.2276 | 0.1321 | 0.1868 | |
5 | 0.0493 | 0.1117 | 0.0523 | 0.1145 | 0.06506 | 0.09504 | |
10 | 0.02664 | 0.06113 | 0.02831 | 0.0626 | 0.03505 | 0.0524 | |
40 | 0.1 | 0.2853 | 0.5859 | 0.2982 | 0.5979 | 0.3581 | 0.5098 |
0.5 | 0.2159 | 0.4313 | 0.2248 | 0.4396 | 0.2733 | 0.3688 | |
0.9 | 0.1717 | 0.3408 | 0.1786 | 0.3473 | 0.2178 | 0.2904 | |
2 | 0.10863 | 0.2163 | 0.11305 | 0.2205 | 0.1378 | 0.1847 | |
5 | 0.0537 | 0.10869 | 0.05608 | 0.1108 | 0.0679 | 0.0938 | |
10 | 0.0291 | 0.0594 | 0.0304 | 0.0606 | 0.0367 | 0.0516 | |
50 | 0.1 | 0.3034 | 0.5755 | 0.3139 | 0.5853 | 0.3704 | 0.5052 |
0.5 | 0.2284 | 0.4229 | 0.2356 | 0.4297 | 0.2811 | 0.3661 | |
0.9 | 0.1813 | 0.33405 | 0.1869 | 0.3393 | 0.2239 | 0.2883 | |
2 | 0.1146 | 0.2119 | 0.1182 | 0.2153 | 0.1411 | 0.1834 | |
5 | 0.0568 | 0.1064 | 0.0587 | 0.1082 | 0.0697 | 0.0929 | |
10 | 0.03082 | 0.0582 | 0.0318 | 0.0592 | 0.0377 | 0.05111 | |
70 | 0.1 | 0.3273 | 0.5604 | 0.3349 | 0.5676 | 0.3853 | 0.4993 |
0.5 | 0.2448 | 0.41109 | 0.25005 | 0.41608 | 0.2907 | 0.3617 | |
0.9 | 0.19403 | 0.3245 | 0.1981 | 0.3284 | 0.2309 | 0.28504 | |
2 | 0.1227 | 0.2058 | 0.1253 | 0.2083 | 0.1459 | 0.1811 | |
5 | 0.06094 | 0.1033 | 0.0623 | 0.1046 | 0.0722 | 0.0916 | |
10 | 0.03308 | 0.056509 | 0.0338 | 0.0572 | 0.03908 | 0.0503 | |
100 | 0.1 | 0.3486 | 0.5456 | 0.35404 | 0.5508 | 0.3982 | 0.4943 |
0.5 | 0.2594 | 0.3997 | 0.2631 | 0.4033 | 0.29883 | 0.3581 | |
0.9 | 0.2054 | 0.3155 | 0.2083 | 0.3183 | 0.2373 | 0.2822 | |
2 | 0.1299 | 0.20008 | 0.1317 | 0.2018 | 0.1497 | 0.1792 | |
5 | 0.0646 | 0.1003 | 0.0655 | 0.1013 | 0.0741 | 0.0904 | |
10 | 0.0351 | 0.0548 | 0.0356 | 0.0553 | 0.04018 | 0.0496 |
n | Alternative | K-S | V | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10 | 0.079 | 0.06656 | 0.08072 | 0.10558 | 0.12616 | 0.0756 | 0.1456 | 0.07776 | 0.1877 | |
0.11404 | 0.12564 | 0.18706 | 0.27216 | 0.30298 | 0.1631 | 0.3551 | 0.16308 | 0.4761 | ||
0.095 | 0.11868 | 0.13762 | 0.10504 | 0.07352 | 0.0971 | 0.0741 | 0.1017 | 0.1349 | ||
0.22202 | 0.30572 | 0.3577 | 0.25458 | 0.1184 | 0.2307 | 0.1104 | 0.2481 | 0.3269 | ||
0.5349 | 0.72444 | 0.7997 | 0.61728 | 0.2424 | 0.5394 | 0.2154 | 0.5699 | 0.72308 | ||
0.0804 | 0.11834 | 0.13002 | 0.1076 | 0.0342 | 0.0974 | 0.0239 | 0.1031 | 0.0222 | ||
0.12666 | 0.24366 | 0.27896 | 0.18578 | 0.0402 | 0.2333 | 0.01114 | 0.2475 | 0.00924 | ||
20 | 0.10758 | 0.07272 | 0.13104 | 0.24056 | 0.2179 | 0.1226 | 0.25208 | 0.1225 | 0.3235 | |
0.15218 | 0.1876 | 0.39546 | 0.63934 | 0.5616 | 0.3486 | 0.6241 | 0.3358 | 0.7538 | ||
0.13084 | 0.25316 | 0.30462 | 0.18358 | 0.0869 | 0.1634 | 0.0781 | 0.1786 | 0.1774 | ||
0.3462 | 0.66858 | 0.75146 | 0.50604 | 0.1849 | 0.4647 | 0.162 | 0.5067 | 0.52802 | ||
0.76144 | 0.9852 | 0.99594 | 0.9319 | 0.4588 | 0.8711 | 0.4615 | 0.8978 | 0.93998 | ||
0.0897 | 0.19596 | 0.2244 | 0.14142 | 0.0509 | 0.1621 | 0.02406 | 0.1791 | 0.0213 | ||
0.1361 | 0.42338 | 0.53846 | 0.2519 | 0.1162 | 0.4633 | 0.0462 | 0.5048 | 0.0338 | ||
40 | 0.20048 | 0.08398 | 0.24962 | 0.51094 | 0.3144 | 0.18002 | 0.366 | 0.1721 | 0.4498 | |
0.2663 | 0.29604 | 0.72538 | 0.94942 | 0.7522 | 0.5447 | 0.8105 | 0.5071 | 0.8973 | ||
0.1668 | 0.5149 | 0.61588 | 0.34912 | 0.1021 | 0.2477 | 0.0873 | 0.2667 | 0.2281 | ||
0.4824 | 0.95894 | 0.98322 | 0.8408 | 0.2706 | 0.6695 | 0.25108 | 0.7076 | 0.7002 | ||
0.90634 | 1 | 1 | 0.99952 | 0.6701 | 0.97506 | 0.7237 | 0.9819 | 0.99104 | ||
0.10134 | 0.32746 | 0.4469 | 0.18216 | 0.07 | 0.2492 | 0.0303 | 0.2678 | 0.0271 | ||
0.1511 | 0.64696 | 0.87082 | 0.32854 | 0.2077 | 0.6711 | 0.1258 | 0.7111 | 0.1105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.S.; Barakat, H.M.; Alyami, S.A.; Abd Elgawad, M.A. Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings. Mathematics 2022, 10, 771. https://doi.org/10.3390/math10050771
Mohamed MS, Barakat HM, Alyami SA, Abd Elgawad MA. Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings. Mathematics. 2022; 10(5):771. https://doi.org/10.3390/math10050771
Chicago/Turabian StyleMohamed, Mohamed S., Haroon M. Barakat, Salem A. Alyami, and Mohamed A. Abd Elgawad. 2022. "Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings" Mathematics 10, no. 5: 771. https://doi.org/10.3390/math10050771
APA StyleMohamed, M. S., Barakat, H. M., Alyami, S. A., & Abd Elgawad, M. A. (2022). Cumulative Residual Tsallis Entropy-Based Test of Uniformity and Some New Findings. Mathematics, 10(5), 771. https://doi.org/10.3390/math10050771