Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging
<p>Proposed hyperelastic modeling approach for PEMFC gasket materials.</p> "> Figure 2
<p>Mesh generation using Hypermesh for the gasket material simulation.</p> "> Figure 3
<p>A cross-sectional profile of the gasket assembly, showing the Pi film layer, cathode, and anode sections, and supporting plates for structural stability.</p> "> Figure 4
<p>The framework of the stacking ensemble model.</p> "> Figure 5
<p>Contact-stress contour distribution of <b>EPDM</b> under different aging conditions: (<b>a</b>) no aging (Ogden); (<b>b</b>) heat (Mooney–Rivlin); and (<b>c</b>) heat + sulfuric acid (Yeoh).</p> "> Figure 6
<p>Contact-stress contour distribution of <b>LSR</b> under different aging conditions: (<b>a</b>) no aging (Mooney–Rivlin); (<b>b</b>) heat (Ogden); and (<b>c</b>) heat + sulfuric acid (Yeoh).</p> "> Figure 7
<p>von Mises stress distribution of <b>EPDM</b> under different aging conditions: (<b>a</b>) no aging (Ogden); (<b>b</b>) heat (Mooney–Rivlin); and (<b>c</b>) heat + sulfuric acid (Yeoh).</p> "> Figure 8
<p>von Mises stress distribution of <b>LSR</b> under different aging conditions: (<b>a</b>) no aging (Mooney–Rivlin), (<b>b</b>) heat (Ogden); and (<b>c</b>) heat + sulfuric acid (Yeoh).</p> "> Figure 9
<p>Comparison of classification accuracy for LSR and EPDM materials using RandomSearchCV and GridSearchCV for model type (M) and aging type (A) classification.</p> "> Figure A1
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under no aging conditions.</p> "> Figure A2
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat-aging conditions.</p> "> Figure A3
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat- + sulfuric-acid-aging conditions.</p> "> Figure A4
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under no aging conditions.</p> "> Figure A5
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat-aging conditions.</p> "> Figure A6
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat- + sulfuric-acid-aging conditions.</p> "> Figure A7
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under no aging conditions.</p> "> Figure A8
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat-aging conditions.</p> "> Figure A9
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR materials under heat- + sulfuric-acid-aging conditions.</p> "> Figure A10
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under no aging conditions.</p> "> Figure A11
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat-aging conditions.</p> "> Figure A12
<p>Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat- + sulfuric-acid-aging conditions.</p> "> Figure A13
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under no aging conditions.</p> "> Figure A14
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat-aging conditions.</p> "> Figure A15
<p>Ogden model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat- + sulfuric-acid-aging conditions.</p> "> Figure A16
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under no aging conditions.</p> "> Figure A17
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat-aging conditions.</p> "> Figure A18
<p>Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for EPDM material under heat- + sulfuric-acid-aging conditions.</p> ">
Abstract
:1. Introduction
- This study makes a unique contribution by comprehensively assessing EPDM and LSR material performance under simulated PEMFC operational stresses through a novel comparison of hyperelastic modeling methods under varied aging conditions.
- Unlike previous studies, this paper evaluates the models’ effectiveness in stress distribution and integrates predictive ensemble machine learning methods to classify aging effects.
- This approach advances predictive maintenance strategies, supporting improved material selection for PEMFC gaskets with enhanced durability and reliability.
2. Background Study and Literature Review
2.1. Hyperelastic Material Models
2.1.1. Mooney–Rivlin Model
2.1.2. Yeoh Model
2.1.3. Ogden Model
2.2. Aging Effects on Elastomers
2.3. Ensemble Learning
- Bagging (Bootstrap Aggregating): generates multiple model versions by training on random data subsets, reducing variance. RF is a standard bagging algorithm known for stabilizing high-variance models.
- Boosting: builds models iteratively to correct errors from previous iterations, focusing on hard-to-predict instances. Techniques like AdaBoost and Gradient Boosting effectively address complex data patterns, though they may be prone to overfitting if not correctly regulated.
- Stacking: uses a meta-learner to combine predictions from multiple base learners, allowing models of different types (e.g., SVM, RF) to complement each other’s strengths, enhancing accuracy and robustness.
