Kernel Estimation of Cumulative Residual Tsallis Entropy and Its Dynamic Version under ρ-Mixing Dependent Data
Abstract
:1. Introduction
2. Estimation
3. Asymptotic Results
- 1.
- is a consistent estimator of ;
- 2.
- is a consistent estimator of .
- 1.
- is integratedly uniformly consistent in the quadratic mean estimator of ;
- 2.
- is integratedly uniformly consistent in the quadratic mean estimator of .
4. Numerical Evaluation of and Monte Carlo Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cdf | cumulative distribution function |
CRE | cumulative residual entropy |
CRTE | cumulative residual Tsallis entropy |
DCRTE | dynamic cumulative residual Tsallis entropy |
MISE | mean integrated squared error |
MSE | mean squared error |
probability density function | |
sf | survival function |
References
- Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–432. [Google Scholar] [CrossRef] [Green Version]
- Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural α-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Reis, M.S.; Freitas, J.C.C.; Orlando, M.T.D.; Lenzi, E.K.; Oliveira, I.S. Evidences for Tsallis non-extensivity on CMR manganites. Europhys. Lett. 2002, 58, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Plastino, A.R.; Plastino, A. Stellar polytropes and Tsallis’ entropy. Phys. Lett. A 1993, 174, 384–386. [Google Scholar] [CrossRef]
- Arimitsu, T.; Arimitsu, N. Analysis of fully developed turbulence in terms of Tsallis statistics. Phys. Rev. E 2000, 61, 3237–3240. [Google Scholar] [CrossRef] [Green Version]
- de Lima, I.P.; da Silva, S.L.E.F.; Corso, G.; de Araújo, J.M. Tsallis Entropy, Likelihood, and the Robust Seismic Inversion. Entropy 2020, 22, 464. [Google Scholar] [CrossRef] [Green Version]
- Batle, J.; Plastino, A.R.; Casas, M.; Plastino, A. Conditional q-entropies and quantum separability: A numerical exploration. J. Phys. A 2002, 35, 10311–10324. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J. Roll over, Boltzmann. Phys. World 2014, 27, 31–35. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Buono, F.; Longobardi, M. On Tsallis extropy with an application to pattern recognition. Stat. Probab. Lett. 2022, 180, 109241. [Google Scholar] [CrossRef]
- Rao, M.; Chen, Y.; Vemuri, B.C.; Wang, F. Cumulative residual entropy: A new measure of information. IEEE Trans. Inf. Theory 2004, 50, 1220–1228. [Google Scholar] [CrossRef]
- Rao, M. More on a new concept of entropy and information. J. Theor. Probab. 2005, 18, 967–981. [Google Scholar] [CrossRef]
- Psarrakos, G.; Toomaj, A. On the generalized cumulative residual entropy with application in actuarial science. J. Comput. Appl. Math. 2017, 309, 186–199. [Google Scholar] [CrossRef]
- Sati, M.M.; Gupta, N. Some characterization results on dynamic cumulative residual Tsallis entropy. J. Probab. Stat. 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Khammar, A.H.; Jahanshahi, S.M.A. On weighted cumullative residual Tsallis entropy and its dynamic version. Phys. A Stat. Mech. Appl. 2018, 491, 678–692. [Google Scholar] [CrossRef]
- Sunoj, S.M.; Krishnan, A.S.; Sankaran, P.G. A quantile-based study os cumulative residual Tsallis entropy measures. Phys. A Stat. Mech. Appl. 2018, 494, 410–421. [Google Scholar] [CrossRef]
- Mohamed, M.S. On cumulative residual Tsallis entropy and its dynamic version of concomitants of generalized order statistics. Commun. Stat. - Theory Methods 2020, 1–18. [Google Scholar] [CrossRef]
- Toomaj, A.; Atabay, H.A. Some new findings on the cumulative residual Tsallis entropy. J. Comput. Appl. Math. 2022, 400, 113669. [Google Scholar] [CrossRef]
- Bradley, R.C. Central limit theorems under weak dependence. J. Multivar. Anal. 1981, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Masry, E. Probability density estimation from sampled data. IEEE Trans. Inf. Theory 1986, 32, 254–267. [Google Scholar] [CrossRef]
- Masry, E.; Györfi, L. Strong consistency and rates for recursive probability density estimators of stationary processes. J. Multivar. Anal. 1987, 22, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Boente, G. Consistency of a nonparametric estimate of a density function for dependent variables. J. Multivar. Anal. 1988, 25, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, M. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 1956, 42, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibragimov, I.A. Some limit theorems for stochastic processes stationary in the strict sense. Dokl. Akad. Nauk. SSSR 1959, 125, 711–714. [Google Scholar]
- Kolmogorov, A.N.; Rozanov, Y.A. On strong mixing conditions for stationary Gaussian processes. Theory Probab. Its Appl. 1960, 5, 204–208. [Google Scholar] [CrossRef]
- Bradley, R.C. Basic properties of strong mixing conditions. A survey and some open question. Probab. Surv. 2005, 2, 107–144. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, G.; Abdul-Sathar, E.I.; Maya, R. Local linear estimation of residual entropy function of conditional distribution. Comput. Stat. Data Anal. 2015, 88, 1–14. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R. Kernel estimation of Mathai-Haubold entropy and residual Mathai-Haubold entropy functions under α- mixing dependence condition. Am. J. Math. Manag. Sci. 2021, 1–12. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R. Kernel estimation of residual extropy function under α-mixing dependence condition. S. Afr. Stat. J. 2019, 53, 65–72. [Google Scholar]
- Irshad, M.R.; Maya, R. Nonparametric estimation of past extropy under α-mixing dependence condition. Ric. Math. 2021. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R.; Archana, K. Recursive and non-recursive kernel estimation of negative cumulative residual extropy function under α-mixing dependence condition. Ric. Math. 2021. [Google Scholar] [CrossRef]
- Wegman, E.J.; Davies, H.I. Remarks on some recursive estimators of a probability density. Ann. Stat. 1979, 7, 316–327. [Google Scholar] [CrossRef]
- Wegman, E.J. Nonparametric probability density estimation:I.Asummary of available metods. Technometrics 1972, 14, 533–546. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irshad, M.R.; Maya, R.; Buono, F.; Longobardi, M. Kernel Estimation of Cumulative Residual Tsallis Entropy and Its Dynamic Version under ρ-Mixing Dependent Data. Entropy 2022, 24, 9. https://doi.org/10.3390/e24010009
Irshad MR, Maya R, Buono F, Longobardi M. Kernel Estimation of Cumulative Residual Tsallis Entropy and Its Dynamic Version under ρ-Mixing Dependent Data. Entropy. 2022; 24(1):9. https://doi.org/10.3390/e24010009
Chicago/Turabian StyleIrshad, Muhammed Rasheed, Radhakumari Maya, Francesco Buono, and Maria Longobardi. 2022. "Kernel Estimation of Cumulative Residual Tsallis Entropy and Its Dynamic Version under ρ-Mixing Dependent Data" Entropy 24, no. 1: 9. https://doi.org/10.3390/e24010009
APA StyleIrshad, M. R., Maya, R., Buono, F., & Longobardi, M. (2022). Kernel Estimation of Cumulative Residual Tsallis Entropy and Its Dynamic Version under ρ-Mixing Dependent Data. Entropy, 24(1), 9. https://doi.org/10.3390/e24010009