Study | Aging Type | Aging Condition | Performance Results |
---|---|---|---|
Thermal Aging of EPDM at 100 °C [36] | Thermal | 130 °C, 145 °C, and 160 °C, with aging periods of up to 3072 h (130 °C), 768 h (145 °C), and 288 h (160 °C) | Breakdown strength decreased by 13.3% (130 °C), 21.2% (145 °C), and 22.5% (160 °C). Thermal degradation, chain breaking, and the generation of oxygen-containing groups led to reduced thermal stability. Initial decomposition temperature decreased by 11.35% after 288 h at 160 °C. |
Acid and Thermal Aging of HTV Silicone Rubber [37] | Acid + Thermal | 80 °C, Nitric Acid (pH = 1) | Significant cracking, reduced tensile strength from 4.58 MPa to 2.07 MPa, fracture strain reduced from 470% to 130%, thermal stability reduced by 30 °C. |
Chemical Aging of EPDM [38] | Chemical (NaOH, H3PO4, NaClO) | NaOH, NaClO, H3PO4, 65 °C | Accelerated crosslinking in NaOH and H3PO4 exposure, reduction in glass transition temperature, oxidation damage. Increased crosslink density in NaClO exposure during compression. |
Multi-Stress Aging of EPDM and Silicone Rubber [39] | Electrical + Mechanical | Electrical stress: 11.5 kV/mm; Mechanical stretching: 0%, 35%, 65%; Aging times: 0, 50, 100 h | For EPDM, surface damage occurred but internal properties remained stable. Mechanical properties declined by less than 20%, and the crosslinking degree remained stable. |
Chemical Degradation of SR, EPDM, FKM in PEMFC Environment [40] | Chemical + Thermal | 80 °C, Sulfuric Acid (pH = 3–4), Nafion® Accelerated Solution | SR experienced degradation with surface cracking and filler loss; FKM showed the best stability; EPDM showed stable mechanical properties. |
Chemical and Thermal Degradation of PEFC Sealants—FKM, EPDM, Silicone Rubber [41] | Chemical + Thermal | 60–80 °C, Sulfuric Acid (pH = 3.35) | EPDM showed good chemical stability. Silicone exhibited degradation in the form of weight loss. FKM showed the highest thermal stability. |
2.3.1. Hyperparameter Tuning in Ensemble Models
- GridSearchCV: an exhaustive search over predefined hyperparameter grids, selecting the best combination based on a performance metric, though computationally intensive for large search spaces.
- RandomSearchCV: samples hyperparameters from a defined distribution, finding near-optimal solutions efficiently by avoiding exhaustive searches; ideal for large datasets.
2.3.2. Related Works in Applications of Different Machine Learning Models in Material Science
3. Hyperelastic Modeling Approach
3.1. Materials and Aging Conditions
- No Aging: baseline condition with no aging exposure.
- Heat-Aging: 95 °C for 3000 h, simulating high-temperature operation.
- Heat- + Sulfuric-Acid-Aging: 95 °C with 5% sulfuric acid exposure () for 3000 h, representing severe thermal and chemical degradation.
3.2. Hyperelastic Models
- Mooney–Rivlin Model: suitable for moderate strains, this model’s strain energy function depends on the first two invariants of the deformation tensor.
- Yeoh Model: using only the first invariant performs well for materials under large deformations.
- Ogden Model: employing principal stretches, this effectively captures non-linear elastic behavior at large deformations.
3.3. Stress and Deformation Metrics
- von Mises Stress: this metric evaluates the equivalent stress distribution in the material, providing insights into areas of potential failure under load.
- Contact Stress: this is evaluated at the interface between the gasket and the mating components to understand the material’s ability to maintain sealing integrity.
- Height (Deformation): the deformation of the gasket under load is measured to assess how much compression or elongation the material undergoes during operation. This is critical for ensuring proper sealing in PEMFC applications.
3.4. Simulation Setup and Tools
- Importing preprocessed files: The initial geometry and mesh were generated using HYPERMESH, and the files were subsequently imported into MSC MARC for further analysis. ABAQUS file formats (.inp) were utilized to ensure compatibility and smooth integration between the preprocessing tools and the MARC solver. This preprocessing stage ensures a high-quality mesh and accurate geometry representation for analyzing EPDM and LSR gaskets.
- Element type selection: Our precision and expertise were demonstrated in selecting specific element types to model the mechanical behavior of gasket materials and other components in the simulation. For planar dimensions, we used element ID types (Type 80 for gaskets and Type 11 for contact elements), which are well suited for the simulation of large deformations typical in hyperelastic materials such as EPDM and LSR. The material properties of steel components were also defined, using the typical values for Young’s modulus (210 GPa) and Poisson’s ratio (0.3) for an accurate interaction between rigid and deformable bodies [51].
- Contact interaction setup: In the simulation, we defined deformable contact bodies between critical components, including the interaction between the gasket and mating surfaces. We utilized MARC’s advanced contact modeling capabilities to ensure accurate force transfer and deformation behavior between interacting surfaces, highlighting the advanced tools and techniques employed in the simulation.
- Solver and post-processing: The non-linear solver in MSC MARC was employed to handle large deformations and non-linear material behavior. After solving the finite element model, post-processing tools extracted vital performance metrics, including von Mises stress, contact stress, and deformation for each aging condition. The results were then visualized and compared to experimental data for validation.
3.5. Hyperelastic Model Parameters and Simulation Computing Environment
4. EL Model Approach
- SVM: is chosen for its ability to handle high-dimensional spaces and robustness in finding optimal decision boundaries.
- RF: included for its ensemble approach, which reduces variance by constructing multiple decision trees trained on different data subsets.
EL Computing Environment
5. Results and Discussion
5.1. Contact Stress
5.2. Von Mises Stress
5.3. Comparison of EPDM and LSR for Each Aging Condition Using Different Models
5.4. EL Performance Metrics
5.5. Comparison with the Recent Literature on Stress and Aging Performance
6. Conclusions, Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1: Machine learning pipeline for model-type and aging-type classification |
Input: LSR dataset , EPDM dataset Output: Final accuracy , classification report, and confusion matrix 1 Load datasets and from CSV files; 2 Concatenate features: ; 3 Concatenate model-type labels: ; 4 Encode model-type labels: ; 5 Normalize features: ; 6 Concatenate features: ; 7 Concatenate aging-type labels: ; 8 Encode aging-type labels: ; 9 Normalize features: ; 10 Split and into 80–20 training and testing sets; Input: Model M, training and testing sets for model-type or aging-type classification task Output: Performance metrics: accuracy A, classification report, and confusion matrix C 11 Train model M on training data to minimize the loss function L; 12 Predict test labels on :; 13 Calculate accuracy A:; 14 Output classification report and confusion matrix C; 15 Define and initialize models for both classification tasks as follows:
Input: Stacked model , Parameter grid G Output: Optimal parameters and best model 16 Perform a randomized search on with grid G; 17 for each parameter configuration do 18 Evaluate on the training set and compute accuracy ; 19 Set and update best model ; Input: Optimized stacked model , testing set Output: Final accuracy , classification report, and confusion matrix 20 Use to predict labels on test data:; 21 Calculate and output final accuracy , classification report, and confusion matrix ; 22 return |
References
- Wu, F.; Chen, B.; Yan, Y.; Chen, Y.; Pan, M. Degradation of Silicone Rubbers as Sealing Materials for Proton Exchange Membrane Fuel Cells under Temperature Cycling. Polymers 2018, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, Y.; Wang, L.; Deng, X.; Liu, Y.; Zhang, J. A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques, and mitigation measures. Renew. Sustain. Energy Rev. 2023, 182, 113369. [Google Scholar] [CrossRef]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.; Gao, F. A review on lifetime prediction of proton exchange membrane fuel cells system. J. Power Sources 2022, 529, 231256. [Google Scholar] [CrossRef]
- Gupta, P.; Toksha, B.; Patel, B.; Rushiya, Y.; Das, P.; Rahaman, M. Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chem. Rec. 2022, 22, e202200186. [Google Scholar] [CrossRef]
- Aldakheel, F.; Ismail, M.; Hughes, K.; Ingham, D.; Ma, L.; Pourkashanian, M. Effects of compression on mechanical integrity, gas permeability and thermal stability of gas diffusion layers with/without sealing gaskets. Int. J. Hydrogen Energy 2021, 46, 22907–22919. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, H.; Xing, Y.; Ping, S.; Lin, W.; Yang, Y.; Wang, Z.; Ma, T. A review on the sealing structure and materials of fuel-cell stacks. Clean Energy 2023, 7, 59–69. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y. Sealing performance and mechanical behavior of PEMFCs sealing system based on thermodynamic coupling. Int. J. Hydrogen Energy 2020, 45, 23480–23489. [Google Scholar] [CrossRef]
- Dong, Y.; Ke, Y.; Zheng, Z.; Yang, H.; Yao, X. Effect of stress relaxation on sealing performance of the fabric rubber seal. Compos. Sci. Technol. 2017, 151, 291–301. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Wan, Z.; Chen, X.; Chan, S.H.; Tu, Z. Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review. Renew. Sustain. Energy Rev. 2022, 155, 111908. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, R.; Chang, G.; Xu, S.; Cai, T. Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model. Energy Convers. Manag. 2021, 248, 114791. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, X.; Kang, H.; Lv, J.; Zeng, R.; Shen, J. Thermal management of polymer electrolyte membrane fuel cells: A critical review of heat transfer mechanisms, cooling approaches, and advanced cooling techniques analysis. Energy Convers. Manag. 2022, 254, 115221. [Google Scholar] [CrossRef]
- Yakubu, A.U.; Zhao, J.; Jiang, Q.; Ye, X.; Liu, J.; Yu, Q.; Xiong, S. A comprehensive review of primary cooling techniques and thermal management strategies for polymer electrolyte membrane fuel cells PEMFC. Heliyon 2024, 10, e38556. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, Y.H.; Park, J.; Oh, H.S.; An, J.H.; Joo, W.J.; Kim, M.S. Study on low temperature and durability characteristics of gasket for polymer electrolyte membrane fuel cell (PEMFC) depending on cross-sectional geometry. Int. J. Hydrogen Energy 2024, 50, 1194–1206. [Google Scholar] [CrossRef]
- Sim, Y.L.; Lee, J.; Oh, S.M.; Kim, D.B.; Kim, K.; Baeck, S.-H.; Shim, S.E.; Qian, Y. Mitigation of Silicon Contamination in Fuel Cell Gasket Materials through Silica Surface Treatment. Polymers 2024, 16, 914. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective. Int. J. Hydrogen Energy 2023, 48, 7828–7865. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Jiang, D. A rate-dependent aging constitutive model of EPDM rubber. Colloid. Polym. Sci. 2024, 302, 1037–1052. [Google Scholar] [CrossRef]
- Li, S.; Ke, Y.; Xie, L.; Zhao, Z.; Huang, X.; Wang, Y.; Wang, Z. Study on the aging of three typical rubber materials under high- and low-temperature cyclic environment. e-Polymers 2023, 23, 20228089. [Google Scholar] [CrossRef]
- Fodor, B.; Kossa, A. Stability study of the compressible Mooney-Rivlin hyperelastic model. J. Strain Anal. Eng. Des. 2024, 59, 258–268. [Google Scholar] [CrossRef]
- Huri, D. Prediction Accuracy of Hyperelastic Material Models for Rubber Bumper under Compressive Load. Polymers 2024, 16, 2534. [Google Scholar] [CrossRef]
- Wex, C.; Arndt, S.; Stoll, A.; Bruns, C.; Kupriyanova, Y. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: A review. Biomed. Eng./Biomed. Tech. 2015, 60, 577–592. [Google Scholar] [CrossRef]
- Shahzad, M.; Kamran, A.; Siddiqui, M.; Farhan, M. Mechanical Characterization and FE Modelling of a Hyperelastic Material. Mater. Res. 2015, 18, 918–924. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Li, A. Parameter Identification Methods for Hyperelastic and Hyper-Viscoelastic Models. Appl. Sci. 2016, 6, 386. [Google Scholar] [CrossRef]
- Park, S.; Kareem, A.; Joo, W.; Hur, J. FEA Assessment of Contact Pressure and Von Mises Stress in Gasket Material Suitability for PEMFCs in Electric Vehicles. Inventions 2023, 8, 116. [Google Scholar] [CrossRef]
- Habib, A.; Sakib, A.; Mona, Z.; Bhuiyan, M.; Kazempoor, P.; Siddique, Z. Hydrogen-Assisted Aging Applied to Storage and Sealing Materials: A Comprehensive Review. Materials 2023, 16, 6689. [Google Scholar] [CrossRef]
- Im, H.; Jeoung, S. Mechanical Aging Test and Sealing Performance of Thermoplastic Vulcanizate as Sealing Gasket in Automotive Fuel Cell Applications. Polymers 2023, 15, 1872. [Google Scholar] [CrossRef]
- Redline, E.; Celina, M.; Harris, C.; Giron, N.; Sugama, T.; Pyatina, T. Anomalous aging of EPDM and FEPM under combined thermo-oxidative and hydrolytic conditions. Polym. Degrad. Stab. 2017, 146, 317–326. [Google Scholar] [CrossRef]
- Lin, C.; Chien, C.; Tan, J.; Chao, Y.; Van Zee, J. Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment. J. Power Sources 2011, 196, 1955–1966. [Google Scholar] [CrossRef]
- Krauklis, A.; Karl, C.; Rocha, I.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A.; Starkova, O. Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers 2022, 14, 216. [Google Scholar] [CrossRef]
- Charbonné, C.; Dhuitte, M.; Bouziane, K.; Chamoret, D.; Candusso, D.; Meyer, Y. Design of experiments on the effects of linear and hyperelastic constitutive models and geometric parameters on polymer electrolyte fuel cell mechanical and electrical behaviour. Int. J. Hydrogen Energy 2021, 46, 13775–13790. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Sun, Z.; Chen, Z. A systematic review of system modeling and control strategy of proton exchange membrane fuel cell. Energy Rev. 2024, 3, 100054. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Nsaif, Y.M.; Hossain Lipu, M.S.; Hussain, A.; Ayob, A.; Yusof, Y.; Zainuri, M.A.A.M. A Novel Fault Detection and Classification Strategy for Photovoltaic Distribution Network Using Improved Hilbert–Huang Transform and Ensemble Learning Technique. Sustainability 2022, 14, 11749. [Google Scholar] [CrossRef]
- Nishat Toma, R.; Kim, J.-M. Bearing Fault Classification of Induction Motors Using Discrete Wavelet Transform and Ensemble Machine Learning Algorithms. Appl. Sci. 2020, 10, 5251. [Google Scholar] [CrossRef]
- Beretta, M.; Vidal, Y.; Sepulveda, J.; Porro, O.; Cusidó, J. Improved Ensemble Learning for Wind Turbine Main Bearing Fault Diagnosis. Appl. Sci. 2021, 11, 7523. [Google Scholar] [CrossRef]
- Lodhi, E.; Wang, F.-Y.; Xiong, G.; Zhu, L.; Tamir, T.S.; Rehman, W.U.; Khan, M.A. A Novel Deep Stack-Based Ensemble Learning Approach for Fault Detection and Classification in Photovoltaic Arrays. Remote Sens. 2023, 15, 1277. [Google Scholar] [CrossRef]
- Wang, R.; He, Y.; Wang, Z.; Kang, H.; Ma, J.; Jin, H. Effect of Thermal Aging on Breakdown Strength of EPDM Rubber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 062091. [Google Scholar] [CrossRef]
- Gou, B.; Xie, C.; Xu, H.; Du, Y.; Wang, R.; Li, L.; Fan, W. Cracking mechanism and degradation performances of HTV silicone rubber with interfacial defects under acid and thermal stress. Eng. Fail. Anal. 2021, 127, 105468. [Google Scholar] [CrossRef]
- McDonnell, D.; Balfe, N.; O’Donnell, G.E. Analysis of the effects of chemical ageing of ethylene-propylene diene monomer by chemical, spectroscopic, and thermal means. Polym. Test. 2018, 65, 116–124. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X. Research on property variation of silicone rubber and EPDM rubber under interfacial multi-stresses. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 2027–2035. [Google Scholar] [CrossRef]
- Shi, D.; Cai, L.; Zhang, C.; Chen, D.; Pan, Z.; Kang, Z.; Liu, Y.; Zhang, J. Fabrication methods, structure design and durability analysis of advanced sealing materials in proton exchange membrane fuel cells. Chem. Eng. J. 2023, 454 Pt 1, 139995. [Google Scholar] [CrossRef]
- Kumar, V.; Koorata, P.K.; Shinde, U.; Padavu, P.; George, S.C. Review on physical and chemical properties of low and high-temperature polymer electrolyte membrane fuel cell (PEFC) sealants. Polym. Degrad. Stab. 2022, 205, 110151. [Google Scholar] [CrossRef]
- Zihao, W.; Yan, G.; Jun, Y.; Lei, T.; Cong, Y. Data-driven fault diagnosis of PEMFC water management with segmented cell and deep learning technologies. Int. J. Hydrogen Energy 2024, 67, 715–727. [Google Scholar] [CrossRef]
- Gaultier, G.; Elodie, P.; Noureddine, Z.; Daniel, H. Diagnostic and prognostic for prescriptive maintenance and control of PEMFC systems in an industrial framework. J. Power Sources 2024, 613, 234864. [Google Scholar] [CrossRef]
- Soufian, E.; Phuc, D.; Hai-Canh, V.; Bastien, B. Machine learning and Bayesian optimization for performance prediction of proton-exchange membrane fuel cells. Energy AI 2024, 17, 100380. [Google Scholar] [CrossRef]
- Pramoth, V.M.; Samaneh, S.; Xianguo, L. Modelling Anti-Corrosion Coating Performance of Metallic Bipolar Plates for PEM Fuel Cells: A Machine Learning Approach. Energy AI 2024, 17, 100391. [Google Scholar] [CrossRef]
- Xuexia, Z.; Lishuo, P.; Fei, H.; Ruike, H. Fault diagnosis method of PEMFC system based on ensemble learning. Int. J. Hydrogen Energy 2024, 69, 1501–1510. [Google Scholar] [CrossRef]
- Shin, S.; Choi, Y.Y.; Sohn, Y.J.; Kim, M.; Lim, I.S.; Oh, H. Machine learning-based fault diagnosis for various steady conditions of proton exchange membrane fuel cell systems. Int. J. Hydrogen Energy 2024, 89, 507–517. [Google Scholar] [CrossRef]
- Yang, Y.; Qinghua, Y.; RunSen, L.; Sheng, C.; Jiebo, Y.; Fuwu, Y. A predictive framework for PEMFC dynamic load performance degradation based on feature parameter analysis. Int. J. Hydrogen Energy 2024, 71, 1090–1103. [Google Scholar] [CrossRef]
- Safiye, N.O.; Oguzhan, P. Performance prediction of experimental PEM electrolyzer using machine learning algorithms. Fuel 2024, 378, 132853. [Google Scholar] [CrossRef]
- Melo, E.; Barzola-Monteses, J.; Noriega, H.H.; Espinoza-Andaluz, M. Enhanced fault detection in polymer electrolyte fuel cells via integral analysis and machine learning. Energy Inform. 2024, 7, 10. [Google Scholar] [CrossRef]
- Sahli, M.; Roizard, X.; Colas, G.; Assoul, M.; Carpentier, L.; Cornuault, P.; Giampiccolo, S.; Barbe, J. Modelling and numerical simulation of steel sheet fine blanking process. Procedia Manuf. 2020, 50, 395–400. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; Oukhellou, L. PEMFC stack voltage singularity measurement and fault classification. Int. J. Hydrogen Energy 2014, 39, 21631–21637. [Google Scholar] [CrossRef]
Model | Parameters | Value | |
---|---|---|---|
EPDM | Mooney–Rivlin | 1.89472 × | |
0.609227 | |||
0.194325 | |||
Yeoh | 0.559296 | ||
0.026558 | |||
0.00294048 | |||
Ogden | Modulus 1 | −0.664004 | |
Modulus 2 | −2.20126 × | ||
Modulus 3 | 0.0757264 | ||
Exponent 1 | −3.93474 | ||
Exponent 2 | −0.0664976 | ||
Exponent 3 | 4.91726 | ||
LSR | Mooney–Rivlin | 0.430276 | |
0.0162594 | |||
0.016835 | |||
Yeoh | 0.475585 | ||
0.00318065 | |||
2.74909 × | |||
Ogden | Modulus 1 | −0.402385 | |
Modulus 2 | 0.626279 | ||
Modulus 3 | 7.91621 × | ||
Exponent 1 | −0.686773 | ||
Exponent 2 | 2.41526 | ||
Exponent 3 | 15.2995 |
ML Classifier | Major Functional Parameters | Parameter Values |
---|---|---|
SVM | Regularization (C) | 0.1, 1, 10 |
Kernel | Linear, RBF | |
Gamma () | Auto | |
RF | Number of Estimators (n estimators) | 50, 100, 200 |
Max Depth | 10, 20, None | |
Random State | 42 |
Location | EPDM | LSR | ||||
---|---|---|---|---|---|---|
Mooney–Rivlin | Ogden | Yeoh | Mooney–Rivlin | Ogden | Yeoh | |
No Aging | ||||||
1st Anode | 4.71 | 24.54 | 2.04 | 7.93 | 73.46 | 16.11 |
1st Cathode Up | 14.96 | 78.40 | 7.26 | 24.17 | 245.18 | 49.64 |
1st Cathode Down | 15.59 | 77.12 | 7.19 | 24.68 | 229.84 | 48.83 |
Heat | ||||||
1st Anode | 4.74 | 24.41 | 1.89 | 7.98 | 82.61 | 13.92 |
1st Cathode Up | 15.18 | 76.30 | 5.82 | 24.37 | 277.51 | 43.22 |
1st Cathode Down | 15.64 | 75.30 | 6.58 | 24.61 | 260.11 | 39.23 |
Heat + Sulfuric Acid | ||||||
1st Anode | 5.19 | 5.04 | 2.33 | 1.74 | 1.55 | 1.50 |
1st Cathode Up | 16.25 | 16.68 | 8.42 | 6.16 | 5.50 | 5.41 |
1st Cathode Down | 16.52 | 17.03 | 8.51 | 6.10 | 5.58 | 5.34 |
Location | EPDM | LSR | ||||
---|---|---|---|---|---|---|
Mooney–Rivlin | Ogden | Yeoh | Mooney–Rivlin | Ogden | Yeoh | |
No Aging | ||||||
1st Anode | 20.99 | 75.38 | 10.81 | 31.11 | 211.01 | 51.35 |
1st Cathode Up | 23.86 | 91.07 | 11.46 | 37.57 | 261.49 | 62.93 |
1st Cathode Down | 22.26 | 85.31 | 10.98 | 33.45 | 277.17 | 57.61 |
Heat | ||||||
1st Anode | 21.29 | 73.32 | 10.09 | 31.72 | 241.29 | 47.03 |
1st Cathode Up | 24.02 | 89.09 | 10.86 | 38.20 | 285.88 | 58.21 |
1st Cathode Down | 22.53 | 81.14 | 10.31 | 33.66 | 296.93 | 50.69 |
Heat + Sulfuric Acid | ||||||
1st Anode | 22.32 | 20.57 | 11.75 | 9.21 | 8.31 | 8.10 |
1st Cathode Up | 25.83 | 23.61 | 12.76 | 9.75 | 8.76 | 8.50 |
1st Cathode Down | 23.07 | 21.70 | 11.90 | 9.22 | 8.25 | 8.18 |
Location | EPDM | LSR | ||||
---|---|---|---|---|---|---|
Mooney–Rivlin | Ogden | Yeoh | Mooney–Rivlin | Ogden | Yeoh | |
No Aging | ||||||
1st Anode | 0.2522 | 0.2472 | 0.2520 | 0.2518 | 0.1987 | 0.2494 |
1st Cathode Up | 0.3848 | 0.4103 | 0.3755 | 0.3908 | 0.4140 | 0.4021 |
1st Cathode Down | 0.4046 | 0.4139 | 0.3949 | 0.4061 | 0.4220 | 0.4097 |
Heat | ||||||
1st Anode | 0.2521 | 0.2442 | 0.2524 | 0.2517 | 0.2028 | 0.2520 |
1st Cathode Up | 0.3841 | 0.4055 | 0.3800 | 0.3905 | 0.4175 | 0.4025 |
1st Cathode Down | 0.4043 | 0.4146 | 0.4013 | 0.4108 | 0.4254 | 0.4202 |
Heat + Sulfuric Acid | ||||||
1st Anode | 0.2508 | 0.2515 | 0.2510 | 0.2493 | 0.2497 | 0.2505 |
1st Cathode Up | 0.3851 | 0.3838 | 0.3802 | 0.3746 | 0.3754 | 0.3782 |
1st Cathode Down | 0.4054 | 0.4028 | 0.4029 | 0.3990 | 0.3844 | 0.3966 |
Search Method | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
RandomSearchCV | 0 | 0.94 | 0.94 | 0.99 |
1 | 0.98 | 0.91 | 0.94 | |
2 | 0.93 | 0.97 | 0.90 | |
Test Accuracy | 0.95 | |||
Best Accuracy | 0.88 | |||
Best Hyperparameters | {’svm__kernel’: ’linear’, ’svm__C’: 1, ’rf__n_estimators’: 200, ’rf__max_depth’: None, ’final_estimator__n_estimators’: 100, ’final_estimator__max_depth’: 10} | |||
GridSearchCV | 0 | 0.91 | 0.90 | 0.95 |
1 | 0.98 | 0.98 | 0.93 | |
2 | 0.93 | 0.93 | 0.93 | |
Test Accuracy | 0.94 | |||
Best Accuracy | 0.90 | |||
Best Hyperparameters | {’final_estimator__max_depth’: 10, ’final_estimator__n_estimators’: 200, ’rf__max_depth’: 20, ’rf__n_estimators’: 200, ’svm__C’: 1, ’svm__kernel’: ’linear’} |
Search Method | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
RandomSearchCV | 0 | 0.90 | 0.98 | 0.94 |
1 | 0.92 | 0.92 | 0.92 | |
2 | 0.91 | 0.95 | 0.98 | |
Test Accuracy | 0.98 | |||
Best Accuracy | 0.93 | |||
Best Hyperparameters | {’svm__kernel’: ’rbf’, ’svm__C’: 0.1, ’rf__n_estimators’: 200, ’rf__max_depth’: 20, ’final_estimator__n_estimators’: 50, ’final_estimator__max_depth’: 20} | |||
GridSearchCV | 0 | 0.81 | 0.85 | 0.83 |
1 | 0.91 | 0.88 | 0.90 | |
2 | 0.86 | 0.87 | 0.86 | |
Test Accuracy | 0.97 | |||
Best Accuracy | 0.91 | |||
Best Hyperparameters | {’final_estimator__max_depth’: 10, ’final_estimator__n_estimators’: 200, ’rf__max_depth’: None, ’rf__n_estimators’: 50, ’svm__C’: 0.1, ’svm__kernel’: ’rbf’} |
Search Method | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
RandomSearchCV | 0 | 0.80 | 0.83 | 0.86 |
1 | 0.85 | 0.82 | 0.85 | |
2 | 0.82 | 0.87 | 0.89 | |
Test Accuracy | 0.84 | |||
Best Accuracy | 0.83 | |||
Best Hyperparameters | {’svm__kernel’: ’rbf’, ’svm__C’: 10, ’rf__n_estimators’: 200, ’rf__max_depth’: None, ’final_estimator__n_estimators’: 100, ’final_estimator__max_depth’: None} | |||
GridSearchCV | 0 | 0.80 | 0.83 | 0.86 |
1 | 0.85 | 0.82 | 0.85 | |
2 | 0.82 | 0.87 | 0.89 | |
Test Accuracy | 0.84 | |||
Best Accuracy | 0.83 | |||
Best Hyperparameters | {’final_estimator__max_depth’: None, ’final_estimator__n_estimators’: 100, ’rf__max_depth’: None, ’rf__n_estimators’: 200, ’svm__C’: 10, ’svm__kernel’: ’rbf’} |
Search Method | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
RandomSearchCV | 0 | 0.88 | 0.93 | 0.81 |
1 | 0.95 | 0.89 | 0.85 | |
2 | 0.81 | 0.81 | 0.85 | |
Test Accuracy | 0.81 | |||
Best Accuracy | 0.81 | |||
Best Hyperparameters | {’svm__kernel’: ’rbf’, ’svm__C’: 10, ’rf__n_estimators’: 200, ’rf__max_depth’: None, ’final_estimator__n_estimators’: 100, ’final_estimator__max_depth’: None} | |||
GridSearchCV | 0 | 0.85 | 0.90 | 0.89 |
1 | 0.90 | 0.89 | 0.84 | |
2 | 0.83 | 0.81 | 0.87 | |
Test Accuracy | 0.80 | |||
Best Accuracy | 0.83 | |||
Best Hyperparameters | {’final_estimator__max_depth’: 10, ’final_estimator__n_estimators’: 200, ’rf__max_depth’: 20, ’rf__n_estimators’: 200, ’svm__C’: 10, ’svm__kernel’: ’rbf’} |
Model | Target | Dataset | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
XGBoost | Model Type | LSR | 0.70 | 0.71 | 0.70 | 0.70 |
Model Type | EPDM | 0.69 | 0.67 | 0.69 | 0.68 | |
Aging Type | LSR | 0.62 | 0.62 | 0.62 | 0.61 | |
Aging Type | EPDM | 0.62 | 0.67 | 0.68 | 0.67 | |
MLP | Model Type | LSR | 0.59 | 0.66 | 0.59 | 0.59 |
Model Type | EPDM | 0.55 | 0.60 | 0.55 | 0.53 | |
Aging Type | LSR | 0.67 | 0.60 | 0.67 | 0.65 | |
Aging Type | EPDM | 0.58 | 0.61 | 0.62 | 0.64 | |
DNN | Model Type | LSR | 0.62 | 0.65 | 0.62 | 0.61 |
Model Type | EPDM | 0.69 | 0.66 | 0.69 | 0.66 | |
Aging Type | LSR | 0.70 | 0.77 | 0.70 | 0.71 | |
Aging Type | EPDM | 0.76 | 0.78 | 0.76 | 0.76 | |
Stacked Model | Model Type | LSR | 0.95 | 0.93 | 0.97 | 0.90 |
Model Type | EPDM | 0.84 | 0.82 | 0.87 | 0.89 | |
Aging Type | LSR | 0.98 | 0.91 | 0.95 | 0.98 | |
Aging Type | EPDM | 0.83 | 0.81 | 0.83 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-Y.; Kareem, A.B.; Mustapha, T.A.; Joo, W.-J.; Hur, J.-W. Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging. Materials 2024, 17, 5675. https://doi.org/10.3390/ma17225675
Park S-Y, Kareem AB, Mustapha TA, Joo W-J, Hur J-W. Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging. Materials. 2024; 17(22):5675. https://doi.org/10.3390/ma17225675
Chicago/Turabian StylePark, Su-Yeon, Akeem Bayo Kareem, Toyyeebah Ajibola Mustapha, Woo-Jeong Joo, and Jang-Wook Hur. 2024. "Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging" Materials 17, no. 22: 5675. https://doi.org/10.3390/ma17225675
APA StylePark, S.-Y., Kareem, A. B., Mustapha, T. A., Joo, W.-J., & Hur, J.-W. (2024). Hyperelastic and Stacked Ensemble-Driven Predictive Modeling of PEMFC Gaskets Under Thermal and Chemical Aging. Materials, 17(22), 5675. https://doi.org/10.3390/ma17225675